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The effect of nonlocal fluctuations on the line shape and dynamics of exciton states is considered, using a 
stochastic perturbation approach. The cumulant expansion is truncated at second order. The usual Gaussian 
and motional narrowing limits are treated and the limitations of the model are discussed. 

I. INTRODUCTION 

The Haken-Strobl model1 of excitation line shapes and 
energy transfer in molecular aggregates has been ex­
tremely useful for interpreting the experimental results 
in such systems. The simplicity of this model lies in the 
assumption that the bath variables (with which the ex­
citation interacts) relax extremely quickly compared to 
the rate of relaxation of the excitation. The relevant 
correlation functions of bath variables are then replaced 
by a delta function in time. This allows an exact solu­
tion of the equations of motion of the excitation to be 
found. Recently, Sumi2 and Blumen and Silbey3 have re­
laxed this assumption and assumed that the correlation 
function for local fluctuations decays on a time scale 
y-1; this allows a broader range of behavior for the line 
shape and dynamics. However, these authors did not 
look at the nonlocal fluctuations and their effect on the 
properties of the system. In the present note, we ex­
amine the easing of the restriction of a delta function 
correlation in time for both local and nonlocal fluctua­
tions. We treat both the dimer and the crystal. In Sec. 
II, we discuss the Hamiltonian and assumptions of the 
model. In Secs. III and IV, we calculate the optical line 
shape and discuss exciton dynamics of a pure crystal. 
In Sec. V, the line shape and dynamics of a dimer em­
bedded in a host crystal are determined, and in Sec. VI, 
we conclude with a discussion of the limitations of the 
model. 

II. THE <HAMILTONIAN 

A Hamiltonian containing excitation-phonon coupling is 

:1('= :~:::>:.a~a. + l:Jnma~am , (2.1) 
n n,m 

where a~(an) create (destroy) an excitation on site n, En 
is the local site energy, and Jnm is the transfer integral 
from site n to site m. We can separate' the average or 
nonfluctuating part of J(' as 3Co and treat the remainder as 
a perturbation: 

JCo = L Ea~an + LJnma~am , 
n n,m 

(2.2) 

n n,m 

The terms OE. and oJnm are complicated functions of the 

a> Supported in part by the NSF (grant CHE7807515). 

phonon variables; in the interaction representation with 
respect to the phonon Hamiltonian (not explicitly writ­
ten), these terms will be time dependent. We therefore 
assume as the fundamental Hamiltonian for our system 
J('=J('~ + V, where 5En and 5Jnm are replaced by time­
dependent functions. The term OEn(t) represents a local 
fluctuation of the site energy, and 5Jnm(t) represents a 
nonlocal fluctuation of the transfer integral. We as­
sume, along with Haken and StrObl, 1 that the fluctuations 
are a GaUSSian-Markov process4 with zero average: 

(5E.(t» = 0 = (OJ.m(t» . 

In contrast to Haken and Strobl, 1 we assume2,3 

(5E.(t)5Em(O» = onmD2 e-~I II 

and 

(2.3) 

(2.4) 

We have used a one-dimensional notation; however, each 
index n can be thought of as a set of d numbers for d­
dimensional problems. The form A2(n - m) means that 
A 2 / depends on the distance between sites n and m. In 
the following, we will often assume only nearest neigh­
bor correlations [A 2(n - m) = 0 for further neighbors], 
but this restriction is easily lifted. 

In the limit that A 2, D2, 1), and a - 00 such that D2/1) 
-Yo andA2(n-m)/a-y(n-m), the Haken-Strobl model 
is recovered. Since D and A are measures of the 
strength of the exciton-phonon interaction and 1) and a 
are measures of the relaxation rate of the fluctuations, 
the Haken-Strobl assumptions refer to rapidly relaxing 
strong coupling (corresponding to a motionally narrowed 
limiting case). 

