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Localized Excitation Transport on Substitutionally 
Disordered Lattices 
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Average-T-matrix and coherent medium theories are used to study the motion 
of localized excitations on substitutionally disordered lattices. We derive equa- 
tions which relate coherent medium results for bond and site averaging and 
show how these reduce to the two-body solution results of Gochanour, Ander- 
sen, and Fayer. Numerical results for Po(t), the probability of remaining at the 
origin for two-dimensional nearest-neig~abor lattices are presented. 
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1. INTRODUCTION 

There are many systems where it is possible to study the dynamics of 
localized excitations which move among randomly placed sites or mole- 
cules. Exciton transport on protonated molecules in deuterated molecular 
host crystals, (l) vibrational energy transfer in matrix isolation systems, (2) 
and fluorescence-line-narrowing experiments in a wide variety of amor- 
phous crystals and glasses (3) are some examples of systems which have 
been studied experimentally and where a hopping mechanism for transport 
is possible. 

Because transport in these systems does not occur among a periodic 
array of sites, it is possible that the motion of the excitation will not be 
diffusive, even at fairly long times. At any given density, isolated clusters of 
sites will be present, and if the excitation transfer range is small, the 
excitation may get trapped in these small clusters. In the case where only 
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nearest-neighbor jumps on a lattice are possible, percolative behavior will 
be seen. 

The main theoretical effort directed at characterizing this behavior for 
various time and density regimes has followed two lines: One is use of the 
continuous time random walk (CTRW) method (4) in which the random 
lattice is replaced by a periodic one with a distribution of waiting times at 
each site before the excitation can move to another site. The other ap- 
proach has been solution of an averaged (generalized)master equation, 
where the average is over all random configurations of sites or molecules 
which can carry the excitation. (5) Klafter and Silbey (61 have shown that 
these two approaches are equivalent and give exact formal expressions 
which relate the CTRW functions to a self-energy for the averaged master 
equation. 

Various solutions of the averaged master equation (and therefore the 
CTRW waiting time function) are possible depending on the type of system 
and disorder considered. Gochanour, Andersen, and Fayer (7~ have derived 
an exact equation, in terms of an expansion in an n-body self-energy, for 
the case where the excitation can move on a continuum of sites as in a 
solution. On a lattice, however, in dimensions higher than one, exact 
analytic expressions have not been found (as will be discussed later) and 
one must resort to approximate schemes. The most successful of these 
schemes to date appears to be the coherent medium approximation. The 
coherent medium approach involves finding a medium in which some 
scattering vanishes to low order. All other scattering is then neglected and 
self-consistent equations are obtained. Coherent medium theories have 
been presented by Odagaki and Lax (g~ and by Webman. (9~ Their applica- 
tion has been for the case where bond disorder is present. In bond 
disordered systems, such as random resister networks, transport through the 
lattice may be blocked by "closed" bonds, but all sites connected by 
"open" bonds are accessible. 

If the guest and host molecules in a matrix have similar physical 
properties, and the guest-host interaction is weak, then transport may be 
viewed as occurring among substitutional sites on an ordered lattice. In 
these site disordered systems, transport through the lattice may be blocked 
by closed sites, but all bonds between open sites are also open. Most of the 
systems mentioned above may be viewed, at least to a first approximation, 
as substitutionally disordered. Both solution and bond averaging have been 
suggested and used as approximate methods of calculating transport prop- 
erties for substitutionaUy disordered lattices. (7'8'1~ For this reason, it is 
important to construct a theory for these systems and find relationships 
between the various types of disorder. 
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In the following we present average-T-matrix and coherent medium 
theories for substitutionally disordered lattices. Relationships between the 
above types of disorder (site, bond, solution) are found. Finally we present 
numerical coherent medium and solution results and discuss some proper- 
ties of the exact solution which are incorrectly accounted for by coherent 
medium techniques. 

