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J .  Phys. A: Math. Gen. 20 (1987) 4355-4369. Printed in the UK 

Thermal averages of expressions involving exponentials of 
quadratic and linear boson operators 

K Kassner and R Silbey 
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 

Received 5 January 1987 

Abstract. We present a new technique to calculate ensemble averages of exponentials of 
quadratic boson operators, possibly multiplied by exponentials of linear boson operators. 
The method is based on the use of coherent states in the evaluation of matrix elements. 
Although this is a very simple basic idea, the technique enables the exact evaluation of 
several complicated averages from the theory of exciton transport. These averages, which 
could previously be given only approximately, are treated as examples to discuss the 
features of the method. 

1. Introduction 

The necessity to calculate thermal averages of exponential operators arises in theories 
describing systems whose coupling to a bath is partially taken into account through a 
unitary transformation of the Hamiltonian and the wavefunctions [ 1-71. Since a 
description of the system alone is derived, an appropriate average over the bath has 
to be chosen as the Hamiltonian of the unperturbed system. The small-polaron theory 
[8] is one example of the successful application of this concept. 

In the simple theories a thermal average of an exponential of linear phonon 
operators has to be taken. This average can be found in the standard references [9]. 
In more advanced theories [ 101 the unitary transformation employed contains exponen- 
tials of quadratic phonon operators in addition to the usual linear phonon operators 
characteristic of the small-polaron case. 

For exponential quadratic operators, not many averaging methods are available 
[ l l ] .  Of the three techniques given in [ l l ] ,  none is particularly well suited for the 
calculation of averages containing exponentials of quadratic and of linear phonon 
operators. In fact, the most versatile of the methods from [ l l ] ,  the matrix technique, 
is not applicable at all in this case. The coordinate-momentum representation technique 
leads to complicated exponentials of differential operators which are not readily 
evaluated in each case. Finally, the so-called operator disentangling technique, which 
we prefer to call the occupation number representation method, because our method 
also involves operator disentangling, often yields many sums over intermediate states, 
making the recognition of compact underlying structures virtually impossible. The 
method that we describe in this paper avoids these disadvantages and still gives results 
where the other techniques fail. 

0305-4470/87/ 134355 + 15$02.50 @ 1987 IOP Publishing Ltd 4355 
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2. The technique 

Our technique is a combination of operator disentangling, occupation number rep- 
resentation and, a new feature, the coherent state representation. In order to demon- 
strate it, we will calculate a simple example. Consider the unitary transformation 

U, = Q4, (1) 

0, = exp[2Gq(6,6-, -blbT,)] G, = G; (2) 

$, = exp[-c,(b, - bI , )  - c-,(b-, - b:)] (3) 
This transformation occurs as a factor of the total unitary transformation in theories 
in which the latter couples only phonons of opposite wavevectors. We assume a 
canonical ensemble (or a grand canonical one with vanishing chemical potential) 

c - ,  = c;. 

w q  = w - ,  
Z (4) 

where Z is the usual partition function. 
First, we wish to case U, in an ordered form. Whereas normal or antinormal 

ordering is not difficult for exponentials of linear phonon operators such as +,, it may 
become very tedious, if not unfeasible, for exponentials of quadratic phonon operators. 
A general method for canonical decomposition of these transformations, involving the 
exponentiation and inversion of potentially large matrices, has been given by Balian 
and BrCzin [12]. Canonical decomposition means factorisation in a pure creation, a 
diagonal and a pure destruction part, corresponding to partial (and enabling full) 
normal ordering. Applying their result (equations (39)-(42) of 11121) to the 
homogeneous transformation e,, we have to deal with 4 x 4 matrices only and obtain 

T =  Tr,,..,{exp[-d(b:b, + 6Tq6-,)] exp(e,b,b-,) exp( f,b,) exp(g,b-,) 

x exp(e2b:b:,) e x p ( f 2 b 3  exp(g&',)} (5b) 
with 

d = phw,  +In cosh 2G, e, = tanh 2G, 
( 5 c )  

e ,  = -exp( -2/3fiw,) tanh 2G, f, = -f2* = gT = -g, = - c q .  

