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Exciton-phonon scattering and exciton trapping in one
dimensional exciton systemsa

) 

Hartmut Benkb
) and Robert Silbey 

Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 02139 
(Received 26 May 1983; accepted 24 June 1983) 

We calculate the k ---+ k' scattering of excitons by phonons when impurities playa role. This is important for 
very narrow one-dimensional exciton bands as in tetrachlorobenzene. Three mechanisms are discussed and 
the dependence on impurity concentration and jump size are considered for all three. 

I. INTRODUCTION 

In a recent set of experiments, Schmidt and co-work
ers! have carefully studied the scattering of triplet ex
citations in tetrachlorobenzene (TCB) crystals at low 
temperature using electron spin echo experiments. 
These excitations are one-dimensional exciton states 
due to the large anisotropy in the excitation transfer ma~ 
trix elements. Other workers, notably Fayer and co
workers2 and Breiland and Saylor3 have also studied this 
system using ODMR measurements. Another quasi-
one -dimensional system, dibromonaphthalene (DBN), 
has been studied by optical spectroscopy by ZewaU4 and 
others. 5 Both systems have been studied by spin reso
nance by Wolf and co-workers. 6 

All these systems are characterized by rather narrow 
exciton bands (-1. 36 cm-1 in TCB, - 20 cm-1 in DBN), 
much narrower than the acoustic phonon bands. This 
means that one phonon scattering processes are ex
cluded in the limit of infinitely long, pure exciton sys
terns where k conservation must hold. However, these 
one phonon processes can occur if there are impurities 
or structural dislocations in the crystal. For example, 
if there are a finite number (N) of TCB molecules in a 
one -dimensional array (due to impurities or structural 
dislocations at each end of the array), then k (quasi
momentum) conservation is not necessary, at least to 
order 11 N. In addition, if an impurity is present on an 
adjoining chain, it may induce one phonon scattering by 
breaking the translational invariance [e. g., by changing 
the site diagonal exciton-phonon coupling of one (or a 
few) molecules on the chain]. Finally, if an impurity is 
in the chain, it changes all the electronic states (and 
may lead to trapping states), which also leads to the 
breakdown of the k selection rules. This also makes 
one phonon processes allowed. These three mechanisms 
are the subject of this paper. In Sec. II, we state the 
general formulation of the problem. In Sec. III, we com
pute the microscopic exciton scattering rates. 

alSupported by National Science Foundation (Grant CHE81-00407l. 
blOn leave from !nst. fiir Theoretische Physik, Teill, Universi

tat Stuttgart, Germany. recipient of a Postdoctoral Fellowship 
from the Deutsche Forschungsgemeinschaft (DFGl. 

II. BASIC EQUATIONS OF THE GENERAL PROBLEM 

A. The Hamiltonian 

The electronic Hamiltonian of an arbitrary linear aggre
gate of Nox molecules (in particular a linear chain) can be 
written 

(2.1) 

The operators a~ and an create and destroy a localized 
electronic excitation of energy En at the molecular site 
n. J nm is the energy exchange matrix element between 
molecules nand m. Nex is assumed to be the total num
ber of electronically excitable molecules, say linearly 
arranged in the z direction, whereas the whole three
dimensional molecular crystal under consideration (in 
which the linear chain is embedded) consists of N=' N, 
='N,fi.Ji. molecules, where obviously always Nex::= N •. 
The intermolecular vibration energy of the crystal is 
described by a pure harmonic Hamiltonian of the form 

il'h=Lnw( q)b~bq. (2.2) 
q 

The operators b: and b q create and destroy a phonon of 
frequency w(q) and wave vector q, where q is a three
dimensional vector. 

We will assume that as far as the phonon states are 
concerned, all the molecules in the crystal are identical. 
Thus there is complete translation invariance for the 
phonon variables (in contrast to the exciton variables), 
and so 

27T 
ql=Nd VI' i=x,Y,z 

I I 

with 

-NI/2::= VI <N1/2 , 

(2.3a) 

(2.3b) 

where d l is the lattice unit in i direction. The coupling 
between the electronic variables and the phonon bath is 
represented by the linear exciton-phonon Hamiltonian: 

Nez 

Hez_»h= (N,rIl2 L elqnXn(q)a~an(b~q+ bq) 
Q',nal 

+ (N,r1/2 L ehnF_(q)a;.am(b~q+ bq) • (2.4) 
q,n,m 
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3488 H. Benk and R. Silbey: Exciton-phonon scattering 

The coupling constants Xn(q) and Fnm(q) determine the 
strength of the local and nonlocal exciton-phonon cou
pling coming from the modulation of the molecular en
ergies En and the energy exchange integrals J nm due to 
the intermolecular vibrations. 7 

For our problem of exciton-phonon scattering the elec
tronic Hamiltonian in the local representation [Eq. (2.1)] 
is not convenient. Therefore we first diagonalize it in 
the so-called de localized p representation. By means 
of the unitary transformation 

a+ - '"'c(P)a+ n-L..J n p' (2.5) 
p 

we deduce from the Eqs. (2.1), (2.2), and (2.4) the cor
responding crystal Hamiltonian: 

Her=L:E(p)a;tzp+ L Fiwqb:b q 
p q 

+ L Gpp.(q)a+pap.(b:q+bq)' (2.6) 
PtP#Q 

The new operators a:(a p) create (destroy) an electronic 
crystal excitation in the exact energy eigenvalues E(P) 
of the arbitrarily composed molecular aggregate (or linear 
chain of molecules) wbich can be electronically excited. 

