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Energy transfer in atom-surface scattering: Sum rules and 
velocity distributions 

R. D. Levinea) and R. Silbeyb) 

Department of Chemistry and Center for Materials Science. Massachusetts Institute of Technology. Cambridge. 
Massachusetts 02139 
(Received 3 November 1980; accepted 29 December 1980) 

Velocity distributions for Ar atoms scattered from a 
poly crystalline tungsten surfaceHa) and for Xe scattered 
from Pt(1l1)1(b) have recently been measured for a wide 
range of incident supersonic beam energies and surface 
temperatures. It was concluded that direct, single 
encounter, inelastic scattering is the most important 
process and is characterized for Ar/W by a simple 
linear relationship 

(1 ) 

Here Ts is the surface temperature and the mean kinetic 
energy of gas molecules from a surface or an effusive 
source at the temperature Tis 2kB T, where kB is the 
Boltzmann constant. In this note we will be concerned 
with this direct process, and not the indirect pro
cesses.1(b) 

Linear relationships between final and initial mean 
values of kinematic observables playa central role in 
the information theoretical approach to colliSion pro
cesses2 and are called sum rules. In this note we shall 
derive a sum rule of the form (1) starting from a mac
roscopic approach to energy transfer in multistate sys
tems. 3 Since Janda et al. 1 have also measured the ve
locity distributions, their results serve to demonstrate 
the special relevance of sum rules in the information 
theoretic approach, namely, when a sum rule of the 
form (1) obtains, an incident thermal velocity distribu
tion will lead to a scattered velocity distribution which 
is also thermal, but with a different value of the tem
perature. 

The derivation of the sum rule is based on the as
sumption that the solid can be considered to be a col
lection of harmonic modes (phonons, electron-hole 
pairs, etc.) which interact with the colliding atoms and 
whose excitation level is changed by that interaction. 
Given a thermal distribution of incident atoms, the 
macroscopic assumption is that the average energy of 
each mode relaxes toward equilibrium with a single 
relaxation time T. It then follows 3 that for each mode 

L (Ev ' - Ev) k(v- v') = K( (Ev) - Ev) , (2) 
v' 

where Ev is the energy of level v of the mode and (Ev) 
is the average energy of the mode if it were in thermal 
equilibrium with the (thermal) beam of incident atoms. 
k(v- v') is the rate constant of v- v' transfer due to col
liSions and K = (myl, where n is the density of the inci
dent beam. For simplicity we will take all modes to 
have the same frequency, although this is not essential. 
We now average Eq. (2) over the initial distribution in 
Ev (i. e., according to the temperature Ts of the solid) 

and sum over all modes. The left-hand side of Eq. 
(2) is then the average energy gain of the solid and thus 
the average energy loss of the colliding atoms (K. E')I. 
- (K. E. )out per collision. The right-hand side is 
[«Ev»T -«Ev)h J. The subscripts T and Ts refer to s 
the different thermal distributions used in the two aver-
ages. T is the temperature of the incident beam [used 
to define (Ev) in Eq. (2)). We replace «Ev)h by its s 
high temperature value kB Ts , 6 and replace «Ev»T 
= kB T by the mean kinetic energy of the beam with which 
the solid is in equilibrium, i.e., (K.E')I./2. With 
these replacements, Eq. (2) can be written as 

Here w is the collision rate. Equation (3) is of the same 
form as and numerically consistent with the experimental 
result (1), yielding (K/W) =0. 4, which is clearly the prob
ability of energy transfer per collision. 7 Note also that 
K/ W = Z/ Zv = ZT, where Z is the number of collisions per 
unit time, while Zv = l/T is the number of energy-trans
fer collisions per unit time. 

From a collision-theoretic, microscopic, point of 
view, the sum rule (2) can be derived for simple Ham
iltonians of atom-oscillator collisions,2 the Landau
Teller model, 3 and recently for a hard cube model. 9 

While analytical derivations are necessarily restricted 
to very Simple models (e. g., harmonic oscillators), 
the sum rule is typically found valid4 even for collisions 
where anharmonicity and/or multiquantum transitions 
are important. 

