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In this paper, we review the recent theories of the homogeneous linewidth of chromophores in glasses, using the Redfieid 
relaxation theory as a starting point. We treat the interaction of phonons with the two-level systems in the glass and discuss 
the approximations and averaging techniques used by many authors. We also examine the role of fractons and other models 
for the width. 

1. Introduction 

In this paper, we review the current theories of 
the homogeneous linewidth of chromophores em- 
bedded in glasses. The recent interest in this phe- 
nomenon has led to much experimental and theo- 
retical work [1-15]. In this paper we will con- 
centrate on the latter. We will be unable to treat 
all the theoretical models; however we hope to 
give the reader a good overall view of the field. 

The standard model is that this width is caused 
by the interaction of the chromophoric molecule 
with two-level systems (TLS) assumed to exist in 
glasses and which provide an explanation of the 
low-temperature specific heat and thermal con- 
ductivity in these systems [16-20]. Interaction with 
phonons cause these TLS to change state from the 
lower to upper levels (or vice versa). Since the TLS 
interact weakly with the chomophore and this 
interaction is different in the excited and ground 
states of the chromophore, there is a dephasing 
produced in the optical transition, All approaches 
we discuss assume this basic physical model. The 
differences between them are often only a dif- 
ference in either the approximations made or the 
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technical aspects of averaging over TLS parame- 
ters (energies, tunneling parameters and distances). 
Instead of giving a detailed description of every 
model, we will proceed as follows: In section 2, we 
present the standard model for the chromophore 
interacting with a single TLS and show how this 
yields a formula for the width (due to one TLS) 
which agrees with most of the theoretical papers. 
In section 3, we discuss the various ways of aver- 
aging over the TLS distributions and find the 
temperature dependence of the width. In section 
4, we review three other models for the width, the 
fracton model of Lyo and Orbach, the model of 
Osadko and a model assuming more than one 
effective mechanism. In section 5, we conclude 
with a discussion of the various ideas presented. 

2. Chromophore-TLS interaction 

2.1. Energy levels 

Consider a single TLS interacting with a chro- 
mophore (either an ion or molecule), the latter 
having two states, ground Ig), and excited le). 
The assumption usually made is that the energy 
splitting of the TLS differs slightly in these two 
states, so that random flipping of the TLS (by 

0022-2313/87/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



284 R. Silbey, K. Kassner / Homogeneous linewidths of optical transitions in glasses 

phonons, for example) will cause the chromo- 
phore's energy difference to fluctuate and thereby 
produce a width in the optical absorption line. 

First, consider the TLS. It is usually assumed to 
be made up of two states [L) and I R) on either 
side of a barrier with an energy separation A and 
tunneling matrix element ½K. In the localized 
basis (or L and R states), the Hamiltonian matrix 
is 

½(--AiK AKi) ' (1) 

where the index i refers to the state of the chromo- 
phore (i.e. I g) or l e>). This matrix has the eigen- 
values and eigenvectors 

-½( a] + K2)X/2: ( c°s Si 0 i 

and 

~(Ai cos 0 i ' 
+ 

where 

K 
sin 2 0  i ---= 

(A2i + K 2 )  1 / 2 '  

COS 0 i = 
Ai 

(a] + 

(2a) 

(2b) 

(2¢) 

Thus, when the chromophore is in the ground 
state [g), the TLS splitting is (A 2 + K2) 1/2. The 
normal situation is that K 2 << A 2, so that the TLS 
eigenstates are still largely localized. 

Now consider the four-state system of a chro- 
mophore and one TLS. The states are labelled 
]a), J b), Ic> and [d> and represent the chromo- 

phore in J g) and the two TLS eigenstates ([a)  
and ]b)) or the chromophore in [e) and the two 
TLS eigenstates. The phonon induced rates of 
flipping the TLS are labelled R~a and  Rac (in 
le)), and Rab and Rba (in ]g)). Note that since 

wd~ = (A 2 + K2) t/2 is not equal to Wba = (A s + 
K2) t/2, these rates are slightly different in Ig) and 
[e). In fact, if we follow most of the literature and 
assume that the Rij are caused by linear phonon 
terms in the deformation potential approximation, 
we find the phonon-TLS interaction to be given 

by (in both Ig) and le)) 

V= ~.,gq(bq+b+q)[[L)(Ll-lR)(R[], (3) 
q 

where the sum is over phonon modes. The terms 
which cause TLS flips will then be 

Vflip = E g q ( b q  + b + q ) ( s i n  20s( [a)(b I + Ib)(a l) 
q 

+sin 2Oe( Ic><d I + Id><c I)}" (4) 

Thus, the flipping rates (in the Golden Rule ap- 
proximation) will be given by 

Rd~=2rrEg2q(~q + 1)sin228e 8(6)q -- 60dc ) 
q 

1 
= Gw3c" sin220e " 1 - exp(--/3Wd¢) ' 

1 
Rba = Gw3a" sin228g" 1 - exp(-/3t%a ) ' 

exp( -/3wd¢) Rd¢, 

(5a) 

(5b) 

(5c) Rcd 

Rab = exp(-/3,0ba) &a,  (5d) 

where G is a collection of constants, the Debye 
approximation has been made for the long-wave- 
length phonons and/3 = (kBT) -1. In addition we 
have assumed the deformation potential result that 

2 ~" we gq2 Cc %. This could be generalized to gq cx ws, 
will not concern ourselves with this possibility. 
Note that the differences between Rd¢ and Rba 
occur in each term (except G). 