The last term in Eq. (2.6) describes the exciton-pho
non coupling in the p representation and induces inelastic 
scattering (I p') - I p») of the excitons by phonons (both 
pure scattering and trapping are possible as we will see 
below). The scattering parameter in Eq. (2.6) is 

G pp.(q) = (Npr1 /2 {4=c~P)* c~P') e1qnXn(q) 

+ L C~P)*c~')elqnFnm(q)} . 
n.m 

(2.7) 

The important transformation coefficients c~P) in the 
above equation correspond physically to the probability 
amplitudes of the exact wave functions II/J( P» with energy 
eigenvalues E(P) at molecular sites n of the crystal, 
i. e. , 

II/J(P»=Lc~p)ln) , (2.8) 
n 

where I n) describe the local molecular wave functions 
with molecule n excited. 

In the case of arbitrarily doped molecular crystals 
or aggregates the p space is divided into a <p space 
which consists of perturbed de localized excitons E(I/J) and 
an x space which consists of impurities induced quasi
localized exciton states E h ), called trap states, outside 
the exciton band. The transformation coefficients c~p) 
[Eq. (2.5)] can be calculated by means of a Green's func
tion formalism as was shown by one of the authors. 8 

Only in the limiting case of an unperturbed, infinite (this 
means translational invariant) molecular crystal does 
the p space reduce into the usual k space (Bloch space) 
with C~k) = (N •• t 1l2 el 

kn. Here k is an accurately defined 
quantum number equal to the quasimomentum of the pure 
delocalized excitons with the energies E(k), 

E k
) =L Jnmexp[ik(n -m)]. (2.9) 

n,m 

B. Dynamics of the system-derivation of an effective 
density matrix equation 

The dynamics of the coupled total system (excitons and 
phonons) described by the crystal Hamiltonian Her [Eq. 
(2.6)] obeys the known Liouville equation 

(2.10) 

In order to focus on the electronic system, we find an 
equation of motion for the reduced density matrix 6(t), 

o-(t) = trp bP(t) (2.11) 

which describes the dynamics of the excitonic subsys
tem. tr ph means the trace over the phonon (lattice) 
states. 

Since the derivation of the equation of motion of the 
reduced density matrix 0- has been described by others,9 
the procedure [an approximation equivalent to second 
order time dependent perturbation theory in the exciton
phonon coupling Gpp.(q)] is not outlined explicitly here. 

One finds that the diagonal elements of the density 
operator upp=(plo-Ip) obey the following equation of 
motion: 

(2.12) 

u pp(t) describes the probability to find an exciton in the 
state I p) with energy E P

) at time t. At this pOint we 
want to emphasize that the diagonal elements of the dens
ity operator upp(t) decouple from their nondiagonal ele
ments uPP' only in this p-energy eigenrepresentation (in 
contras t to the alternative local In) representation). 
Therefore, this p representation is the most convenient 
representation for our system under investigation and 
leads to a closed equation of motion [Eq. (2.12)] for the 
occupation probabilities u pp of the exact exciton energy 
eigenstates E(P). Equation (2. 12) is therefore a Pauli 
master equation. 

The phonon-induced transition rates App. between two 
different states I p) and I p') can be written 

App' = 2 Re fa" exp[ - (mr1(E P
) - EP'»)T] 

(2.13) 

with 

Bpp.(t) = L Gpp.(q){b:qexp[ + iw(q)t] + bqexp[ -iw(q)t]} . 
q 

(2.14) 

&pb means the equilibrium distribution of the phonons at 
a fixed temperature T, 

&pb = z·l exp( - iIpt!k BT) 

with 

z = tr pb exp( - Iipt!k BT) 

where kB is the Boltzmann's constant. 

(2. 15a) 

(2. 15b) 

Taking into account Eqs. (2.7) and (2.14) we evaluate 
the integral equation (2. 13) to give the following micro
scopic transition rates in the p space: 
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App. = 21T 2:1 Gpp.(q) 12 ([1 + n(q)] 6[E(p) - E(P') - w(q)] 

• 
+n(q )6[E'Pl - E(P') + w(q))} , (2. 16) 

where 

n(q) = {exp[hw(q)/k BT)] - 1}-1 (2.17) 

is the average number of phonons in the thermal equilib
rium. 

The first contribution of App. [Eq. (2. 16)] describes 
one-phonon-emission processes, the second one-phonon
absorption processes. 