The method of solution for the line shape and density 
matrix of the excitation is the same as before3

: we com­
pute the equations of motion for the density matrix or 
Green's function in the second cumulant approximation. 
Note that since we have assumed that the fluctuations 
are a Gaussian-Markov process, we might think that the 
result up to the second cumulant is exact; however, since 
we are dealing with an operator equation with noncom­
muting operators, 5 higher cumulants are nonzero, in 
contrast to a statement made by Blumen and Silbey. 3 

III. LINE SHAPES 

Following the method of the earlier paper, 3 we write 
the line shape as 
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(3.1) 

where 10) is the ground electronic state of the sy stem. 
The dipole moment Ilk is nonzero only near k = 0 in the 
exciton sy stem, so that only that term survives the sum 
in Eq. (3.1). 

The time dependence of ak(t) is 

~ ak(t) = i JC%(t)ak{t} '" i[J<'(t), ak(t)] , 

or, in the interaction representation, 

ak(t)'" e-IXotak (t) e 1xot , 

:t ak(t) = + iih(t)ak(t) . 

The solution to this equation is 

(ak(t) = (exPT [+ i t dT VX( T)])ak(O) . 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

We can express the time-ordered exponential using a 
Kubo cumulant expansion6 to find in second order 

(3.6) 

where 

(3.7) 

and the first cumulant is zero by Eq. (2.3). In Sec. VI, 
we will discuss the limitations imposed on our model by 
ignoring cumulants of higher order. Using Eqs. (2.2) 
and (2.4) to compute KZ(t), and putting this into Eq. 
(3.1), we find 

(3.8) 

where 

<Pk(t) = ~t dT foT dTI [DZ e-TJT1gk( Tl) + 2A 2 e-"'T Igk ( Tj) 

+2A2 e-"'T1N- l Lexp[i(Ek -Ek )TdCOS(k+k1)1 , 
k j ~ 
1 

gk(-r)=N-jLexp[i(Ek-Ekj)r] • 
kl 

(3.9) 

(3.10) 

By using the exciton density of states g(w), we can ex­
press gk(T) as 

gk(T)=eiEkT jdwg(w)e-1WT . (3.11) 

To compute the optical line shape of the crystal, we 
use two forms of g(w): 

L( ) (Bhr) 
g w = (w - En} + B2 , 

IW-Eml~B , 

IW-Eml>B, 
(3.12a) 

(3. 12b) 

where the exciton band has been assumed to be sym-

metric about the mean energy Em (henceforth taken to 
be zero, for notational simplicity) and of width 2B. The 
resulting I(w) is rather complicated; however, we may 
evaluate the results for various orderings of parameters 
as was done by Blumen and Silbey3 for local correlations 
alone. We will comment only on the effects of nonlocal 
fluctuations here. 

In the limit of large fluctuations (D» B, 71 and/or 
A » B, a), the line shape is Gaussian of width 2 (DZ 

+2Az)112(2ln2)1/Z, independent of the exciton density of 
states. 

In the opposite limit of motional narrowing, where 
D« B, or 71 and A «B or a, the absorption line shape 
is Lorentzian. In order to calculate the widths and 
shifts, we use Eqs. (3.8)-(3.10), rewriting Eq. (3.9) as 

<Pk(t)=Dzjt dT iT dTl e-'I1'lgk(Tj) 
o 0 

+ 2Azlt dT iT dTt!k(Tl) e-"'Tj , 
o 0 

(3.13) 

where 

fk(Tj) =gk( Tj) 

+N-jLexp[i(Ek-Ek )Tdcos(k+k1). (3.14) 
kl 1 

Since Ilk = 0 except for k'" 0, we have to evaluate only <Po. 
In order to present analytic results, we use the approxi­
mation that cos kl ~ Ek/B. Then, using the density of 
states g(w), 

fo(T) =go(T) + eiEotfdW g(w) e-1wtw/B . 