One final remark about the model should be 
made here; the difference 8 between %¢ and ~ba 
is due to the difference in interaction between the 
TLS and the chromophore, when the chromo- 
phore is excited and when it is in its ground state. 
It is this small quantity which is usually assumed 
to be a dipole-dipole (or dipole-quadrupole) term: 
8 -  1/R s where R is the distance from TLS to 
chromophore. 

2.2. Optical transitions and Redfield theory 

The four-level system will have two large opti- 
cal transition moments, gac and t%a. The mo- 
ments gad and t%¢ are much smaller in value and 
we will neglect them. The optical absorption line 
shape is governed by the Fourier transform of the 
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transition dipole correlation function which may 
be written in the usual way as 

C(t)  = oca(t ) + Odb(t ), (6) 

where o~ and Oab obey the coupled equations 
(Redfield formalism) 

°ca = [ - i % .  - T~,~] o~. - Tca,dbOdb , (7a) 

~db = [ - - i w d b  --  Tdb,db]  O'db --  Tdb,caOca' ( 7 b )  

subject to the initial conditions 

e-BE~ 
= (8a) Oct(0) =p~ e_~e~ + e - P & '  

e -  #Eb 
= (8b) Odb(O) =Pb e_gE~ + e_gG-  

In this we have made, in addition to the weak 
coupling assumptions, the approximations that the 
other density matrix elements play no role and 
can be neglected, and have assumed that the tran- 
sition moment matrix elements are equal, i.e., 
g~b=gcd. The diagonal relaxation matrix ele- 
ments Tq,ij are given by 

T~,¢~ =½(R¢d + Rab ) + Yrad' (9a) 

T,b,ab = ½( Rd¢ + Rb~) + Yr~a, (9b) 

where ~/r~ is the radiative rate. The phonon as- 
sisted terms are simply related to the flipping of 
the TLS states. The other matrix elements of the 
relaxation matrix can be found using the model of 
phonon-TLS interaction discussed above. The use 
of the standard [21] theory with Vra p as the per- 
turbation yields 

I [ ~baRbaq- 02dc R ] (10a) 
 .,db = - t d c ] ,  

Tdb,ca = - - 2  / - O~baR -t- 6~dc R ] (10b) 
[ 60tic ab 60ba cd]"  

Note that if the difference between wb, and Wd¢ is 
neglected in the relaxation terms, we find 

Tca,ca - "Yrad = --  Tdb,ba = R ~ (11a) 

rdb ,db  --  Vrad = --  T,,db -= R ~,  ( 1 1 b )  

where R t and R s are the upward and downward 
rate of flipping. Then the relaxation matrix be- 
comes identical to the usual exchange theories. 

The formal solution to eq. (7) is 

(oc, 
Oab)={exp[--ito--T]t)(pPab), (12) 

SO that 

C(t)  = (1, 1 ) { e x p ( - k o -  T ) I}  PB " 

This agrees, in form, with the spectral diffusion of 
Huber [12] (and in detail if the relaxation terms 
are approximated by eq. (11)) as well as the theo- 
ries of Molenkamp and Wiersma [56]. 

As is evident from eq. (13), the width of the 
optical absorption line is determined by the real 
part of the eigenvalues of the matrix ito + T. Note 
that %. -- %s - ½(Wd~ - ¢Dba) and tOOdb = tOeg -4- ½ 
(~d~ -- O~b.)' SO that the Wcg is just a constant term 
as is Yr~d in both transitions; both will be left out 
of the remaining formulas. That is, frequency will 
be measured with respect to t%g and widths given 
without the additive contribution of the radiative 
rate. There are two simple limits for which the 
linewidth can be easily found: 8 = ( t , ~ d c - - O ) b a  ) 
large compared to the rates Rij and 8 small 
compared to these. Since 8 -  1/r ~, the nearby 
ions will give large 8 and the ions far away from 
the chromophore will give small 8; there are, 
however, many more of the latter. 