From Eq. (2.16) we deduce for all transition rates 
App. the following relation with respect to their inverse 
rates Ap.p, 

(2. 18) 

By means of this relation we find from Eq. (2. 12) the 
stationary equilibrium occupation probabilities a pp(t 
_00): 

(2. 19) 

which means that at equilibrium there is a Boltzmann 
distribution in the p states. 

In the following we have to evaluate the microscopic 
transition rates App. [Eq. (2. 16)] exactly. In this paper 
we limit ourselves to the case of the interaction of one
dimensional excitons with three-dimensional phonons. 
In addition, we distinguish two types of exciton phonon 
interactions. For pure exciton-phonon interaction if we 
look at pure unperturbed excitons (k) and phonon~ (q) in 
an infinite molecular crystal, the Hamiltonians Hox(En 

= E, Jnm = I n-m), Hph and Hex-ph (Xn =X, Fnm = F n-m) are 
all translational invariant (N.x = N z - 00). 

As we will show below in the cases of one-dimension
al triplet exciton systems, with bandwidths much small
er than the Debye frequency, the corresponding scatter
ing rates App. due to this pure exciton-phonon coupling 
mechanism are identically zero 

(2. 20) 

An experimentally detected finite nonzero scattering 
rate in these cases (for example TCB1(a») must there
fore come from other scattering mechanisms which we 
will discuss now. These form a second class which will 
be called the impure exciton-phonon interaction. In 
this case we define (a) two impurity assisted exciton 
scattering mechanisms and (b) one impurity induced ex
citon scattering mechanism (where the impurities are 
directly involved). 

In the two impurity-assisted mechanisms, the impur
ities do not create perturbed exciton states (¢) or trap 
states (x). In the first mechanism, the exciton states 
are defined only over a finite number of sites, N.x, be
cause there are disruptive impurities preventing the ex
citation from getting past. Tha t is, there are impurites 
at each of the stack of Nox molecules. We can write 

(2. 21a) 

where Nd\ is the number of disruptive impurities and as 

before N. is the number of molecules in the z direction 
in the crystal. This gives for the average concentration 
of disruptive impurities, Cdh 

(2. 21b) 

In the second mechanism, we allow Nox to go to infinity, 
but allow an impurity on a neighboring stack to interact 
with a few (perhaps one) molecule on the stack under 
consideration. This breaks the translational invariance 
of the exciton-phonon interaction and allows one phonon 
processes to occur. We call this the interstitial mecha
nism. Let us suppose that the molecule at site no is af
fected by the interstitial impurity; this gives rise to an 
exciton-phonon Hamiltonian [see Eq. (2.4)] 

ii .x-ph = Np1l2 2: fXo(q) exp(iqno)a~o ano(b. + b~) 
• 

+ (Fo.:1 exp(iqnola;o ano:1 + j. c. )(b. + b:")}. (2. 22) 

In this case the proportionality parameter turns out to 
be the concentration of the interstitial impurities C II 
with 

(2.23) 

In contrast to the above mechanisms, in the impurity 
induced exciton scattering mechanism the impurities are 
substitutional impurities in the molecular chain and are 
directly involved in the exciton states. The impurity 
molecules generate perturbed exciton waves (¢ *k) as 
well as quasilocalized exciton-trap states (x) resulting 
in nonzero exciton scattering rates App. =Au' as well as 
exciton trapping rates App.=A",:r. In this case the impor
tant proportionality parameter turns out to be the con
centration of the trapping impurities Cu , 

(2.24) 

In the following section we calculate all nonzero micro
scopic scattering rates App. and their dependence on the 
concentration of disruptive, interstitial, and trapping 
impurities Cd!> CII , and Ct!. Special importance is 
drawn to the microscopic p selectivity of the scattering 
rates leading to the prediction of whether the excitons 
undergo nearby jumps (I),.P- 0) or long jumps in the p 
space of the corresponding band. 

III. MICROSCOPIC EXCITON-SCATTERING RATES 

A. Pure exciton-phonon interaction 

In this case the exciton wave functions [Eq. (2.8)] 
represent unperturbed Bloch waves. Therefore, 

Il/i(k.» =2:IC~k.) 1 n) (3. 1a) 
n 

with 

(3. Ib) 

It is important to notice that only for the infinite unper
turbed crystal (N.x=N.=N) do we have well defined ex
citon and phonon quasimomenta with the following val
ues: 

kz=21Tv.x/Nd., -N/2~v.x<N/2, 

qz=21Tv/Nd., -N/2~vp<N/2 • 

(3.2a) 

(3.2b) 
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3490 H. Benk and R. Silbey: Exciton-phonon scattering 

The general scattering parameter Gpp,(q) [Eq. (2.7)] can 
now be written 

x eXP[i(k~-k~+q~)n]{x(q)+;1 eXP(ik:a)Fa(q)} . 