For a Lorentzian density of states, 

go(T) = elEkT e- BiTi , 

For a hemicircular density of states, 

( ) -2 IEQTJ1(BT) 
go T - e BT' 

(3.15) 

(3.16) 

(3. 17) 

(3.18) 

(3.19) 

U Sing these forms in the limit D « B, 71 and A «B, a, 
we find for a Lorentzian density of exciton states the 
usual Lorentzian line shape with shift r Z and width r 1: 

rL- DZ(B+1]) +2AZ(B+a+Eo) 
1- (B+71)2+E~ (B+a)2+E%' (3.20) 

rL- D2Eo +2AZ(E o-a-B) 
2-(B+71)2+E~ (B+a)2+E~ (3.21) 

In the case of a hemicircular density of states, the 
forms for r 1 and r 2 are much more complicated; how­
ever, in the limit D « B, 1] and A «B, a, they reduce to 
the same form as those of the Lorentzian density of 
states, i. e. , 

r1=(DZ/1J) + (2A2/a) , 

r z=(D2E o/1j2)-(2A 2/a) , a,71»B 

(rapid bath modulation), and 

(3.22) 
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r 1 ===(DZ/2B) + (2Az/B) , 

r z===(Dz/2B) _(A2a / B2) , B»T/,a (3.23) 

(rapid exciton transfer). In the above we have assumed 
Eo == B (i. e., the k == 0 exciton level is at the top of the band). 

IV. DYNAMICS 

Exciton transport is described by the reduced density 
matrix o-(t), which is the average of p(t), the full crystal 

I 

density matrix, over the canonical phonon ensemble. 
By the same procedure outlined above for (ak(t» we find 

(4.1) 

By calculating a diagonal matrix element of Eq. (4.1) 
in momentum space, we arrive at the general equation 
of motion: 

(4.2) 

In a crystal we can describe excitation transfer in terms of its diffusion coefficient. It has been shown 7
•
8 that the 

diffusion coefficient of an exciton may be expressed approximately in terms of its momentum-space representation 
as 

(4.3) 

where Vk =VkEk is the exciton velocity. Ykk' which can be interpreted as a hopping term, 8 is given by 

(4.4) 

where 

(4.5) 

and 

(4.6) 

For our model 

Ykk ==Re ~ 1[4A
2
[COS(k +q) + 1]a 2 + (E~ -Ei 

4A2 i ( )( ) 2a(Ek -E,,) 8
2 

( ) {2DZ1J(E,,-Eq) 4A
2
1J<E.-Eg) [ } 

- s n A +q Vk - V" [a2 + (E
k 

_ E,,)2]2 + ~ Ek+~ - E,,~ ~.o [T/2 + {Ek _ Ei]2 + [T/2 + (Ek _ El]2 1 + cos(k +q)] 

Z (8D
2

TJ3 6D2'17 {1M 27]3 12A 21]} )11 
+(Vk-V,,) [T/2+(Ek-ElP -[T/2+(E

k
-El]2 + [T/2 + (Ek-E,,)2P -[T/2+(Ek-E/]2 (l+cOS(k+q)J~ . (4.7) 

r Ilk is the scattering rate out of state k and is given by 
the first term in braces in Eq. (4.2). Using Lorentzian 
and hemicircular densities of exciton states to calculate 
gk(T), we find 

r;k == [2D2/(T/ + B)] + [4A2 /(a + B)] 

and (4.8) 

r~ == (4D2/B2)(v'T/2 + B2 -T/) + (8A 2 /BZ)(v' a Z + BZ _ a) . 

We see that the scattering rate out of a k state is in­
versely proportional to either the exciton or phonon 
bandWidth, whichever is larger. 

These results are easily compared to those of the 
Haken and Strobl1 model, which is valid in the limit of 
rapid bath modulation. For the case (TJ »B, D;a >'>B,A), 
r kk and Ykk reduce to 

and (4.9) 

In terms of Haken and Strobl's parameters (D2/17)=Yo 
and (Az/a)==Yh we have 

r kk =2Yo+4Y1, 

(4.10) 

These are exactly the results found by Munn and Silbey8 

when applying the Haken and Strobl model to Eqs. (4.4)­
(4.6). 

In the limit that A 2 
- 0, our results for line shapes 

and dynamics reduce to those of Blumen and Silbey. 3 
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V. THE DIMER 

For the case of a dimer embedded in a host crystal, 
we can perform the summations gk(T) andfk(T) exactly. 
The equations describing the line shape and G(t), of a 
symmetric dimer are the same as those used for the 
crystal, but with the A 2 terms reduced by a factor of i 
(these equations were derived assuming that each crys­
tal site had two sites adjacent to it). We deSignate the 
two dimer states in momentum space as K = 0 and K = 1T 

(in units of l/a, where a is the lattice spacing), with en­
ergies at the top and bottom of the exciton band, respec­
tively. The dimer bandwidth is set equal to B (half that 
of the crystal) with the zero of energy chosen to be at 
the top of the band for Simplicity. 