Case  (1): 8 > Rq 
In this case the four-level system will have two 

optical transitions, one at frequency - 8 / 2  with 
width ½(Red+R~b ) and one at frequency 8/2 
with width ½(Ra¢ + Rb~ ). Using the one-phonon 
TLS interaction, we find that the widths are 

K 2 
1Gr2 t~d¢3 (r~(~d¢) + 1}] ¢]¢ 

K 2 
+½G[w~{~(wba ) + I)] w~' (14a) 

and 

K 2 K 2 

(14b) 
Thus, as T-~ 0, one of the lines becomes very 
narrow (i.e., width equal to Yrs,) while the other 
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has a width governed by the downward flip rate of 
the TLS (i.e., phonon emission term), which is 
nonzero at T =  0. This formula for the widths 
agrees with the results of Small et al. [6], Lyo 
[8b, d], Molenkamp and Wiersma [5b], and Rei- 
neker et al. [9d, e], before averaging over TLS 
parameters. This limit has been called the UPS 
(uncorrelated phonon scattering) limit or the slow 
modulation limit. 

The standard approximation employed to find 
the width from these expressions has been to 
average these widths over the initial populations 
of la) and Ib) to get the width F, and to assume 
o:b, = toa~ = e in all the subsequent expressions 

K2 { 
F = G - - ~ - . e  3 [ ~ ( e ) + l ]  

e -0 '  1 } 
x - -  + 

1 + e-~, l + e - #  . , 

G K  2 - 

- 

(15a) 

(15b) 

where we have written the last form in terms of 
the "spin-lattice" relaxation rate of the TLS, ~- ~ 
= ½(R~ + R ,  ) = ½GK2e coth(fle/2). 

Case (2): 8 << Rij 
In this case, the TLS flipping is rapid compared 

to h/B, so that fast modulation occurs. As we 
pointed out above, a natural assumption is to 
neglect 8 in all of the relaxation rates, Tq,kl and 
only include 8 in the frequency shift. Then the 
eigenvalues of ito + T can easily be written down 
a s  

[ / ½(R, (R, 

- 2i$(R t + R~ ) - 82] 1/2. (16) 

The relevant eigenvalue is the one with the smaller 
width, the other one leading to very little intensity. 
This eigenvalue is, to order 82, 

i8 ( R , - R , )  8 2 R r R ,  ( 1 7 )  
+ + 

2 R t + R ~  ( R ~ + R ~ )  3' 

yielding a width 3 2 R ~ R ~ ( R ~ + R ~  = 
sech2(flc/2), in agreement with Lyo [Sb, d], 
Molenkamp and Wiersma [Sb] and others in this 
limit. Note that these authors finally aVerage this 
width over the distribution of TLS parameters to 
obtain the average width. 

If one does not make the assumption that 8 
can be neglected in the To,kt, then additional 
terms (to order 82 ) appear in the width. The 
relevant eigenvalue of the matrix is then given by 

i8 ( R ~ - R , )  R t R  
+ +82 * 

2 Rr  + R ~  (R r _t_Rj.) 3 

+ c 2 R ~ + R ,  ~ c ° t h  - 2  , (18) 

which differs from the last formula in the last 
term. The width of the optical transition then has 
two contributions. At low T, the first goes as 
cosech tic while the second goes as fie cosech tie, 
so that which is dominant depends on the cou- 
pling constants, etc. At T > e / k  B, the first term 
goes like 1 / T  (narrowing) while the second goes 
like T and can even be negative; thus, at high 
enough T, this formula will predict a nonsensical 
result. The breakdown of this approximation is 
due to the increasing importance of the other 
matrix elements Oda and %b in determining the 
dynamics. We are able to neglect them only if the 
mixing of the various transitions is small. When 
T >  e/k  a the mixing can be large and we should 
examine the Redfield equations for the four cou- 
pled matrix elements, adb , Oca , Oda , Orcb. It turns 
Out that these equations can be solved exactly, and 
Kassner and Reineker [9c-e] did so. The resulting 
expressions are prohibitively complicated but, in 
the limit we are discussing, turn out to yield (for 
the eigenvalue we are considering) the same imag- 
inary part and a real part equal to 

R~R~ 82 R r R  ~ 
8 2 + 

(R~ + R~) 3 d R~ + R~ 

× ( - ~  c o t h ( - ~ ) -  1). (19) 

This agrees with the earlier result at low T, and 
does not have the unphysical behavior discussed 
above at high T. In fact, both terms now yield a 
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1 / T  behavior at high T, thus the high-T narrow- 
ing is preserved. In addition, for the generally 
accepted parameter values of K, A, G, etc., the 
second term is much smaller than the first at all 
but  the lowest temperatures. 

This dicussion shows clearly that not only the 
averaging procedure but also the approximations 
made are a delicate matter. Small differences in 
approximate forms can yield very different behav- 
ior. Thus, for example, both Lyo and Orbach [8a] 
and Reineker and Morawitz [9a, b] got a linear T 
dependence at high T because of their approxima- 
tion (in a mathematical sense) of setting R~b / 
sin220~ equal to Rcd/sin220e and Rba/Sin220g 
equal to RdJsin220~. 