(3.3) 
Taking into account Eqs. (3.2) we have .E: 

For the q dependence of the local (X) and nonlocal (Fa) 
exciton-(acoustic) phonon coupling we take the Davydov 
form!: 

(3.5a) 

and 

(3.5b) 

For the acoustic phonon frequencies we assume the fol
lowing anisotropic dispersion relationlo: 

(3.6) 

Taking into account Eqs. (3.4)-(3.6) we deduce from Eq. 
(2.16) the following integral expression for the scatter
ing rate A kk.: 

AU' ={xac + 2F"c cos k~}2. :7T f dq~f q.ldq.l{C~q! +Ciqi}1I2 

X{(l + n[ {C~q~ + CiqiP 12))o(E(k) - EU') - {C~q; + ciqiP 12) 

(3.7) 

Evaluating the integral (3.7) we end up with the exact re
suit 

A:~;·= 2~ (~~y (cosk - cosk')2 (Xac + 2Fi"cosk;)2fT(.:~Ekk') 
X 8\.(.~Ekk')2 - C~(k~ -k~.)21 , (3.8) 

where 

fT(X) =[1 +n(x)]6(x)+n(lxl )6(-x). 

Due to this (cos k - cos k')2 dependence of the scattering 
rate the excitons prefer long range jumps (when "tem
perature allowed") rather than nearby jumps (k zk') 
within the exciton band because the latter are of the or
der }{"4 weaker. This statement is only of relevance in 
case where we deal with exciton bands Itk) which are 
larger than the corresponding phonon bandwidths w(q). 
This is normally the case of singlet(S) excitons (Fig. 1). 
For the opposite case in which the phonon dispersion ex
ceeds the exciton dispersion (and in which we are par
ticularly interested in this paper) the last factor in Eq. 
(3.8), the Heaviside function 6, is zero and so thus are 
all the A kk•• This case holds for triplet (T) excitons 
which have bandwidths of the order of 1 cm-I, whereas 
characteristic phonon energies are greater than 10 cm-I • 

Therefore in all these special cases of flat exciton bands 
and steeper phonon bands nonzero scattering rates Aw 

k,q 

FIG. 1. Typical dispersion curves for singlet excitons 
[E(k)(S»), triplet excitons [E(k)(T»), and phonons (w(q». 

cannot be obtained with the usual pure exciton-phonon 
interaction. However, the impure exciton-phonon mecha
nisms do give rise to nonzero scattering rates. 

B. Impure exciton-phonon mechanisms 

The first impurity assisted exciton scattering mecha
nism we discuss can be thought of as due to the finite size 
of our exciton system (Nu ) in comparison with the phonon 
system (N~» N .. ). Given a finite chain of N •• molecules 
the corresponding exciton probability amplitudes are 
given by 

c~k)={2!(N •• +1)p/2sinkn (3.9a) 

with 

k=7TV!(N •• +1), v=1,2,3, ... ,N .. (3.9b) 

Now the scattering parameter [Eq. (2.7)] becomes 

Gk".(q)= (Np)"112 ( 2 1) exp(iq.ln.l) L sinknsink'n 
N. x + n 

x exp (iq. n)[x (q) + 2 cos k' F j (q)] . (3. 10) 

Taking very carefully into account the different values of 
the k [Eq. (3. 9b)] and q [Eq. (3. 2b)] vectors we can sum 
up the geometric series and find for the scattering rate 
(2.16) (after an integration similar to that in the pure 
exciton-phonon interaction case) the exact result 

A llIW 2 C2 (2J)2(2J)3 . 2k . 2k' 
kk' =-3 dl - -C sm sm 

7T C.l " 

x I cosk - cos k'i (Xac + 2 cosk'FiC):rT(.~Ekk') , 
(3.11) 

where Cdl is the average concentration of disruptive im
purities which lim it our molecular chains in exciton 
space. First of all we see that the absolute values of 
the scattering rates due to the different mechanisms 
(pure-impure) are very different from one another by the 
amount 

J. Chem. Phys., Vol. 79, No.7, 1 October 1983 

Downloaded 21 Oct 2012 to 18.111.99.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



H. Benk and R. Silbey: Exciton-phonon scattering 3491 

A~~(T)jA:~~·(S) -C~I (~Ty (~~;Y« 1 . (3.12) 

To have a concrete idea in the case of TCB for example 
we have (2J T/ CU )3 -10-3 and assuming Cdl -10-2 1( b) then 
we have 

(3. 12a) 

Therefore, exciton-phonon scattering in the triplet sys
tem should be usually much slower than a similar singlet 
system. This conclusion is compatible with the experi
mental observances. The selectivity of the scattering 
rate [Eq. (3.11)] is strong. Since the usual experi
mentHa) has an overpopulation of the k '" 0 exciton level 
at t=O due to a laser flash, we compute from Eq. (3.11) 
the values of the corresponding scattering rates Au' 
out of the k '" 0 level, and show these in Fig. 2. In this 
scattering path diagram, as in the others to follow, only 
the dominant path, i. e., that which maximizes individ
ual jumps, is shown. From this we see that the k = 0 
excitons will be scattered first with high probability to 
the k = O. 6061T level carrying out a long jump process 
(- C~d dominating the slower nearby-jump processes 
(- C~I) and then the excitons undergo successively 
smaller jumps with decreasing scattering rates A kk• 

toward the final k = 1T level. Hence, the detected k = 1T 
exciton have usually arrived there by a multistep pro
cess. Summarizing we see that during the whole im
purity assisted scattering process both long and small 
jumps occur. 