In ( 5 6 )  we have shifted operators using the cyclic property of the trace which is now 
only over the +q and -q  states. Z,,-, is the partition function corresponding to these 
two wavevectors: Zq,-, = 1/[ 1 -exp( -/3fiw,)I2. We will concentrate on the quantity T. 
The trace is written with occupation number states and a pair of complete sets of 
coherent states [ 131 1 = 1 

is inserted between the destruction and creation operators: 
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In (7) we have made use of the fact that coherent states are the eigenstates of the 
destruction operators [ 131: 

bla) = ala). (8) 

The overlaps of the occupation number and coherent states are simple expressions [ 131 

which enable the immediate evaluation of the sums over occupation numbers 

1 e-dnl(n I a)12 = exp[(e-d - 1)1a1']. 
n 

Renaming cyq to a , ,  a-q to a 2 ,  we obtain 

d2a2  exp(e2aTaz) exp[(e-d - l)(aTal + crTa2)] exp(e,a ,a , )  

x exp(f2.3 exp( f , a , )  exp(g,a,*) exp(g1a2). 

(Yk = xk + iy, k = l , 2  (12) 

(11) 

Decomposition of the a into their real and imaginary parts 

obviously transforms the integral in a multiple Gaussian integral of the general form 

I = dZNx exp( -xTAx + x ' u )  (13) 1 
where xT = (x,,  y , ,  x2, y 2 ) ,  N = 2 and A and U are a matrix and a column vector 
determined by the coefficients d, e , ,  e,, etc. A superscript T denotes the transpose of 
a matrix or vector. 

Without restriction of generality, A can be chosen symmetric. Then the integral 
can be evaluated (under conditions ensuring its convergence): 

exp(auTA-' 0). 
N 1  

I = 7 l  
(det A)"' 

Of course, we do not want to perform the transformation from the variables a to x 
explicitly in each case we are encountering. Therefore, we derive a formula directly 
applicable to (1 1). This can be simply done by using the connection of x and a through 
a unitary transformation: 

From (1 5 ) ,  we have 

1 
x = - u a  Jz 

where U is the 2 N  x 2 N  matrix having N 2 x 2 blocks U k  on its diagonal and zero 
elements elsewhere. 

Using this relation we obtain 

X'AX = a i B a  (170) 
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D = $  

with 

B = iU+AU 

r o  f l  f i  gl g2 

fi ~ - e - ~  0 0 - e2 
f ,  0 l - e - d  -e ,  o 
g2 0 -e2 l - e - d  o 

- gl -el  0 0 1 - e-d 

where a+ = (a:, al, a:, a2), and a superscript +, of course, means the Hermitian 
conjugate of a matrix or vector. From (17b) it is evident that 

det A = det 2 8  (18)  
because U is unitary. The matrix B can now be obtained directly from ( 1  1 ) .  However, 
this expression does not determine B uniquely, since in the form a + B a  elements like 
aZa?(k# I )  or a:., (k, 1 arbitrary) appear twice. This ambiguity is resolved by 
recognising that the symmetry of A implies the condition 

( u B ) ~ =  a B  (19a) 
where U is the 2 N x 2 N matrix having the blocks 

on its diagonal. This condition means that the matrix uB, obtained from B by 
interchanging the odd with the even rows, has to be symmetric. Because of 

(20) XTU = x + u  = ( l / d ) a + U + u  3 a + z  

we can write the whole integral in terms of B: 

exp(azTaB-'z). N 1  I = l 7  
(dzt 2B)'l2 

(Note that U = U*a.) The vector z is uniquely determined from ( 1 1 ) .  Formula (21), 
however, is not yet simple enough. Since we do not want to calculate the full inverse 
of B just to get the quadratic form in the exponent, we use the identity 

where the second matrix on the right-hand side is obtained from M by adding one 
row and one column in the indicated way. Equation (22) is easily proved by expanding 
the numerator determinant with respect to the added row and column and using the 
well known explicit expression for the inverse of a matrix. Employing (22), we can 
cast our result in the form 

1 1 det 2D 
T =  (det 2B)'I2 exp( -2 det2B) 

where 
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where the 4 x 4 matrix obtained by crossing out the first row and column is 28, of course. 
The expressions in (23) are now easily evaluated, giving the final result 

1 
T =  

( ~ - e - ~ ) * - e , e ,  

We can therefore summarise the method as follows. The first step consists in operator 
disentangling, aiming at an expression containing one antinorrnalfy ordered group of 
operators and diagonal operators outside this group (see ( 5 b ) ) .  The second step is 
using occupation number states for the evaluation of the trace to convert the diagonal 
operators into numbers and inserting coherent states between the destruction and 
creation operators. The occupation number sums can always be performed for 
exponential operators and we are left with an integral expression that can always be 
transformed to a multiple Gaussian integral. In a third step the integral is reduced to 
a determinant expression. Often the reduction of these determinants to simple formulae 
will be the biggest problem of the calculation. 