2, M O D E L  

The model we wish to consider is similar to one presented earlier by 
Klafter and Silbey (6) and will be reviewed here. We will be concerned with 
transport among randomly placed substitutional guest sites on a superlat- 
tice which is otherwise translationally invariant. The electronic or vibra- 
tional states of the impurity sites are taken to be localized so transport 
occurs "incoherently" via a "hopping" mechanism. The host sites take no 
part in the transport and no traps are present. The transport observables 
may be calculated if the probability of the excitation being on any site n at 
time t, p , ( t ) ,  is known. This can be obtained for a given guest site 
configuration by solution of the master equation 

f t , ( t )  = ~] W~,,pm(t ) (1) 
m 

! 

w;,o = (1 - 8m.)w; . .  - 8m. Z w.j (2) 
j ~ n  

w ' ,  is the rate of hopping from site m to n. In the following we will take the 
high-temperature limit so that w~,, = Wl, m. The sums in (1) and (2) go over 
guest occupied sites only, and may be converted to sums over the superlat- 
tice if each w ' ,  in (2) is multiplied by functions (,,(, ,  where 

1 site i guest site 
~i = 0 site i host site 

so that (1) becomes 

w,.. = (3) 

and the sums in (3) now go over all sites in the superlattice. Since the actual 
guest site configuration is not known either experimentally or theoretically 
(through knowledge of the ~i's), and since we will be mainly interested in 
the long-time, long-distance properties of the transport, the quantity of 
interest is the site occupation probability averaged over all random guest 
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<p,(t)> = ~ < Wm.p.~(t)> (4) 
m 

where Win, contains the Wmn'S. The average in (4) operates only on the 4i's 
with (in the thermodynamic limit) (47> = P  and (4ig;j... 4.> (no sites 
equal) = p" where p is the number density of guest sites. The Laplace 
transform of (4) may be taken via 

f(u) = fo~ -"tf(t) dt (5) 

and a solution found 

(p.(u)> = ~ ( [  u - W ] ~ j ' p j ( t  = 0)> (6) 
J 

Assuming that at t = 0 the excitation is on site 0, and that it can never be 
on a host site, the initial condition is 

pj ( t  = 0) = 8j040 

A Green's function for the averaged system may be defined 

<p(u)> = <G><p(t = 0)> 

(7) 

( 8 )  

1 [  1 ( l _ p ) l  (9) <G>,j = ~ (u  - w) -~ - - 
u ,y 

Equation (9) is obtained by noting that every term after the first in the 
expansion of [u - W]~ 1 or [u - W]~,, I contains 40 and that 4~ = 40. 

It has been shown (6) that Green's functions of the form 

<G'> = < [ u - W ] - ' >  ( l O )  

can be formally rewritten in both real and k-space representations: 

<G'(u)> = [u - Z(u)]-' (11) 

G'(k, u) = [u + "2.(k = 0, u) - 21(k,u)]-' (12) 

where 

E(k,u) = ~ exp(ik'Rno)~,o,(U) (13) 
nv~0 

Y~(u) is a matrix which contains all the averaging and will hereafter be 
referred to as the self-energy matrix. Once Y~(u) is obtained, all transport 
properties of the system can be found. For example, a generalized diffusion 
coefficient may be defined (6) 

D(k  = 0, u) = lim 1 [Z(k = 0, u) - Y,(k,u)] (14) 
k~)0 k-2 
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and the mean square displacement at long times found (6) 

<R2(u)> = lira 4 D ( k  = 0, u) (15) 
u--->0 u ~ 

The extension of the above formalism to Green's functions of the type (9) is 
straightforward.(11) 

As noted in the introduction, it is not, in general, possible to obtain 
exact expressions for Y~(u). In the following we obtain X(u) through 
average-T-matrix and coherent medium approximations. 

3. DERIVATION OF THE SELF-ENERGY 

We start by adding and subtracting a nonfluctuating and translationally 
invariant matrix S in the denominator of G' appearing in the Green's 
function (9): 

1 / - (1 16) 

8W = W - S (17) 

and the matrix elements of S are 

S,,, = (1 - arnn)Smn I am n E Snj (18) 
j ~ n  

The sum in (18) goes over the superlattice and the explicit form of the s/j's 
will be determined later. (G> can now be rewritten 

(G) = G (~ + G(~ (~ (19) 

G (~ =[u- S ] - '  (20) 

T = [ S W ( 1 - G ( ~  +G(~ - ' ]  (21) 

In order to do an average-T-matrix or coherent medium theory, we will 
express T as an expansion in  two-body t matrices. To do this we switch 
over to an operator representation. 