~--~-------------------------------k=O 

102'C61 10· C4 
I 
I 
I 
1 

1 

1 

1 
1 

1 

1 

1 

1 
I 

-+-~I -,.----------------k=0.61,,. 

I 
: 0.2C2 

1
6C4 

-l-+I-~..,...--------------k=0.74". 

: i 1002C
2 

-1..-1-1 -!-.f----,-------------k= 0.83". 
: 2(:4: !3XI0-3C2 

-i--+--+--i--..L..,.... __ ..,....---,-_~_:;_--.,....",-_=-' ... :-~-Q~~-

=
11 

=E' =E' 3'~u~'t~l.=~==:!~t~:,~;.:~'U~·~~l;=-~'-~·"~~-T_===k = 0.92". : i ! i· 10-5C2 j k=0.94". 
. j 10-6C2 k 096 " =. ". 

....1,_tL.._tL....1t~~·· _________ ··!... ----k= 1.0". 

FIG. 2. Scattering path diagram for the disruptive mechanism. 
The scattering rates for the jumps with the largest rates 
are given. The dashed lines become important for concen
trations C == cdl > O. 2, leading to the long jumps being pre
ferred, in contrast to the low concentration path. 

k=O 

0.02 c2 8C 2 

k = 7T/4 

C2 5C 2 

k = 7T/2 

C2 0~C2 

k=37T/4 

2X10-2C2 

k = 7T 

FIG. 3. Scattering path diagram for the interstitial mechanism. 
One or two step long jumps are important for all concentrations. 

Now let us consider the second impurity assisted ex
citon -phonon mechanism due to a nontranslational exciton
phonon Hamiltonian as described in Eq. (2.22). In this 
case we assume the excitons are an infinite system like 
the phonons (N.) corresponding to the case of the pure 
exciton -phonon interaction (N. = N ex)' Taking into account 
the exciton-phonon Hamiltonian in Eq. (2.22), the scat
tering parameter can be written 

Gkk• (q) = Ni,1I2 N;; exp[i(k. - k; + q .)no] exp(iq.Ln.L) 

x [Xno(q) + 2 cos k'j\ (q)] (3.13) 

and from Eq. (2. 16) we deduce the exact expression 

A~~=~ C11(~j (~~) (Icosk -cosk'I)3 

(3.14) 

Comparing this expression with the corresponding expres
sion A~'" (3. 11) based on the finiteness of the exciton 
system then we have 

Au' (interstitial) (C II )2 1 
::.::!!~;.::.:.::.:.......:....:::.:..::.;.- - » 
Akk.(disruptive) 2J 

(3. 15) 

which means that the exciton-phonon scattering mecha
nism due to this nontranslational coupling is more ef
fective than the finite size mechanism considered before. 
How long is the range of the exciton jumps in this case? 
As before we start with an exciton at k = 0 and follow its 
evolution by calculating the different competitive scat
tering rates Au. (3. 14) now in orders of CII' We end up 
with the scattering path shown in Fig. 3. This scatter
ing path diagram shows clearly, that the exciton now car
ries out as a one or two step process. In addition to a 
~~IO:I-~-~ ... -'~~ic~~L~~~~~i-~d)~~iT~ur-k~*;-;:'-tfi~rre-rllY-~~is-o -n-'&-littr~-"" "... _ .... -.... -.......... 
tions into the lower half of the band with a slower transi-
tion to the final k = 1T level to follow. Finally, we want 
to point out that the overall scattering rate out of k = 0 
is further enhanced [compare Eq. (3.15)] by noting that 
for the finite size chain sin2 k - C~I near k = 0; thus 

A""o.k·(interstitial) _ C~I »1 (3.16) 
Ak=O,k.(disruptive) Cft" . 
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We now turn to the last mechanism: impurity induced 
exciton-phonon scattering. In this case we no longer 
deal with unperturbed exciton states as before but in
stead, use perturbed band excitons (cp) and quasilocal
ized trap states (x). We take the following model for 
dilute impurities: a linear chain of 2N molecules with 
a substitutional impurity at one site, say n = O. The site 
energy of the guest differs from that of the host mole
cules by the amount Il.Uo and the nearest neighbor inter
action between guest and host is J' rather than J, the 
host-host interaction. Within a Green's function for
malism' it has been shown that the exact eigenfunctions 
of such a system have coefficients8la) 