As a first step we can equivalently arrange the operators in normal ordering and 
sandwich the diagonal operator between the creation or destruction operators. In this 
case, the second step will be to express the trace as an integral over coherent states 
and to insert a complete set of occupation number states next to the diagonal operator. 
In our simple case, one kind of expression can be obtained from the other through a 
simple application of the cyclic property of the trace. We will, however, look at a 
more complicated case later where one direction of ordering is to be preferred over 
the other. 

In calling our example simple, we are aware of the fact that by the transformation 

the trace in (5) can be broken down in two factor traces over single phonon branches. 
Each of these traces corresponds to an even simpler case than the one considered, 
since B and D are 2 x 2  and 3 x 3  matrices, respectively. However, the symmetry 
properties of B are more clearly visible in the slightly more complicated form and the 
calculational effort for the evaluation of the full problem (5) is less than for the 
factorisation plus evaluation of two factor traces. It may be noted that even these 
simple factor traces are not straightforwardly evaluated within either the occupation 
number or the coordinate-momentum representation techniques. With the latter, the 
calculation is feasible due to the special form of the operator 8, (2). To evaluate the 
factor traces of ( 5 6 )  with general coefficients, d, e, J g, however, seems a very difficult 
objective within this method, involving the evaluation of rather complicated differential 
operators. 

The occupation number technique leads to five nested sums, of which only two 
can be evaluated immediately. The remaining sums look tangled. Even verifying that 
they represent the simple analytical result, known through the other techniques, is an 
intricate matter. Obtaining the analytical formula from these sums in the first place 
seems to be beyond hope. 
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3. Examples 

We now apply our technique to the calculation of several averages of interest in the 
theory of exciton transport with quadratic phonon coupling [lo]. First, we wish to 
consider the quantity (e;e,,,), for n # m, where 

(27) 

What makes the calculation of this average difficult and has until now prevented us 
doing it exactly (except for the dimer case) is that 0, and 8, are operators in site 
representation, whereas the density matrix is diagonal in momentum representation: 

en = exp[-y(bi - bi2)]. 

The relations connecting the two representations are 

1 1 
b: =--I exp(iAn)b: (29) a ,  b, = - exp( -iAn) b, 

J X A  

and the corresponding inversion formulae ( N  is the number of phonon modes, n is 
a lattice vector, A a wavevector). We proceed with the first step of our method, operator 
disentangling: 

=cosh 2y exp[t tanh 2y(b', - b i ) ]  exp[ln cosh 2y(bib, + bib,,,)] 

x exp[ -4 tanh 2y( b:2 - bi2)]. (30) 
This is antinormally ordered except for the diagonal middle part. In contrast to our 
simple introductory example, it is not useful now to commute the diagonal part past 
one of the enclosing operators to join it with the density operator, since the latter is 
diagonal in a different representation. However, we can achieve full antinormal 
ordering using the formula [ 131 

1 
exp(-ab'b) =e"  x ~ ( 1  -e')"b"b+". (31) , n .  

Transforming to momentum representation and proceeding to step two, we obtain 

xexp( -=fY 1 z,{exp[i(A +A')n]-exp[i(A +A')m])a);a);< 
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where 

d ,  = 1 - l /cosh 2 7  ty = tanh 2 y (326) 

and I{n,}) and I{aA}) indicate the product states over all N single phonon occupation 
number and coherent states, respectively. 

As in the simple example the sums over occupation numbers can be done immedi- 
ately, resulting in 

--t, {exp[i(A +A’)n]-exp[i(A +A’)m]}a);la:, 
2 N  A A ’  

xexp[ E,( -e,S,,,+-{exp[i(A dY -A‘)n]+exp[i(A -A’)m]} 
N 

A A ’  

with 

1 
e, = 1 - exp( - p h w A )  = - 

n, + 1 

nA now being the thermal occupation number of mode A .  
From this expression we can immediately deduce the matrix B which can be written 

where the B A A ,  are the 2 x 2 matrices given by 

bS,, ,+,-i{exp[i(A d, -A’)n]+exp[i(A - A ’ ) m ] }  

B A A , = :  . 1 - i  t,{exp[ -i(A + A ’ ) n ]  - exp[ -i( A + A‘)m]}  

. (34b) 