3. The effect of many-TLS 

As mentioned above, the approximation of tak- 
ing the total linewidth as the sum over all TLS of 
the individual width due to each TLS (after aver- 
aging over the TLS parameters) has been widely 
used. This approximation has recently been ques- 
tioned by Huber et al. [12c, d], but for didactic 
reasons we will use it in the following. 

The averaging over the distribution of A (TLS 
energy differences in the absence of tunneling), K 
(the tunneling matrix element) and the distri- 
bution of 8 (or distances of the TLS from the 
chromophore) is not straightforward. To arrive at 
a result for the temperature dependence within the 
approximations we have made, we only need con- 
sider the distribution of , (the final) TLS split- 
tings) and & 

The simplest procedure is to assume that 8 is 
large, use eq. (15) and write 

(r> = f 'm~d,  p ( , )  r - t ( , )  sech2(fl , /2) ,  (20) 
"0 

where p(c) is the density of TLS as a function of 
the splitting ,, which we assume varies at l o w ,  as 
,~'. At low T, we can change variables to fl, and 
replace flCma x by oo to find 

(-Jr) -- T 2+1., ,max/T>> 1, (21) 

since r-1 cc,  when we take the explicit , depen- 
dence of eq. (15b). If we follow many authors and 

assume ]f+ [ 2 -  K2/ ,  2 has little or no , depen- 
dence, then r -1 -- ,3 and F -  T 4+~. At high T, r -1 
varies as T, so 

(F) - T, q~ax/T << 1. (22) 

Lyo [8b] pointed out that one should sum only 
over those TLS such that 8 is larger than the TLS 
flipping rates, so the width arises from those TLS 
within a radius R c given by (remember 8 = b/R*) 

( ~ 11Is (23) 
R c ~ k h r _ l  ] • 

He then sums F over this volume and then over 
the distribution in ,: 

f 'mud ,  f o " d R  . F . n ,  ( ( F ) )  cc p ( , )  R 2 (24) 
"0 

where n is the spatial density of TLS. Since in this 
limit (8 large) F is independent of 8, we have 

( ( F ) )  tX fSm~'dE p ( e )  r -a+a/s sech2(f le /2) .  

(25) 

Lyo a s s u m e s  '7" -1 t3g ,3  for phonon-assisted 
processes to find 

((1")) tX T 1+~+3(1-3/s), ,max/T>> 1. (26) 

(That is, Lyo writes K2//c 2 as [ f + l  / so that 
r - l t x  I f  + ]Eta and assumes that the , depen- 
dence of i f + [  2 can be neglected, whereas we 
have included it explicitly.) If we assume that 
r -1 co,, as above, then ( (F))cc T l+~+(1-3/s) as 
pointed out by Jankowiak and Small [6]. In either 
case, for dipole-dipole coupling (s = 3), we find 
the width varying as T 1+~'. 

Now, consider the fast modulation realm. Sum- 
ruing over the distant TLS, which have 8 << r-1,  
we obtain 

((r>> p(,)fsTdR R:82~ sech2(fl , /2) .  

(27) 
But 8 -  1/R s and performing the integral over R 
and examining the result at low T, we again find 

<(~F~)) (K r l+g+3(1-3/s), (28) 

using Lyo's assumption r -1 co, 3. These results 
were confirmed by Molenkamp and Wiersma [5b]. 

These two results show the strong dependence 
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of the temperature dependence on the assump- 
tions made in the averaging process, even though 
these results both make the major assumption that 
the total width is the sum of the width from each 
TLS. Reineker and Morawitz [9a] and recently 
Huber [12c, d] pointed out that in fact one should 
average the line shape or the equivalent, average 
the correlation function. Since the spatial distri- 
bution of the TLS is random, he suggests that the 
configuration average of C(t) (eq. (13)) should be 
treated as in other disordered system theories, i.e., 

(29) 

where the inner average is over the TLS parame- 
ters. Since Huber's paper in this volume treats 
this, we will not discuss it further, except to say 
that Huber's form for the single TLS-chromo-  
phore interaction is the same as ours, within the 
approximations noted above (eq. (11)) and that 
within the dipole-dipole coupling model, he also 
finds a width proportional to T 1+~. 