C~0) = (1'1/2) (cos ncp + a( 0) sin I n I cp )c~0) (3. 17a) 

(symmetric modes), with 

(3=(Il.Uo)/2J, 1'= (J' /J)2 , (3. 17b) 

a (0) '" - [(3 + (I' - 1 )cos cp ] /y sin cp = tan NCP, cp :S 7T 
(3. 17c) 

representing the secular equation of the system; from 
normalization, it is found that 

C~0) = (Nyrt/2 [1 + a l0!2 + Wta (0) cos cp _ Wi + (Ny)"t ]-112 • 
(3. 17d) 

The antisymmetric mode is not influenced, therefore 

c~k)=Wt/2sinkn, k=7TV/N, v=1,2,3, ••• ,N-1. 
(3. 17e) 

From the exciton amplitudes [Eq. (3.17)] we can find 
the scattering parameters G0</>.(q) from Eq. (2.7) to ob
tain 

Gu.(q) = c~</»d</>')(2Npbrt/2 [(1 - cos q) 

x{aq,q, .(cos cp - cos cp ')"2 + b00 .} + cu.], (3. 18a) 

where 

au' = w(cos cp + cos cp ') + 2(1' - 1 )cos cp coscp '} 

x{x + 2Ft cos cp/} , 

b0</>' = 2Ft 1'-112 (1'-11 2 -1) (cos cp - (3) , 

and 

(3. 18b) 

(3. 18c) 

c u .=2Fty-1/2h,-t/2 -1)[2(3 - (cos cp + cos cp/)] -2(3Ft • 
(3. 18d) 

Inserting these into Eq. (2.16), we find the scattering 
rate Au' due to a single impurity molecule within our 
chain: 

A</></>. = 7T-tc~</»2c~</>')2 (2J\2( 2J\ cos cp _ cos cp ')3 
CL J \c" ) 

{
I (2J)4 [ ( '2]2 1 (2J)2 

X 20 c;;- a0!/>' + b 00'· cos cp - cos CP) + 3" c;;-

)<, [a</>0'+ b</></>.(cos cp - cos cp ')2] c0!/>' + C~0'} f T(AE 00.)· 

(3.19) 
It is sufficient to discuss only two limiting cases: 
(a) purely diagonal disorder of the guest with 1 (31 »1, 
I' = 1, and the exciton-phonon coupling ratio X/2Ft» 1; 
and (b) purely Off-diagonal disorder with 1'*1, (3=0, 
and the same exciton-phonon coupling ratio X/2Ft» 1. 
In case (a), the general formula, Eq. (3. 19) reduces to 

--~I--'--------------------------k=o. 

I 
I 
I 
I 

I05c lOI 
I 
I 
I 
I 

--+-j-4
I
---.---------------- k =0..5577" 

I 

IIo.C4 O.IC2 

I 
_-li __ -+I __ -+ __________ jr-___________ k = o..827T 

I IO.o.3C4 ,IO-4C2 
-+--+-+--~--+=.:.::...=.--~"-=------=--~.I-O--4-C4-- k = 0.927T 
_-L-__ L-----lL-______________ .I..:.::--...:=--___ k = 10 7T 

FIG. 4. Scattering path diagram for the impurity induced _ 
mechanism, type (al: pure diagonal disorder, I f3 I »1, 'Y = 1. 
Long jumps (dashed lines) become important at high concentra
tions, C= c tl >0.2. 

A~a~. = C~l (X2 /57T)(2J /C L)2 (2J /C,,)5/3-2 sin2 cp sin2 cp' 

x (I cos cp - cos cp' 1)3 (cos cp + cos CP')2f T(AE u ') . 
(3.20) 

Comparing this in turn to the rate due to the other 
mechanisms we have considered (the disruptive im
purity or finite chain and the interstitial impurity or 
nontranslational exciton phonon coupling), we find 

A~a~. _ (2J)2 « 1 , 
Akk.(disruptive) C" 

(3. 21a) 

and 

</>0' - _ «1 Ala) (204 

Akk.(interstitial) CII ' 
(3. 21b) 

where the inequalities are for narrow triplet exciton 
band. We see that the scattering rates are smaller than 
those for the other mechanisms. In Fig. 4, we show 
the scattering path diagram for cp = 0 excitons at very 
low temperature. We see that the cp = 0 exciton first 
undergoes a long jump to the middle of the band (cp 
:::: O. 557T) followed by a faster jump to cp:::: O. 827T. There 
then follow a succession of smaller jumps with smaller 
rates towards cp = 11. Note that the exciton tends to avoid 
cp = 11. Note that direct transfer (long jumps) gets more 
probable as the impurity concentration increases. 
Finally, this mechanism is fourth order in impurity con
centration (see Fig. 4) as is the disruptive or finiteness 
mechanism; both of which are slower than the interstitial 
or nontranslational mechanism which is second order in 
impurity concentration. 