1 
-t,{exp[i(A + A ’ ) n ]  -exp[i(A + A’)m]} 
N 

eh8hh’ --{exp[-i(A - A’)n]  + exp[-i( A - A ‘ )  m]} d, 
N 

Our result is, of course, 

1 1  1 
Z cosh 2 y  det 2B 

($;e,)=- - - (35) 

so that we are left with the problem of evaluating the 2 N  x 2 N  determinant det(2B). 
This turns out to be not such an impossible task as might be suspected at first sight. 
The regular structure of the determinant allows its reduction by elementary operations 
to a 4 x 4  determinant, which is given in the appendix. For those readers who are 
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interested in redoing the calculation we give a brief description of the procedure. 
Multiply the first row of the determinant by exp(-iA,n), the second by exp(iA,n), the 
third by exp(-iA2n), the fourth by exp(iA,n), etc, the first column by exp(iA,n), the 
second by exp(-iA, n),etc, to obtain a structure displaying the dependence of the result 
on n - m only. Then subtract the first column from all other odd ones, the second 
from all other even ones. Apply a similar multiplication scheme with the factors 
exp[iA,(n - m)],exp[-iA,(n - m)], exp[iA,(n - m)], exp[-iA,(n - m)], . . . , t o  the rows 
and with their complex conjugates to the columns. Subtracting the third row now 
from all odd ones and the fourth from all even ones results in a determinant with a 
diagonal subblock in the rows and columns 5 to 2N. By subtracting appropriate 
multiples of these rows from rows 1 to 4, one obtains a factorisable problem yielding 
a non-trivial 4 x 4 determinant and a trivial (2 N - 4) x ( 2  N - 4) one. 

We end up with a simple formula 

det (ZB)=[1+2d, (~~-s , -s : ) ]~n e: 
A 

with 

1 
N A  

r = n - m  s k = - C ( n A + 1 ) e i A k  k any lattice vector. (36b) 

In writing down (36) we have assumed that s, = s - ~ ,  i.e. n, = n-A.  It is no problem to 
obtain the result for the more general case which, however, does not seem to have 
physical applications. 

When we insert (36) into (35), the square root of the product over A cancels with 
the partition function and we obtain 

(B:Bm)={1+2sinh2 y[1 t 2(si-so-s:)]}-’. (37) 
We compare this result with two limiting cases from the literature. In the dimer case, 
N = 2 ,  and 

-1 Sg = f (  n+ + n-) + 1 1 - An+ - n-) 
so that we recover the exact result of Silbey and Munn [lo]: 

(B:B,)={1+2 sinh2 y[n,n-+(n++ l)(n-+l)]}-’.  

Furthermore, if we write out the factor of 2 sinh’ y in (37), we obtain 

1 
1 + 2( si - so - S Z , - m )  =-2 [ n h n h ’  + (n,+ + 1)( n ~ , $ -  I)][ 1 - cos( h + A ’)( n - m ) ]  N A A ’  

= -i( C*)  

where 

C = bZ, - bT2- bZ,+ bL2 

(see [lo]). I t  is then obvious that our result 

( O ; O m ) = ( l  -fsinh2 y(C*))-’ 

( e ; & + , ) =  (1 - Y ~ ( C ~ ) + ~ Y ~ ( C ~ ) ~ ) - ~ ’ ~  

agrees to second order in y with the approximate expression 

derived by Munn and Silbey. 



Quadratic and linear boson operators 4363 

To conclude the discussion of this average we remark that we might possibly have 
derived this result with the matrix method of [ 111, which also involves the calculation 
of determinants, provided that the determinants which occur are as tractable as the one 
considered here. 

Our next example, however, can in no way be treated with that method. I t  is 
obvious that, having calculated (eie,), we can also obtain an exact formula for 
( O : $ : $ m O m ) ,  n f m, where 

1 
$n = exp( c exP(-ihn)Q, (b ,  - b+,) ) Q A = Q z , .  (43) 

The reason is that once we know how to reduce det 2 8  to a 4 x 4  determinant, we can 
apply the same method to reduce det 2D to a 5 x 5 determinant regardless of what the 
additional row and column in D look like. We just give a few steps of the calculation 
and the result. The ordered form of the average is 

1 1  
( e , $ ; $ m e m ) = - j  ~ ~ P ~ - ~ q o - q , ~ * ~ ~ + ~ , ~ + P O - P , l  

x T r  [ exp ( -- A; {Q,[exp(- ihn)-exp(- ihm)l  

) - ( 4 0  - 9,) exp(-ih ) } bA 

xexp -t, { e x p [ - i ( A + h ' ) n ] - e x p [ - i ( A  +~')m]}b,b, ,  
(;N A A '  

where 

1 1 
q k  = QA exp(iAk) P k = x c  l Q ~ l *  exP(ihk) 