1 
j ,k 

aWjk-=(IJ> -}k>)(wjk - sjk)(<kl-  (Jl) 

2% 
j ,k 

~k ~ ( I J )  - Ik>)sjk((kl-  (j[)  

(22) 

(23) 

(24) 

(25) 
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The functions [j), [k), are orthogonal localized site functions and the 
primes on the summations restrictj  from beingequal  to k. 3~jk and 6k have 
been defined so that the matrix elements of 3 W and S are the same as the 
matrix element of 3W and S. Below, we will use operator and matrix 
notation interchangeably whenever an operator and matrix are equivalent 
in the sense that for a matrix M, there is an operator 2~ such that 
Mjk = (jl~lk). 

Two-body operators can now be defined 

~ -- 3~jk(1 - 4(0)~l~jk) -1=  (]J) - - ]k)) tke((kl-  (J]) (26) 

Wjk -- 5k (27) 
ts~ = 1 + 2( ( j [G(~ - ( j lG(~ -- sjk ) 

qjk = ~k(1 + G(~ ---- (I J )  - I k ) ) q : ~ ( ( k l -  ( j l )  (28) 

ss.k 
qs~ = 1 - 2 ( ( j l G ( ~  ) - ( j l G ( ~  (29) 

using (21), (22), (24), (26), and (28) an expansion for 7 ~ in terms of t~s and 
~'s may be obtained: 

( j , k )~  (man) 

! A A A 

1 Z '  • '  N tjkG(~176 + ' ' "  + 
" j ,k  m,n par 

(j',k)~(m,n) 
(m,n)~(p,r) 

1 , ^  1 + ( 1 - 0 )  ~ 52, qjk- ~ 
j , k  

• ~(o)~ ] 
k ~ titan 

+ . . .  
m a n  

( j , k )~  (re,n) 

(3o) 

A A 

Note tj. k (and qyk) has been defined in such a way as to give the most 
cancellation in the expression for 7 ~. If the factor of 1/2 in (22) or (24) is 
left out altogether (resulting in a nonhomomorphic partition (12)) or in- 
cluded in the definition of t (as in Webman's treatment (9)) additional terms 

A 0 ^  
appear in each order after the first which include factors of %G tmn with 
(j, k) = (m, n). 

This expression for T is rather complex. In order to go further and find 
an approximate formula for ( T ) ,  we can make the average t matrix 
approximation (ATA), which assumes factorization of all products of/~s in 
(30). When this is done, the summation can be done, and we find in the 
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ATA 

A 1 { / Q ( u ) [ l _  (~(o,21)(u)]-, * G(~ -1 } (31) <T>ATA= ~ + (1 - o)S(1 + 

where 

M(u)  = ~ '  ({/k) [ 1 - 2(( j l  G (~ I J) - (( j l  G(~ Ik))(w - '  
j,k 

x [ - I j ) ( j ]  + IJ)(kl] (32) 

The average in (32) can be done to give 

(j2(Wjk -- 5k ) (1 - 02)sjk (33) 
( ~ k )  = 1 + ~ j ~ ( ~ k  - s/k) 1 - a j k %  

O~jk = 2( ( j  I ~(o)l J )  - Ijl G(~ (34) 

For notational convenience, we have dropped the prime on w/j (see eq. (3)). 
The matrix S still needs to be determined. If S is set equal to zero, then, 

s = 0  P % ' k  
( 5 , )  - 1 + ( 2 / u ) . >  (35) 

Pl [ - ,  1 (p 1) 1O" (36) (G)~j=  t ( u -  M ( u ) )  + - 

a diffusion coefficient for (36) may be defined (u) 

D(k = 0, u) = ! lim 1 M(k ,u)  (37a) 
p k-+O 

M(k,u)= ~.~ [exp( ik .  R0j ) - 1] p2woj (37b) 
j ~ 0  1 + ( 2 / . ) ( 1  - o2)Woj 

A coherent medium approximation may be obtained if, instead of 
setting S = 0, S is chosen so that ( T ) =  0. It is not possible to do this 
exactly, but one possible approximate way is to choose S so that the 
average of the lowest-order terms in (30) vanish. Then, for example 