At this point, we see that this model predicts 
that in order to obtain a T 13 dependence at low 
temperature (as found in many experiments) en- 
tirely from the TLS interactions, one must pos- 
tulate that the density of TLS modes varies as 
¢~ as c---, 0, /~ = 0.3, and that the interaction is 
dipole-dipole. If there is a universal form for the 
low-frequency density of TLS states ¢0.3, then the 
important open problem is to understand why this 
is true. This becomes even more important when 
one realizes that there is little evidence for this 
density of states in other kinds of experiments. 
Acoustic measurements in silicate glasses have 
been explained [15a] with the original model [16] 
which yields a constant TLS distribution and loga- 
rithmically varying TLS density of states. For 
most purposes, the latter can be taken to be 
constant. In addition, measurements in polymers 
[15c] have been interpreted to yield higher density 
of states at lower energies, directly contradicting 
the ¢0.3 behavior. The often quoted specific heat 
measurements [17], which were explained by an 
c °'3 density of states, have been reconciled with 
the original model by invoking the time depen- 
dence of the specific heat [18,19]; a more recent 

conjecture [20] also removes the need for the ~o3 
density of states to explain the specific heat. 

There are three other calculations of the homo- 
geneous linewidth due to TLS interactions 
[15b, 9d, 9e, 6] that use the original density of 
states and yield a temperature dependence close to 
T 13 over the relevant range. Hunklinger [15b] uses 
a stochastic model of spectral diffusion, which we 
will not discuss, Kassner and Reineker [9d, e] use 
the model we have set forth here, however they 
derive a formula for the line shape of the full 
many-body problem of one chromophore inter- 
acting with N TLS. Arguments are given that the 
low-temperature line intensity is dominated by a 
few narrow lines whose widths are calculated 
numerically as the sum over the exact linewidths 
of the chromophore one TLS problem. Care has to 
be taken to include all nonnegligible contribu- 
tions, so that a large interaction volume around 
the chromophore is considered. At low T, the 
contributions of quite weakly coupled TLS are 
important (since the TLS flip rates are so low) and 
only extremely weakly coupled TLS can be neg- 
lected. The numerical results [9d, e] give a temper- 
ature dependence roughly consistent with T 1'3 o v e r  

the relevant T range, in both the dipole-dipole 
and the dipole-quadrupole case, and using the 
original TLS distribution and the Debye phonon 
density of states. It is clear fom this numerical 
evaluation of the linewidth that the average over 
the tunneling matrix elements (K  or overlaps, 
e x p ( -  2~)) is subtle and can lead to a change in the 
temperature dependence, especially at very low T. 
It is this averaging which leads to a deviation from 
the Lyo prediction (T1+Z), at low T, to a line- 
width varying more quickly with T. Thus even 
with /x = 0, the temperature dependence is con- 
sistent with (but not exactly equal to) T 1'3. A 
drawback of this theory is that as yet no analytical 
formulas for the linewidth have been given, al- 
though approximate analytical expressions for the 
average over A and K are available, The complete 
average over 8, A and K has not been found, 
except numerically. It is even less likely that an 
analytic form can be given if the Huber formula- 
tion for the linewidth is used. Recently Jankowiak 
and Small [6] have introduced a new averaging 
procedure which also yields a T 1+~o" result. 



R. Silbey, K. Kassner / Homogeneous linewidths of optical transitions in glasses 289 

4. Other theoretical models 

4.1. Fractons 

Lyo and Orbach [8c] suggested a modification 
of Lyo's form based on the postulated existence of 
fracton modes in disordered systems by Alexander 
and Orbach [22]. The argument starts with the 
postulate that in a disordered system there exists a 
range of length scales (neither too long nor too 
short) for which the geometric structure is self- 
similar, i.e., the mass density scales with distance 
from any point like n a-d, where aT is the fractal 
dimension and d the Euclidean dimension. 
Alexander and Orbach [22] then examined the 
consequences of this for the vibrational modes of 
the system and found that in a certain frequency 
range (connected to the distance range over which 
the system is self-similar) the density of states of 
the localized modes (fractons) produced will scale 
a s  6) 1/3 instead of the Debye form toa-1. Note that 
the existence of fractons does not mean that the 
long-wavelength phonons are absent. 

Lyo and Orbach [8c] consider the TLS flipping 
rates to be caused by TLS-frac ton interactions 
instead of TLS-phonon  interactions, and suggest 
that these rates (~'-1(c)) will vary as c 4/3 (i.e., ~1/3 
from the density of fracton states and ~ from the 
f rac ton-TLS interaction). When this form is aver- 
aged in the same manner as before, these authors 
find ( (F) )  oc T l+t'+4(1-3/s)/3, thus for dipole-di- 
pole interactions (s = 3) ( ( F ) )  ~ T 1+". These 
authors suggest that a possible explanation of the 
1.3 exponent is that the relevant interaction is 
dipole-quadrupole (s = 4) and # = 0. 