Turning now to case (b), off-diagonal disorder, the 
scattering rate reduces to 

A lb) _ c2 2 -.! (I' - 1)2 (2J)2(2J)5 . 2 n-. 2 n-. 
</>0' - tlX 5 C sm 't' cos 't' 

11 Y C L " 

In contrast to A~a~., this has a minimum at cpt =11/2, 
which is reflected in the corresponding scattering path 
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--~~----------------------------k=O 

T 
I 

103c6: 
I 
I 

---l----1L------,.----------------------- k = 0.4 'II" 
Ii I 0.04C2 

-~~Ir---_4------------------------k='II"/2 
I I 
I I 
I 13C4 

I I 
__ --I1_+1 __ ..-1-----r _________ k=0.8'11" 

i
l 110-4C2 

--'---I--------...J+<--'---.10-8C2---------- k = 0.9'11" 

=:i::::::it::======~t'=~~10~-I~IC~2===~'k=0.96'11" 
: k=0.98'11" 

k='II" 

FIG. 5. Scattering path diagram for impurity induced mechan
ism, type (bl: pure off-diagonal, 'y"'1, f3 = O. Long jumps are 
preferred at higher concentrations c = eli> O. 02. 

diagram, Fig. 5. In contrast to case (a), the first jump 
is from cp = 0 to cp "" O. 4lT (upper half of band and then to 
O. 8lT (lower half of band). Successively smaller jumps 
with decreasing scattering rates follow before finally 
ending up at cp "" IT. Note that the final slower multistep 
approach to cp ''''IT is a general characteristic of almost 
all our mechanisms, as is evidenced in the scattering 
path diagrams, Figs. 2, 4, and 5 but is nearly absent 
in Fig. 3. 

Thus far, we have only discussed scattering between 
the perturbed states (cp - cp '), but there are an equal 
number of unperturbed states (k) with C~kl given by Eq. 
(3. 17e). 

The scattering rate A kk , between such unperturbed lev
els will be zero as in the pure scattering, while the 
scattering parameter Gk~.(q) between an unperturbed k 

state and a perturbed state labeled by cp' is given as 

Gk~ ,(q) = c~~'ly1/2(2Nphr1l2,N"1I2 sink {2a (~'l sin cp' sin q 

x (cos k - cos cp 'r2(X + 2F1 cos cp ') + 2 cos qF1 (;,-1/2 - 1)} 
(3.23 ) 

and the scattering rate Ak~' is found to be (X/2F» 1) 

2 y2X2[2,9+2(y-1)coscp']2 (2J~(2J)3 
Akl/l' = (4/3lT)ctl y2 sin2 cp' + [,9 + (y _ 1 )cos cp ']2 C j c,; 

(3.24) 

First, we see that Akl/l' >Au' in either case (a) or (b): 

A~, _(2J)-2»1 (3.25) 
A",,,,, C

II 
• 

Second, in the quasidiagonal disorder case (I ,9/y I » 1) 
we find exactly the same k, cp' dependence as in the case 
of the disruptive or finiteness mechanism [Eq. (3. 11 )); 
therefore, the scattering path diagram for this case is 
the same as for the finite exciton system (see Fig. 2). 

C. Trapping 

As we have already mentioned, the impurity not only 
creates perturbed exciton states but also localized trap 

states (labeled cp(:rl) below the exciton band. The scat
tering between a cp and cp(:rl is called trapping. We can 
calculate Gu("l, we use Eq. (3.18) but replace cp' by 
IT + icp(:rl. Restricting ourselves to pure local disorder 
(13<0, y=l), we find [see also Ref. 8(b)] 

GN(:rl (q)= (2Npr 1/2,N"1/2 sincp(sin2 cp + 132r1/2 

{ 
13(cos cp - cos cp(:rl) 

X (l-cosq) (coscp+ coshcpl:rI)2 

x (X - 2F 1 c oshCP ("l ) + 21 131 F 1 } (3.26) 

with 

coshcp("l=(1+&)1/2 (3.27) 

which follows from the secular equation (3. 17c). For 
deep traps (1131 » 1), Eq. (3. 26) reduces to 

G~ ~ <:rl(q) = (2Npr1/2,N"1/2sin cp[ (1 - cos q)X I 131-1 

+2F1cosq]. (3.28) 

Carrying out the integration over the phonon variables, 
we find for the trapping rate 

-1 . 2 (i!l.E)2 (i!l.E V3 X2 2XF1 F1 \ 
AN("l =IT Ctlsm cp <:; C;:M 7Jl-~ +2 1) 

(3.29) 
(i!l.E is the energy difference between the trap state 
[cp(:rl] and the band state CP). This shows that the trapping 
rate is proportional to the impurity concentration to the 
first power, in contrast to the scattering mechanisms. 
A most interesting result is the sin2 cp dependence 8(bl of 
AN(,cl, (Fig. 6) which predicts a trapping rate which is 
maximized from the middle of the band, and not out of 
cp = 0 as predicted by Kenkre. 11 

D. Exciton density of states 

Thus far we have not taken into account the known un
usual density of states for one dimensional systems, 

t 
" ... 