E <~k>+ (1 - 0)2~,~= 0 ( 3 8 )  
j,k j,k 

(~k) is given by (26) and (33). If the coherent medium approximation of 
(38) is made, then 

<G)c m = G(O) _ I u - $ (39) 

and the diffusion coefficient is given by (14) with E = S. The matrix 
elements of S are defined by (38) and physical solutions can be obtained if 
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real positive Sjk exist such that 

(1 + ajk Wjk ) --[(1 + ajk Wjk )2 -- apajk Wjk l ' /2 
Sjek m = 2ajk (40) 

The minus sign in (40) was picked to ensure the proper high- and low- 
density limits. The ajk'S are given by 

ajk = 2((G)jj - (G)jk) (41) 

An interesting limit is obtained if the square root in (40) can be expanded, 
i.e., if 

4pajkWjk << 1 

(l  + %wj~) 2 

then 
owjk 

cm (42)  
Sj~ ~ I + %wjk 

Note that the ajk'S are now functions of the full Green's function and 
self-consistent equations must be solved, using (40), (41), (18), and (39) in 
order to complete the evaluation. 

4. DISCUSSION 

If a nearest-neighbor approximation is made, the self-consistent results 
derived here for site averaging in our form of the coherent medium are 
identical to the bond averaging equations of Odagaki and Lax and Web- 
man. The bond disorder problem for nearest neighbors is characterized by 
the distribution function 

P(wjk ) = pd(wjk -- Wo) + (1 -- p)6(Wjk ) (43) 

where p is the probability a bond between sitesj and k is open and w 0 is the 
nearest-neighbor hopping rate. The excitation is allowed to start anywhere 
on the lattice, so the T matrix is given by the right-hand side of (30) with all 
q's set equal to zero. The reason the coherent medium approximation 
presented here gives the same result for bond and site disorder is that only 
the terms proportional to the first power of the density are used to 
construct the coherent medium. These terms are identical in both models. 
Differences in the averaging procedure occur, however, in all higher-order 
terms. This can be seen by examination of the average of Eq. (30). In the 
site case, the averages of the t matrices in (30) factor only if all sites 
involved in the average are different. When the coherent medium approxi- 
mation is made, correction terms appear in every order after the second. In 
the bond case, the lowest three orders of ( T )  vanish since different bonds 
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(pairs of sites) are independent. One obvious consequence of the equiva- 
lence between this low-order site-averaged coherent medium and low-order 
bond-averaged coherent medium theories is that bond and site percolation 
probabilities are predicted to be the same. 

Another often used approximate method is the continuum approxima- 
tion. In this approximation, lattice sites are replaced by a continuum of 
points R- - ( r l ,  r2,r 3 . . . . .  rn) and averaging is done with the following 
distribution function: 

f ( R  ) = V - " f  dr~ dr2 . . ,  dr, f ( R  ) (44) 

where V is the volume of the system under consideration. Gochanour, 
Andersen, and Fayer (GAF) have applied the above distribution function 
to transport in solution. Using diagram techniques, they obtained an exact 
equation for ( G )  in terms of an expansion in an n-body self-energy. On a 
lattice, however, an exact equation cannot easily be obtained because of the 
presence of "excluded volume" terms. These terms arise because, in order 
to do the average over lattice sites correctly, the indices of all sums must be 
completely restricted so that no sites in the sums are equal. Once the 
average is done and the sums are unrestricted, the added terms do not sum 
up easily. An analogous situation occurs for a solution if the molecules 
have a finite volume. 