For this explanation to be valid, one must 
accept a number of conjectures; for example, (a) 
the TLS-fracton interaction term ] g_ [ 2 varies as 
toq, (b) the t e r m  K 2 / t o  2 (i.e. the sin~20) is aver- 
aged separately from the term ~'-1(c), (c) the 
phonon-TLS interaction is too weak to cause TLS 
flips. Since the fractons are local modes, (a) can be 
challenged and the procedure in (b) is open to 
question, especially given the delicacy of the vari- 
ous averaging procedures as mentioned in the last 
section. In addition, the fracton density of states 
should be less important than the phonon density 
of states at very low to, or equivalently, very low 

T. Thus, as T is lowered the fractons should play 
less of a role. In spite of these objections, this 
remains an interesting suggestion which should be 
probed by further experiment and theory. 

Recently Dixon et al. [23] have suggested that 
fractons play a role in the homogeneous line- 
widths even at high T (10 K < T < 200 K). They 
assume that the fractons (or localized vibrational 
modes of the glass) dephase the optical transition 
via a two-fracton interaction (just as a two-pho- 
non interaction causes dephasing). Using the Mc- 
Cumber-Sturge [24] formulation they find that 
Ffracto n - T 2 at essentially all the temperatures of 
their experiment, in agreement with their data. 
Since the phonon contribution to the linewidth is 
also proportional to T 2 for T >  8D/2, and Huber 
has pointed out [I2a] that the phonon density of 
states in glasses becomes non-Debye-like at rather 
small to so that F - T  2 even at T < 0 D / 2 ,  it is 
difficult to see the need for invoking fractons for 
this range of T. Since fractons can be thought of 
as vibrational modes of the glass, i.e. local modes, 
whether the introduction of them in this context is 
useful or not depends a little on one's beliefs. 

4.2. Osadko's theory 

Osadko [13] has suggested that the TLS should 
be treated as a thermal bath in just the same 
manner that phonons are treated in the standard 
theories of line broadening. His theory is nonper- 
turbative, but the essential flavor and results can 
be found using perturbation theory and the stan- 
dard McCumber-Sturge [24] line-shape formula. 

Consider the chromophore to be a two-state 
system ([g)  and [e) as before and assume that 
the relevant interaction between the TLS and the 
chromophore is an operator which flips two TLS 
(note the resemblance to the low-T linewidth due 
to quadratic phonon terms), i.e. 

VTLs-chromophore = [ le) (e  I - Jg)(gJ] ~ o,,+o/'o;, 
i , j  

(30) 
where o, + is an operator which flips the ith TLS 
from the lower to the upper levels, a /  is the 
reverse, and vi/ is the interaction matrix dement.  
The physical picture is then that TLS dephase the 
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optical transition by their constant flipping. The 
standard formula for the linewidth at low T then 
yields 

1 +oo 
r - -  = - 

× Ivy(o)- v.(o)]>, 
where the V~e - V~ is the instantaneous change in 
the optical transition frequency due to the TLS 
(i.e. the matrix elements of VrLs_¢momophore) and 
the average is over the thermal distribution of 
TLS. Then 

1 / .+o~ 2 
F = T J  oo d ¢ X l v i j [  

t,J 
i4~j 

× (o~+ (~') oF (0)) (o2 (¢)  o2 (0)) ,  (32a) 

and 

I" e: f'~"~'d, [o(,)]= lv(,)12nerLs(,) n~rLs('), 

(32b) 

where we have assumed (a) that [ vql 2 is a func- 
tion of c i -- ej only, (b) #(c) is the density of TLS 
energies and (c) n~s(C ) is the thermal population 
of the lower TLS level and n~-LS(~ ) is the thermal 
population of the upper level. At equilibrium, 
neLs = (1 + e-f l ' )  -1 and n~-LS = e-a ' (1  + e -¢ ' )  -1 
so that 

F o: f ' ° ~ d a  02(,)  Iv(e)  I 2 sech(fl¢/2).  (33) 
"0  

The temperature dependence now depends on the 
assumed form for p2(c) [ v(E) I 2. If this is assumed 
constant, the I" o~ T tanh(cm~/2kaT  ) < T; if it is 
assumed to vary as c ~, then /'c~ T 1+~ at low 
temperature. Oskadko can fit the experimental 
data with a particular (and perhaps reasonable) 
form for I v(c) [ 2p2(~). 

4. 3. Two mechanisms operating 

The simplest, and perhaps least innovative, pro- 
cedure to obtain a T 1 +~ dependence of the line- 
width is to assume that there are two mechanisms 
operating simultaneously. For example, Jackson 
and Silbey [25] assumed that the TLS contribution 
to the linewidth is linear in T (i.e. the dipole-di- 

pole interaction, # = 0 form) at low T while the 
local librational modes, known to dephase the 
optical transition in crystals, gave a typical optical 
phonon contribution. Thus at low temperatures, 
where acoustic phonon direct contributions can be 
neglected, 

F = A T +  Y'~ X i [ e - ~ ° , / ( 1 - e - ~ ' ° , ) ] .  (34) 
local 

modes 

Here h i is the coupling constant to the ith local 
mode. This predicts that at low enough tempera- 
tures (T  < wi/ka)  the linewidth is linear in T, but 
as the temperature is raised F varies as T l+s, 
where 8 is small. Local mode frequencies of a few 
cm-1 and coupling constants taken from crystal- 
line studies can fit most of the data in glasses. 