Equation (3.6) for the dimer is 

d it [D2 ~ dt (ak(t) = - 0 dT ze-'lT(l + el l1r) +A2 e-OtTJ(ak(t) , 

(5.1) 
which, when solved for (ak(t)) and Fourier transformed, 
results in a fairly complicated expression. However, 
by using a prOjection operator techniqueS to second or­
der to derive Eq. (5.1), we get a convolution 

:t (ak(t) = - {t dT [~2 exp( -1J \ t - T \) 

x (1 + exp[iB(t - T)]) + A 2 exp( - a \ t - T I)]<ak( T» , (5.2) 

which is easily Fourier transformed to yield the follow­
ing line shape: 

I()- (1Il oI2/1T)r t (w) 
W - r~(w)+[w-r2(w)F' 

D2[ 11 7J] A
2
a 

r j (w)='2 1J2+ w2 + 1J2+(w+B)2 + a 2+w2 ' (5.3) 

D2 [ W W + B ] A 2w 
r2(W) = '2 1J2+ w2 + 1J2+(w+B)2 + a2+w2' 

In the motional narrowing region, where D is small 
compared to 1J and/or B, we have a sharp Lorentzian 
peak centered near W == 0 due to absorption in the K == 0 
state. The width and shift in this case are 

D2 D27J A2 
r I"" 21) + 2(1]2 + B2) + a ' 

D2B 

The transition rate between the two dimer states is 
proportional to the square of the local fluctuation ampli­
tude, as will be shown below. Consequently, as D2 be­
comes larger, a peak develops near W =B, due to the 
K = 1T state. These peaks become broader as D in­
creases, and shift away from each other. 

Equation (4.2) for the dimer is found to be 

dou(t) [- () - ()] dt = (J22 t - (Ju t 

[
D21} D2 eO'll :l 

x ~+ 1J2+Bz(BsinBt-1]cosBt)J' (5.4) 

If we include the other possible correlations (1i€I(t)1i€2(O» 

and (1i€I(t)1iJ(O», which may be important at low temper­
atures, we find that only the first gives a contribution. 
Therefore, within the limits of our approximation, the 
transfer of energy in a dimer depends only upon local 
correlations. Redfield's reduced density matrix forma­
lism, 10,11 which utilizes a second-order perturbation ex­
pansion, reproduces these results. 

VI. LIMITATIONS 

As stated earlier, the spectrum of systems to which 
our model can be applied is limited by the second cumu­
Iant approximation. In a recent paper addreSSing this 
problem, Rips and Capek12 show that the operators V(tl ) 

and V(tz) commute in the limits of vanishing exciton 
bandwidth or very fast thermal modulation, i. e., the 
second cumulant approximation is exact for the case of 
no exciton motion (Anderson-Kubo model) or a delta­
function correlation time (Haken and Strobl model). 

For what orderings of parameters then is our approx­
imation a suitable one? For 7j » B, D one can show that 
the local contributions from the second- and fourth­
order cumulants are proportional to D2/7j and D4/1}3, re­
spectively. Therefore, the correction terms in the re­
gion of rapid vibrational modulation are negligibly small. 
For narrowing by excitation transfer (B» 1], D) the con­
tributions from these two cumulants are proportional to 
D2/B and D4/B 3

, respectively, and the second cumulant 
approximation is again a good one. In general, our 
model is quite valid in the entire motional narrowing re­
gion where D2 « B2 + 1J2, and in the narrow exciton band­
width region where D2 B2 «7j4. 

The nonlocal contributions from higher-order cumu­
lants will exhibit the same behavior, i. e., higher-order 
corrections are negligible when A 2 «B2 + a 2. This rela­
tio~ will, in general, always be satisfied, since A is a 
measure of the fluctuation in J 1> which is a fraction of 
the bandwidth B. The,refore, our model should be quite 
accurate with respect to calculating non local contribu­
tions to the line shapes and dynamics. 
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