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In this paper, I will review recent work on certain aspects
of the electronic structure of conjugated polymers, and try to
make contact with the work on the electronic structure of short
oligomers. It is impossible to cover this vast subject except by
ignoring a great deal. 1 therefore do not pretend to be exhaus-
tive; instead I will cover a few topics of current concern and
hope that these overlap sufficiently with the interests of people

studying the properties of polydiacetylenes.

1 THE QUANTUM CHEMISTRY OF CONJUGATED SYSTEMS

First, I will briefly remind you of the standard methods for
finding approximate wave functions for the states of conjugated
molecules (1). We work in the Born-Oppenheimer approximation
always, so that we fix the nuclear positions and write the

electronic Hamiltonian as

i
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where Z, is the charge on the nth nucleus, rp is the position of
that nucleus and rj is the position of the ith electron, Of
course, the Schrod}nger equation cannot be solved for such a
Hamiltonian if there is more than one electron, so we must resort
to approximate methods. The usual first approximation is to
assume that the electrons are each in one-electron orbitals which
are solutions to the Hartree Fock (HF) equat
each electron in the average field of a

jons (2). These treat
11 the other electrons, and
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yield one electron orbitals and energies, The HF approximation is
often very good, especially for ground state closed shell sys-
tems. To go beyond HF, one must use multiconfigurational methods
(3) or generalized valence bond methods" or pseudopotentials plus
density functional methods (5). AIl these methods are time

consuming and expensive and have not yet been applied to many
polymeric systems,

In recent years, a pseudopotential-Tlike method, the valence
effective Hamiltonian method (VEH) (6) has also been used to

obtain HF-caliber one electron orbitals for polymers with little
computer time and expense,

Because all the ab-initio methods mentioned above are quite
time consuming, semi-em irical methods haye been developed which
replace certain 1nfegraﬁs appearing in the Hartree Fock equations
by parameters (or in some cases, functions) chosen so that the
results fit the spectral properti

es of certain model compounds.
Some of these methods are the Huckel model, Hubbard model,
rariser-parr-pople (Ppp), CNDO, MNDO, -+ (7),  Since the first

ed and have played a significant
role 1nth9 work of the last few years, I will discuss them in
more detail,

€ar potential to form a "core"
fcores Each carbon nucleys has one p, atomic orbital
nar systems), called u,, n labelling
Note that the molecular orbitals are 1?5ear coeffi-
ﬁ;ents :? thi: li:ﬁar c?mbination wWe are trying to find, In the
equations for the mo ecular orbj on
integrals, Coulomb integrals an tals there will be one electr

sums rals i
semi-empirical nature of the pp i SIS, 0:The

P method enters here: these inte-
Parameterj

zed b ing the
final results with the ex erimental results foi :zgpggézgrum of
benzene, for example, Thus, one eTectron integrals become
<Un(1) [heore(1) lups (1) = B(Fnnt)

while two electron integrals are

<un(1)um(2)lr-l-;tupu)uq(z’» -8
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The zero differential overlap (ZD0) approximation has been made
here so that only two center integrals are considered. Note that

Y(0)

1]

U#0

1
= A3
The PPP model keeps all the one and two center two electron inte-
grals, solves for the HF molecular orbitals (within these approxi-
mations) and compares the result to experiment, The Hubbard model
neglects all the v except Y(0) (5U). The Huckel model neglects
all the vy including U,

The PPP model has been found to be an excellent approximation
for many small planar conjugated molecules such as benzene, naph-
thalene, etc. (7) A standard parameterization gives (in benzene)

U=~11ev
B(nearest neighborl ~ 2.4 eV
¥(r) = U(1+0.6r2)-1/2 (r in A)

Even though the PPP model has been successful, it was recognized
Quite early that using single determinational wave functions was
overly restrictive, and to obtain better results, configuration
interaction with other determinants should be included. Karplus
and co-workers (8) have used this procedure to take the PPP model
further than before.

Since the Hubbard and Huckel models are approximations to the
PP model, they are bound to be less reliable. However, when used
Cleverly, they can be qualitative and even semi-quantitative
Quides to the electronic structure.