The original Jackson-Silbey model assumed the 
local modes were librations of the chromophore; 
however, local modes of the glass give a contribu- 
tion of exactly the same form. Thus one may 
suggest that direct local mode contributions (of all 
sorts) when added to a linear T dependence can fit 
the data, at least for T > 1 K. This model, how- 
ever, clearly suggests that for T < w J k  a (i.e. tem- 
peratures well below the lowest local mode fre- 
quencies) the linewidth will be linear T (assuming 
# = 0, as these authors do). 

5. Conclusions 

We wish that a review of the various theoretical 
models of the homogeneous width of the optical 
transitions in glasses could end by pointing out 
the correct one. Unfortunately, we cannot do this 
because in all the theoretical calculations (each 
based on the same physical model), approxima- 
tions are made which, because of the delicacy of 
the various averaging techniques, can lead to small 
changes in the temperature dependence, especially 
at very low temperatures. For several, if not most, 
of these approximations there is no real know- 
ledge about their validity. In spite of this and the 
different averaging procedures for dipole-dipole 
coupling of the TLS to the chromophore (either 
electric or elastic), most authors find a T 1+~ de- 
pendence at low T, where # is an additional 
parameter (due to the intrinsic density of states of 
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the TLS varying as c~). Other authors find a 
similar temperature dependence without # by more 
carefully averaging over the tunneling parameters. 
As we have seen, the universal variation of the 
TLS density of states does not seem to show up in 
other measurements. If we try to explain the T 1'3 
dependence by a dipole-quadrupole form (s = 4) 
and fracton TLS coupling [8c] or by s = 4 and 
~--1(c) c~ c (see the discussion under eq. (26) where 
this will predict T 125), then the form of the line 
shape will not be Lorentzian (i.e. the decay will 
not be exponential [12d]). This is not verified 
experimentally. 

The TLS Raman process of Osad'ko and the 
two-mechanism model (section 4) can also fit the 
data with appropriate untested assumptions. 

In short, the T 1'3 dependence can be explained 
by the TLS model, but it requires assumptions 
about which there is little or no independent sup- 
port. It would be desirable for the theorists to 
make explicit predictions of other properties or 
experimental results, while ensuring that the mod- 
els give consistent results for thermodynamic 
properties so that the various theories can be 
distinguished. For example, what do the theories 
predict for hole-burning efficiencies and time de- 
pendence? 

References 

[1] A.A. Gorokhovskii, R.K. Kaarli and L.A. Rebane, JETP 
Lett. 20 (1974) 216. 

[2] B.M. Kharlamov, R.I. Personov and L.A. Bykovskaya, 
Opt. Commun. 12 (1974) 191; Opt. Spect. 39 (1975) 1240; 
Chem. Phys. Lett. 50 (1977) 407. 

[3] P.J. Selzer, D.L. Huber, D.S. Hamilton, W.M. Yen and 
M.J. Weber, Phys. Rev. Lett. 36 (1976) 813. 

[4] J, Hegarty and W.M. Yen, Phys. Rev. Lett. 43 (1979) 
1126. 

[5] (a) H. de Vries and D.A. Wiersma, Phys. Rev. Lett. 36 
(1976) 91; 
(h) L.W. Molenkamp and D.A. Wiersma, J. Chem. Phys. 
83 (1985) 1; 
(c) T,J. Aartsma and D.A. Wiersma, Phys. Rev. Lett. 36 
(1976) 1360; Chem. Phys. Lett. 42 (1976) 520. 

[6] J.M. Hayes and G.J. Small, Chem. Phys. Lett. 54 (1978) 
435; J. Chem. Phys. 67 (1978) 151; 
J.M. Hayes, R.P. Stout and G.J. Small, J. Chem. Phys. 73 
(1980) 4129; ibid. 74 (1981) 4266; 
G. Small, in: Spectroscopy and Excitation Dynamics of 
Condensed Molecular Systems, eds. V. Agranovitch and 

R. Hochstrasser (North-Holland, Amsterdam, 1983); 
T.P. Carter, B.L. Fearey, J.M. Hayes, G.J. Small, Chem. 
Phys. Lett. 102 (1983) 272; 
J.M. Hayes, R. Jankowiak and G.J. Small, in: Persistent 
Spectral Hole Burning: Science and Applications, eds. 
W.E. Moerner (Springer, New York, in press); 
R. Jankowiak and G. Small, J. Phys. Chem. 90 (1986) 
5612; Chem. Phys. Lett. 128 (1986) 377. 