Equation (42), which was obtained by expanding the square root in 
Eq. (40), is similar to the two-body self-energy derived by GAF [Eqs. (83) 
and (84) in Ref. 7]. The two become identical if we replace ajk by (G)jj  
(i.e., we neglect the off-diagonal elements of ( G )  compared to the diagonal 
elements) and we replace lattice sums by integrals. This similarity suggests 
that the two-body solution results are a special case of the coherent 
medium approximation of Eq. (40). However, although the steps leading to 
Eq. (42) from (40) are mathematically trivial, it is difficult to say, in 
general, when they are valid. In spite of this, a few general statements can 
be made. At short time or large u, compared to the hopping rate, only the 
first few terms in ( G )  and a are important. These are proportional to u-1, 
so that at very short times ajkWjk << 1/4 and so Eq. (42) should be valid for 
all densities. For intermediate and long times, ajkWj~ ~> 1, SO that the density 
must be small in order that (42) be valid. For very long times, if ajk does 
not remain finite (i.e., it is proportional to u-l) ,  and the expansion of (40) is 
valid, then Eq. (42) would predict that the diffusion constant would be 
zero. If ajk remains finite as t ~ ~ ,  then the diffusion constant will be 
nonzero and the expansion will be valid only for sufficiently small density. 
Finally, we note that the lattice and solution results differ in that, as 
pointed out above, the term (G) j  k in ajk is neglected in the solution case. 
From the above discussion, this implies that the long-time behavior of 
lattice and solution may be different. Finally, note that the ATA results 
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(Eq. (37)) are never diffusive in the long time limit [D(k--0 ,  u = 0 )=  01 
regardless of the density or range of interaction and give a percolation edge 
of 1 for all dimensions. 

In the next section, we present numerical calculations which illustrate 
some of the points mentioned above. 

5, NUMERICAL RESULTS 

In the following, we present numerical results for two very different 
models: (a) a two-dimensional solution with long-range interactions [the 
GAF result, Eq. (44)], and (b) two-dimensional lattice (either triangular or 
square) with nearest-neighbor interactions in the coherent medium approxi- 
mation. These show the limits of possible behavior. The calculations are for 
(G(t))oo which is related to the probability of being at the origin by 

@ ( t ) > o  = p < a ( t ) ) o 0 .  

The self-consistent coherent medium equations were solved numerically 
and the Laplace transform inverted numerically using an algorithm devel- 
oped by Stehfast. (]5) The solution results are the two-body approximation of 
GAF solved in two dimensions using the Forster rate (~6) 

' ( R ~  6 
w(go. ) = ; 

In order to compare to a lattice, the solution density p, was replaced by 
9L/a:, where OL is a dimensionless parameter, 0 < PL < l, and a is a lattice 
constant. When this is done 

solution - 

S 1 = J r  + (q3 + r2)1/2] 1/3, 

1 F - -  
2~7 ' 

u 

w o 

1 I s 1  + 3 
Wo 

S2 =[r-  (q3 + r2)1/2] 1/3 

 r(2/3) 
q -  41/335 0L 

w 0, the nearest-neighbor hopping rate, also scales the lattice Green's 
functions. All times in the following calculations are scaled by w 0, t = 
t w  o �9 

In Fig. 1, results are presented for (G(t))oo as a function of 1/t-for the 
coherent medium lattices and the two-body approximation to the solution 
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Fig, 1. Coherent medium and solution results for (G(l))oo as a function of inverse time and 
density. Here ~-~ = 1/ tw o where w o is a nearest-neighbor hopping rate. The dotted lines are 
two-dimensional, two-body solution results of GAF Eq, (45). Solid tines are coherent medium, 
nearest neighbor, triangular lattice. Dashed lines are coherent medium, nearest-neighbor 
square lattice. 
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Table I. Approximate Number of Hops After Which Long-Time Behavior 
Is Reached for Coherent Medium Nearest-Neighbor Triangular 

and Square Lattices 
i 

p t'(triangular) t~(square) 

0.1 10 
0.2 50 (G)0  o 
0.3 > 500 const 
0.4 > 200 
0.5 100 
0.6 100 
0.7 100 
0.8 50 (G>o 0 cc 1 
0.9 50 t 
1 25 

10 
20 <G>oo 
50 const 

100 

> 400 
100 
100 (G>0o ~ 1 
50 t 
25 

for various densities. For the smallest density p = 0.1, and at short times, 
both lattices and the solution give similar results. As time gets longer, 
however, the solution results go to zero and the lattice results go to a 
nonzero value, because, as noted above, on nearest-neighbor lattices, it is 
possible for the excitation to be trapped in small clusters. For example, if 
all of the excitation is trapped in n-body dusters, (G(t = oO)>oo would be 
1In. At p = 0.1, much of the excitation is trapped in one-body clusters 
since (G(t = oO)>o0 > 0.5. The solution results are always diffusive and 
(G(t = ~)>oo = 0 for all densities. At higher densities, the lattice results 
also go to zero at t = oo, indicating that all the excitation is in an infinite 
cluster. 