The MNDO method pioneered by Dewar (9) has proved itself to
b reliable and semi-quantitative for the geometries of small
gl‘gamc molecules and has been used recently (10) to study the
efect in polyenes, as has the PPP method (11). The results are
N reasonably good agreement.

+, . Another way of dealing with these semi-empirical method: is
aO Write down the Hamiltonian, in operator form, after all. the
PProximations have been made. The PPP Hamiltonian is then

X + +
H= I {Z Byni(anodn'o+an’odna)

Nynt o
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ctron
the spin of the electron, OHCE ﬁ::; ?g"zofls the
N, we do no inger
» but can attempt to so?:e thﬁaf:h;:géggted
equation éxactly, Recent?y. Soos and Co-workers P
tgis Within 3 valence bond approach (12) with good resul

Hubbard
Note i € Ynn' are neglected, the stﬁndafgy pros
Hamiltonjan results witph its correlation Parameter, U,

thin
two electron term, is contaggegogi
the Standard yr apprcximation, SO a quantum chemist wou

rther
label it , correlatjon term, byt , Coulomb term). Note fu
that if U is neglecte

kel
in addition Lo Yont, the general Huc
Hami]tonian results,

; discus-
This Hamiltonian is alsg usefyl starting point for
sing electron pho

non interactjgns. If we expand B”"'hagdfggn
around the BqQuilibpiyp geometry of the Structure so tha
e€xample

0
Bnnl = snnl + K(Un_una) + sse

where « g the electp, Phonon coupling constant and up ?Snthelf
derivation of the nth pye QUS from jtg €quilibrium position.

nn' and u, ape Neglected, the Hamiltonian becomes the Su, nal
SChrieffep. €ger (13 (SSH) Hamiltonian when the vibratio
Hamiltonjan for the Cores jg added, Thus, the ssy model is
1dentica7 to Hucke] theuny With ¢ bond elastic energy (1).
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that if bond alternation were allowed, then the gap persisted as 1
N*=, and, in addition, the bond alternated structure had a lower {

total energy than the equal bond length structure. (This is an A
exanple of a Peierls instability (13).)

If within the Huckel model there are just two 8's, Bjong and Ll
Eymrt. (corresponding to a fixed bond-alternated geometry) given ‘

B(1+8)
B(1-98)

Blong

n

fshort
then the gap is given by AE=486 as M.

The optical gap for short chain polyenes was computed in the
PPP model by Johnson and Peacock (14) who found that even in the
equal bond case (8=0), there seemed to be a gap as N>=.

The gap has also been computed in the Hubbard model in the

équal bond length geometry by Lieb and Wu (15)who found a nonzero
9ap as long as . uUs, the optical gap can be caused solely by
the electron-electron interactions. In the alternating bond
structure in the Hubbard model, no exact solution is known, but a

meanfield result (16) leads to a gap, A,

A = [{8(8=0)}2 + {488}2]1/2,
el for an infinite bond |

alternated structure is not known; however, it is clear that 5
gLeCtron interactions can play an important role in the size of |
e gap, i

The exact optical gap in the PPP mod

Another important question is whether single determinational
functions (i.e. within the Huckel or Hartree Fock approximations)
describe the lowest excited states of polyenes correctly. In the
last ten years (17), it has become clear from both experiment and
theory that the lowest excited state of even polyenes with more
than three double bonds is not the Byy state reached by the
absorption of light, but a second Ajg state accessible by two
photon absorption. ~Thus the Hartree Fock model, although a very
900d description of the By, excited state, is not good at all for
the lowest excited state. At the present time, the behavior of
this A4 state (and other such states) as the polyene grows longer
s COmp?etely unknown, although a valence bond description of this
State resembles a soliton-antisoliton pair of the SSH model, but

Within a rigid geometry.
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In 1979, s Sc effer, and Heeger examined




this model again (13), and repaired this oversight.