From a dynamical point of view, a sum rule is the 
signature of a time-dependent constant of the motion. 5 

For the present problem, the linear relationship (1) 
implies that there is a time-dependent constant of the 
motion I(t), which can be well approximated as I(t) 
=a(t)K. E. +b(t) 1, where a(t) and b(t) are time depen
dent coefficients, K. E. is the kinetic energy of the 
beam, and 1 is the identity operator. It then follows 
that if the initial velocity distribution in the beam can 
be specified as a distribution of maximum entropy sub
ject to the constraints of (i) normalization and (ii) given 
(K. E. )1 .. then the final velocity distribution will be one 
of maximum entropy subject to (i) normalization and (ii) 
given (K.E')out. It is worth emphaSizing that this re
sult not only specifies the functional form of the final 
velocity distribution but it also predicts the value of 
the Lagrange parameter (using the given value of 
(K. E.)out). In particular, for the problem at hand it 
follows that for an incident thermal velocity distribu-
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tion, the functional form of the velocity distribution 
of the scattered atoms will remain thermal. Only the 
mean kinetic energy (or, equivalently, the tempera
ture) will have a different value. Gi ven the incident flux 
velocity distributionlo [Eq. (1) of Ref. l(a»), it was pos
sible to fit the scattered flux velocity distribution to the 
same functional form, for both specular and normal 
directions, with the width of the outgoing velocity dis
tribution equal to O. 4kB T. / mAr in the case of Ar /W. 

The information theoretic results are thus in total 
agreement with the experimental measurementsl of the 
direct inelastic scattering of rare gas atoms from metal 
surfaces. 
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A mean free path kinetic theory of void diffusion in a 
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One of the simplest models for gaseous diffusion is the 
so-called mean free path kinetic theoryl.2 for the self 
diffusion of "tagged" molecules in a pure gas at uniform 
pressure. The mean free path model allows us to for
mulate a kinetic theory of void gas diffusion in the tran
sition region between bulk and Knudsen diffusion and 
simultaneously include local surface diffusion along the 
pore walls. The free path probabilities Kl(r, r')d2r 
that a molecule leaving the pore wall at r' will experi
ence its next collision within the element of wall sur
face d2r at r, K 2(r, r')d2r that a free path that begins 
with a molecular collision in an void volume located at 
r' will end with a wall collision within the element of 
wall surface d 2r at r, and K 3(r, r')d3r that a free path 
that begins with a molecular collision in the void at r' 
will end with a molecular collision within the element 
of void volume d 3r at r can be calculated from elemen
tary kinetic theoryl.2 in terms of the mean free path l 
for molecule-molecule collisions with diffusive cosine 
scattering at the pore walls 

, _ [ 417(r')' P ] (3-i) (2-i) /2 [l17(r) . pJ 21 (3-i) /4 K.(r, r ) __ ~!..:..;~c:.. 
• P P 

(1) 

where P = (r' - r), and the unit normal 17(r) at r points 
into the void volume. Note that any of the three free 
path probabilities are zero if the straight line molecu
lar path between rand r' is blocked by intervening solid 
material. 

Suppose across a thick slab of statistically homoge
neous material running between the parallel planes x = 0 
and x = L we maintain a difference e.c = Co - CL in the mo
lecular number density. A variational principle for the 
effective diffusivity De (molecular flux per unit I e.c 1/ L) 
was formulated in Ref. 3. To include surface diffusion, 
we need only add on an additional term in the surface 
diffusion coefficient D., the two dimensional gradient 
along the surface V' 8' and the Henry's law isothermal 
adsorption constant K H : 

(~C/L)2 VDe::S (v/8K~) f f Kt(r, r') [f.(r) - f.{r') ]2 d 2rd2r' + (3 J J K 2(r, r') [f.(r)/({3KH ) - f(r') ]2d
2
rd

3
r' 

+ ((3/2) J f K 3(r, r') [f(r) - f(r')]2d3rd3r' + (D./KH ) J [V'.f.(r)j2 d2r , (2) 
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