The coherent medium results show a very sharp transition into charac- 
teristic long-time behavior. For both lattices, below some critical density Pc, 
and after a certain number of hops, (G>0o becomes constant within the 
accuracy of the calculation (10-6). Above this density, {G>oo becomes 
proportional to 1 / t  and goes to zero (within the accuracy of the calcula- 
tion) at t = m. Table I shows the approximate number of hops needed to 
reach this long-time regime for various densities. 

If the intercept at t = ~ ,  (G(t --- ~)>o0 is plotted vs. density, a straight 
line results which intercepts the density axis as is shown in Fig. 2. The 
resulting critical densities (0.33 triangular, 0.5 square) are much closer to 
the exact bond percolation probabilities (0.347 triangular, 0.5 square) (13) 
than the exact site percolation probabilities (0.5 triangular, 0.59 square). (13) 
(Note that this is not always true in the coherent medium approximation 
since Odagaki and Lax have found the coherent medium percolation 
critical density, pc, for simple cubic lattices to be 0.33, while the exact Pc for 
bonds is 0.247 (13) and the exact Pc for sites 0.307. (13)) 
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Fig. 2. (G(t = ce))o0 for coherent medium, nearest neighbor triangular (solid line) and 
square (broken line) lattices. Exact critical site densities, Pc, for the lattices are 0.5 for the 
triangular lattice and 0.59 for the square lattice. 

The  slope of ( G ) 0  o at long times and  densities above  the percola t ion 
edge can be used to define a diffusion constant.  In  Fig. 3, the inverse of this 
slope is plot ted vs. density. ,  Again  a straight line which intercepts the 
density axis at Pc results. The  translat ionally invar iant  Green ' s  funct ions at  
long times are easy to obtain:  

Goo(O = 1, t --~ oo) = 1 (square lattice) 
4~rDt 

Goo(P = 1, t ~ ~ )  - ~1~ ( t r iangular  lattice) 
8~rDt 

where D is a diffusion constant.  W e  know that  for  the p = 1 case D 
= ZWo/4, where z is the n u m b e r  of nearest  neighbors,  and  by  taking the 
constants  into account ,  we find, using Fig. 3, that  the density dependen t  
diffusion constant  (for bo th  two-dimensional  lattices in the coherent  me- 
d ium approx imat ion)  is 

ZWo (p - p~) 
D ( p , t = o e ) -  4 ( 1 - p c )  
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Fig. 3, Plot of 1/slope of (G)o 0 vs 1/t'for long times for coherent medium nearest-neighbor 
triangular (solid line) and square (broken line) lattice. For t large, (G)oo cc l / t  for these 
lattices above the critical density. 

6.  C O N C L U S I O N  

We have derived a site-averaged coherent medium theory which is 
identical to the bond-averaged theories of previous workers, (8'9) and shown 
how these reduce in the low-density, short-time limit to the two-body 
solution results of GAF. Because of the flexibility in choosing S in Eqs. (21) 
or (38), many other coherent medium theories are possible�9 Some of these 
will describe the site-averaging problem more correctly, especially at long 
times. Note that there are several features of the exact solution which are 
incorrectly accounted for by the coherent medium theory presented here. 
For example, bond and site percolation probabilities should be different. 
There is no reason to believe that (G(t = m))00 should be exactly zero at 
the percolation edge because not all sites are in the infinite cluster until 
O = 1.(14) Numerical simulations show that the diffusion constant is not 
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linear above the percolation edge but is a ( O - p c )  ~ with ~ 1 . 1 - 1 . 3  for 
two-dimensional lattices. (17) Knowledge of the exact onset of long-time 
behavior is important because, in an experiment, the excitation may decay 
before it can make the necessary number of hops. We plan in the near 
future to publish results, using two-point Pad6 approximants, which will 
give exact numerical results for Eq. (6). 
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