By allowing the bond alternation to change continuously
through the defect and taking 8(r) from the quantum chemists
standard formu]ary, SSH showed that the optimized geomeiry was a
§M1ton711ke structure. That is, the difference in bond 1engths
in a unit cell varied as tanh (n/%) where n numbers the unit cell
(q=0at the center of the defect) and £ is a parameter giving the
:;¢N1of the defect. SSH, using the Huckel model, found %£=7 for

e neutral and charged solitons (Sg, S, S-). The seminal work
of SSH led to an enormous interest in the theoretical description

of this system,

s 108 jnteraction between defects on a polyene chain were con-
?;gered within the SSH model by Maki et al. (19), Bredas et al.
ﬂta and Bishop et al. (21). The latter Two groups noted That™
achOUQh like-charged defects do not bind together, a neutral and
e arged defect will bind to form a polaron (or radical-ion) on
: chain, Thus the complete SSH model must include the possible

ormation of polarons, and other defects (21).

ok at the effect of elec-

Other authors have attempted to 10
ructures in a variety

E;on1nteractions (correlation) on these st :
Ha Ways. Some have added a Hubbard U term to the basic SSH
b;ﬂtton‘a" (22,23,24) and showed that as long as U<4,7 eV, the
U? ¢ results of SSH are largely unaffected. The “true" value of
enos not known with accuracy; however, it is likely to be close
. ugh to the critical U to be disturbing. If U>4.7 eV, there is
thaundmemzed spin density wave state which is lower in energy
disn the normal solution. Aslangul (24) has an interesting
Ciscussion on this. J. Fukutome and Sasai (11,25) have tried to

§ ve the PPP Hamiltonian within the unrestricted Hartree Fock
nm"’“matwn. and find both SDW and CDW solutions, although the
i al bond-alternated solution does seem to be the best
aboﬁ”ption'of the electronic structure here. As we pointed out
poly:ae§°°5 (12) methods have not yet been applied to long

has been applied to the

Another approximate scheme, MNDO,
This self-consistent

;z:gy of defects (10,26) in long polyenes.
a 0d allows the inclusion of electron interactions in an
PProximate way and leads to predictions similar to those of the

552 model, For example, the neutral defect is studied by exaining
1 carbon atom polyene with a center of symmetry. This forces
of the chain. The MNDO

ﬁgiu?efect to be centered in the middle

i< fts show the standard tanh structure but with 2=3 (instead of

e rom the Huckel model). The charged defects were treated in

foo Same manner and it was found that %=5 for the positive and 23
r the negative solitons. Note however that the tanh form was
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found in all cases. These authors also discussed the structure of
the orbital which is singly occupied in the neutral defect (i.e.
mid-gap orbital). The results of the MNDO calculation are in good

semi-quantitative agreement with the UHF results in the Ppp
model (25),

In spite of their simplicity and inexact character, the
application of semi-empirical Hamiltonians and methods to the
electronic structure of polyenes has proven to be an extremely
fertile endeavor, allowing a better understanding of experiments
and giving rise to simple models of immense utility,

3 QUANTUM CHEMISTRY OF POLYMERS

In the past few years, the work of Ladik, Andre, Karpfen,
led the way to a greater under
standing of the electronic structure of polymers, Using ab-initio
methods mainly, these authors have shown that high quality elec-
tronic structure Calculations can be done on polymers in the same
way as on semiconductors and metals, At the same time, semi-
this problem with success.
Duke et al, (28) have used CNDO methods, while Bredas et al. (29)
have ‘used valence effectiye Hamiltonian (VEH) methods.— —

The current status of ab=initio calculations on the ground
state properties of

polymers is given in the review by Karpfen.’
The band structures and densities of states of polyacetylene (and

Poiyethylene) are given in the crystal orbital method (Hartree
« Correlation effects have

potential of atom A, For computational
€ase, simple nonloca) atomic potentials are chosen of tge form of




101

Gaussian projectors:

. A A
{3 Cij im[Xiem< Xjanl
shere the summations over & and m define the angular dependence of
Vi The numerical coefficients Cijj am are independent of m in the
case of spherical symmetry, which we usually consider. The func-
tions are normalized Gaussians:

Vp=L1I
A s

Xitm = N4 exp[-air2]Yem(0,9)