« 

TT/2 1T 

EXCITON WAVEVECTOR k--

FIG. 6. Trapping rate VB exciton wave vector k (<p). Note the maxi
mum at the band center. 
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FIG. 7. Cumulative scattering rate out of k = 0, for disruptive 
mechanism [r~, see Eq. (3. 31a)1 and for interstitial mechanism 
[rt. see Eq. (3. 32a) I. The relevant concentration variable is 
C in both cases (i. e .• Cdl or clI). 

which shows maxima at the band edges and a minimum 
at the band center. Our discussions have only concerned 
maximizing the microscopic transition rates. However, 
these rates should be multiplied by a final density of 
states. Will this change the picture deduced from the 
scattering path diagrams? To answer this, we write 
the cumulative scattering rate out of the k = 0 level 
ro(.~E) as an integral over the band. 

~E) fl!i.E 
r o(~E) == ~ AOk' = dE p(E)A(E) , 

k -0 0 
(3.30) 

where ptE) is the density of exciton states. For the dis
ruptive mechanism, we find 

r~(~E) = C~IA ll!i.E J- [4.P - (E - 2J)2]1 /2dE , 
o 

O:s ~E:S 4J(3. 31a) 

A_~(2J~(2J)3 
-37T C) C

II 

and for the interstitial mechanism 

r~(~E) = CIIA J I!i.E dE(~E/2J)3 [4JE _ ~rl/2 , 
o 

A =b(2J)2(2J) • 
7T CJ. C II 

(3. 31b) 

(3.32a) 

(3. 32b) 

The formula for the impurity induced mechanism re
duces to an expression similar to Eq. (3. 31a). Note 
that the singularity in the density of states is removed 
in all but one mechanism, that of the interstitial im
purity. In Fig. 7 we plot the ro(~E) of Eqs. (3. 31a) and 
(3. 32a). The figure shows that the scattering from k = 0 

occurs to levels in the lower half of the band (in the dis
ruptive case) and to states close to the lower edge (in
terstitial case) leading to the same results or even 
sharpening the conclusions found from the scattering 
path diagrams in Figs. 2 and 3. Hence, the effects of 
the density of states do not contradict the scattering path 
diagrams. 

IV. CONCLUSIONS 

In this paper, we have considered three impurity 
mechanisms of scattering of excitons by phonons. In 
particular, we have been concerned with the scattering 
in quasi-one-dimensional exciton states, as exempli
fied by tetrachlorobenzene (TeB). In this system, the 
triplet exciton band is too narrow for one phonon pro
cesses to occur with k conservation; therefore, impurity 
effects must be invoked. The three mechanisms we have 
investigated are (1) "disruptive" impurities, where the 
impurities cage the exciton in a linear chain of N •• mol
ecules, thus breaking the translation symmetry of the 
lattice, (2) "interstitial" impurities, where an impurity 
on one chain interacts with the exciton states on a neigh
boring chain, (3) "impurity induced" scattering where 
the impurities in a chain perturb the excitation states 
of the chain, and creating new states including trap 
states. We have presented in Figs. 2-5, the scattering 
paths for excitons initially at the top of the band for these 
three mechanisms. 

We find that, at low impurity concentrations, the in
terstitial mechanism gives the largest scattering rates 
of all mechanisms considered. This is the mechanism 
considered by van Strien et al. 1(a) in their fit of their 
experimental data on the temperature dependence of ex
citon scattering rates in TeB. This mechanism is 
largest with respect to impurity concentration (- C2

) and 
with respect to the ratio of exciton bandWidth to phonon 
bandwidths (-J/C II andJ/CJ.)' It also favors long jumps, 
in contrast to the other mechanisms which are more 
democratic in this regard. Although this mechanism 
gives the largest rates, the other mechanisms will all 
contribute to the experimental rates. In their study, 
Breiland and Saylor3 fit their data with a short jump only 
mechanism. None of the mechanisms considered here 
will prefer short jumps if the exciton starts at k = O. 
However, if the exciton is initially in the center of the 
band, short jumps may be as probable as long jumps. 
This indicates the sensitivity to the initial conditions and 
may explain the contradictory conclusions on this point 
of Breiland and Saylor3 and those of van Strien et al. 1 (a) 

who start in k = O. At higher temperatures, two phonon 
processes become important, 10 and even in TeB, im
purities need not be invoked in order to get substantial 
exciton scattering. At high concentrations of impurities, 
we expect long jumps (k = 0 - k = 7T) to be dominant, as is 
evidenced in Figs. 2-5. 

In other quasi-one-dimensional systems, like dibro
monaphthalene (DBN), the triplet exciton band is wider 
than in TeB and so (2J/C II ) and (2J/C.L) will be closer to 
unity; therefore the scattering rates produced by the 
three mechanisms in DBN will be more similar to each 
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other. This will complicate the interpretation of the 
experimental data. 
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