[7] H.P.H. Thijssen, A.M. Dicker and S. VSlker, Chem. Phys. 
Lett. 92 (1982) 7; 
H.P.H. Thijssen, S. VSlker, M. Schmidth and H. Port, 
ibid. 94 (1983) 537; 
H.P.H. Thijssen, R. van den Berg and S. VSlker, ibid. 97 
(1983) 295; 103 (1983) 23; 120 (1985) 496, 503. 

[8] (a) S.K. Lyo and R. Orbach, Phys. Rev. 22 (1980) 4223; 
(b) S.K. Lyo, Phys. Rev. Lett. 48 (1982) 688; 
(c) S.K. Lyo and R. Orbach, Phys. Rev. B 29 (1984) 2300; 
(d) S.K. Lyo, in: Organic Molecular Aggregates, eds. P. 
Reineker, H. Haken and H.C. Wolf (Springer, New York, 
1983); 
(e) S.K. Lyo, in: Optical Spectroscopy of Glasses, ed. I. 
Zschokke-GfAnacher (Reidel, Dordrecht, 1986). 

[9] (a) P. Reineker and H. Morawitz, Chem. Phys. Lett. 86 
(1982) 359; 
(b) H. Morawitz and P. Reineker, Solid State Commun. 
42 (1982) 609; 
(c) P. Reineker, H. Morawitz and K. Kassner, Phys. Rev. 
B 29 (1984) 4546; 
(d) K. Kassner and P. Reineker, Chem. Phys. 106 (1986) 
345, 371. 
(e) K. Kassner and P. Reineker, in: Optical Spectroscopy 
of Glasses, ed. I. Zschokke-Gr'~,nacher (Reidel, Dordrecht, 
1986). 

[10] J. Hegarty, M.M. Broer, B. Golding, J.R. Simpson and 
MacChesny, Phys. Rev. Lett. 51 (1983) 2033. 

[11] J. Friedrich, J. Swalen and Dr.  Haarer, J. Chem. Phys. 73 
(1980) 705; 
J. Friedrich, H. Wolfrum and D.J. Haarer, J. Chem. Phys. 
77 (1982) 2309; 
W. Breinl, J. Friedrich and D.J. Haarer, J. Chem, Phys. 80 
(1984) 349; ibid. 81 (1984) 3915. 

[12] (a) D.L. Huber, J. Non-Cryst. Solids 51 (1982) 241; 
(b) D.L. Huber, M.M. Broer and B. Golding, Phys., Rev. 
Lett. 52 (1984) 2281; 
(c) D.L. Huber, M.M. Broer and B. Golding, Phys. Rev. B 
33 (1986) 7297; 
(d) D.L. Huber, J. Lumin. 36 (1987) 307. 

[13] I.S. Osad'ko, JETP Lett. 39 (1984) 354; Chem. Phys. Lett. 
115 (1985) 411; JETP 90 (1986) 1453. 

[14] C.A. Walsh and M.D. Fayer, J. Lumin 34 (1985) 37; (and 
to be published). 

[15] (a) S. Hunklinger, in: Phonon Scattering in Condensed 
Matter, eds. W. Eisenmenger, K. Lassmann and S. Doet- 
tinger (Springer, New York, 1984); 
(b) S. Hunklinger and M. Schmidt, Z. Phys. B 54 (1984) 
93. 
(c) G. Federle and S. Hunklinger, J. Physique 43 (1982) 
C9-485. 



292 R. Silbey, K. Kassner / Homogeneous linewidths of optical transitions in glasses 

[16] (a) P.W. Anderson, B.I. Halperin and C.M. Varma, Phil. 
Mag. 25 (1972) 1; 
(b) W.A. Phillips, J. Low Temp. Phys. 7 (1972) 351. 

[17] J.G. Lasjaunias, A. Ravex, M. Vandorpe and S. Hunk- 
linger, Solid State Commun. 17 (1975) 1045. 

[18] M.T. Loponen, R.C. Dynes, V. Narayanmurti and J.P. 
Garno, Phys. Rev. Lett. 45 (1980) 457. 

[19] M. Meissner and K. Spitzmann, Phys. Rev Lett. 46 (1981) 
265. 

[20] C.M. Varma, R. Dynes and J. Banavar, J. Phys. C 15 
(1982 L1221. 

[21] See, for example, K. Blum, Density Matrix Theory and 
Applications (Plenum, New York, 1981); 
A. Redfield, Adv. Mag. Res. 1 (1963) 1. 

[22] S. Alexander and R. Orbach, J. Physique Lett. 43 (1982) 
L625. 

[23] G.S. Dixon, R.C. Powell and Xu Gang, Phys. Rev. 33 
(1986) 2713. 

[24] D. McCumber and M. Sturge, J. Appl. Phys. 34 (1963) 
1682. 

[25] B. Jackson and R. Silbey, Chem. Phys. Lett. 99 (1983) 
381. 