N is the normalization factor and Ygp denotes the usual spherical
harmonics. Note that only 1s and 2p Gaussian cartesian functions

are used,

The parameterizations of the linear coefficients, C, and the
nonlinear exponents, a, first require valence SCF calculations on
nodel molecules by a theoretical pseudopotentia] method with an
$T0-36 minimal basis set and a double zeta basis set. The model
molecules chosen to parameterize carbon and hydrogen atomic
poten-tials were ethane, transbutadiene, and acetylene (29); for
sulfur and carbon linked to sulfur, dimethyl sulfide and thiophene
(29); for ni-trogen and carbon linked to nitrogen, dimethylamine
and pyrrole (33), For each molecule, the Fock operator is
constructed as:

F =D gy|oy><oy|
v

where the summation is over all occupied states; the valence

orbitals ¢, are taken from the minimal basis set calculation and
the corresponding monoelectronic energies €y from the double zeta
calculation, The choice of this theoretical Fock operator leads
1o valence effective Hamiltonians providing double zeta accuracy
for monoelectronic energies when solved with a minimal set. The
Parameterization of the atomic potentials is then determined by

mininizing the quantity

g (F-Feff|F-Feff)molecule B

Were the summation runs over the model molecules used for a given

St of atomic potentials. (F-Feff |F-Feff) denotes the scalar pro-

duct of F-F jed valence
i bspace of the occup
eff with itself in the subsp feviations between the

Hamiltonians
and in no

:Pbita]s. On the model molecules, standard :
a:dﬂlergies produced by using the valence effective
double zeta energies are of the order of 0.015 a.u.,
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iti ied
case larger than 0.2 a,u. The position of the highest occup
orbital gs especially well-produced - a result which lends confi-
dence in obtaining good ionization potential estimates.

No information pertaining to the excited states is included
in the atomic potentials. As a result, no special attention
should in principle be given to the unoccupied level_s: However,
for the planar systems considered previously, surpr153n91y good
agreement between experiment and theory has been obtained for the
lowest optical energy transition (29).

The extension of the VEH method to polymer calculations is
straightforward, The effective operator takes the form:

A
Feff = -3+ 1 Va

the summations over g and A running, respectively, over the
polymer unit cells and the atoms present in one cell, The band
structure E(k) of the polymer, where k is a point in the first

Brillouin zone of the polymer, is obtained from eigenvalues of the
set of secular equations:

E(k) (k) = s(k) c(k) E(k)

F(k) and S(k) are the Fock and overlap matrices between Bloch k
Functions~and C(k) collects the coefficients of the linear CON1 ;.
nations of Block functions that provide the crystalline orbitals:

% 1T:e]ma:;|: advantages of the VEH technique are that it ]f:ty
mpletely theoretical and qi 3 zeta qua
results with negl1gible gives ab-initio double q

Computer t one-electron
integrals neeq to be eval puter time, since only

vated cles are
completely avoided, €d and SCF iterative cy

It must be poj : 1o HE
not been para Pointed out that the vy atomic potentia

should be userdneterized for geometry optimization purposes and

With geometric par. t 1 to equilibrium.

For systems whose geomet Parameters close to eq is
ries wn (as

case of the majority of tp are experimentally unknown (

jed)s
€ large oligomers and polymers stud
?ﬁpm:wt e se of ather tl?‘3'1"?(1!1635 in order topobﬂiﬂ reasond
sbs! Egg';‘g%"‘ﬁ:- D-initio techniques, even with small basis
considered, * ps g me, 00 eXPensive when large compounds are

As ; qth
method such a M:DB?sun we often use geometries optimized W

e Tesutts son Polyacetylene, polydiacetylenes, polyphen
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ylene, polypyrrole and other polymers using the VEH method have
been published. A comparison between the ab-initio Hartree-Fock
crystal orbital results and the VEH results on polyacetylene shows
perfect agreement for minor details. It seems therefore that the
VEH method is an inexpensive way to derive excellent one electron
energies and wave functions for the ground state of polymers.

4 CONCLUSIONS

At the present time, ab-initio Hartree-Fock and VEH methods

can yield reliable ground state one electron properties.
Correlation energies require more effort and are not yet available

for many systems.

Semi-empirical methods (MNDO, CNDO, PPP, and its variants
Hubbard and Huckel) yield semi-quantitative information on both

ground and excited state properties.

With the advent of supercomputers we will soon see tremendous
advances in both areas. I expect that effects of impurities and
dopants, interchain effects and solid state effects will become
amenable to attack using these methods in the near future.
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