A A 

1 
c k  = e, exp(iAk) k lattice vector (44b) 

A 

and e, is given in (336). In equation (44), we have assumed q k  = q - k ,  pk = p - k  and 
i?k = Again, it is not difficult to write down the more general case, but since the 
theory in need of these averages was developed for Bravais lattices only, inversion 
symmetry holds and therefore Q, = Q--A. 
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To arrive at (44) we had to remove the linear exponentials from their position 
between 0: and 8, to be able to use formulae (30) and (31) for the ordering of e:e,,,. 
This operation is best done in site representation with special consideration of the b y ’  
and b‘,+’ terms which we commuted with 0, and e:, respectively, whereas for all other 
sites the b terms are commuted in front of 0; and the b+ terms behind 6,. Then the 
cyclic property of the trace is used to obtain the b, and b, terms in the right order 
which also involves commutation with the density operator. 

From (44), proceeding further is straightforward. Since all information about the 
occurring integrals can be inferred from the matrix D, we can restrict ourselves to 
giving this quantity. D is the matrix with the structure indicated in (236), with B given 
in (34) and 

(456) 1. 1 
-j$Q-A[exp(iAn) -exp(iAm)l+ (qo-  exp(iAm)} 

--{QA[exp(-ihn) -exp(-iAm)] - ( q o -  q,)eA exp(-ihn)} m 
z A = [  

The 5 x 5  determinant, obtained from breaking down the determinant of 2D in the 
same manner as that of 2 8  before, is again given in the appendix. 

Evaluating this determinant gives the final result 

1 
1+2sinh2 y[1+2(si-so-sf)]  exp[ -( PA - P: + P o  - P r ) l  

where 

1 1 P L  = C IQA 12nh exp(iAk) p k  =N C I Q A I ’ ( ~ A  exP(iAk) ‘P’k + P k  
A A 

(46b) 
1 1 

q;=xc Q A n A  e x ~ ( i ~ k )  q k  Q A ( n A  + l )  exp(iAk) = q i  + q k *  

It is difficult to find reasonable special cases of this in the literature, against which it 
can be checked. Of course, setting y = O  reproduces the correct result for (+;+*). 
Also, the case N = 2 with w+ = U -  can be checked with the help of our introductory 
example. 

To demonstrate another useful feature of our method we consider one final example, 
namely the correlation function 

(e;,( t )  em,(  t)0:0,,,) = - Tr( eT,e,. exp[ -(i/ h )Ht]  e i e ,  exp{[ --p + (i/ h)t]H}).  
1 
Z (47) 
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Since here the site representation operators occur in two groups separated by two 
groups of momentum representation diagonal operators, it would be very tedious, if 
not impossible, to order the whole expression. It turns out, however, that our method 
also works with partial ordering, if we use not just one complete set of many-particle 
states in the occupation number and coherent state representations but as many as 
necessary, in this case two sets of each. 

First, we employ (30) and (31) to antinormally order e;.e,. and e:@,. It is the 
present case, where a judicious choice has to be made whether antinormal or normal 
ordering is taken, since now it is no longer possible to switch from one ordering to 
the other by using the cyclic property of the trace. Because normal ordering would 
require moving the momentum representation operators between the creation and 
destruction parts of the site representation operators, antinormal ordering is clearly 
preferable. 

Having ordered O z d , ,  and e:e,, we transform to momentum representation and 
insert complete sets of the appropriate states in the appropriate places. This results in 

x {m,} exp -t, 1 {exp[-i(A +h’)n’]-exp[-i(A+A’)m’]}cu,cy,, ( I ( i N  A,,’ 

Herein, the m, and n, are occupation numbers, whereas CY, and PA are eigenvalues 
of b, in the coherent states ICY,) and IPA) ,  respectively. Even in (48) the sums over 
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occupation numbers can be performed. Instead of ( l o ) ,  we use 

= exp[ -t( a*a + p * p ) ]  exp( a * p e - d ) .  (49) 

It is then obvious that the integrand again takes the form exp{-cY+Ba}, where now B 
is a 4 N  x 4 N  matrix and 

cYf=(a;j, ,aA,,a;j,,aA,,...,aA.,P:,,Ph,,P:2,’..’Ph4.) ( 5 0 )  

is a 4 N  vector. 
The matrix B is composed of four 2 N  x 2 N  blocks: 

with 

{exp[ i( A - A’)n‘] + exp[i( A - A’) m’]} 

--{exp[ -i( A + A’)n’] - exp[ -i( A +A’ )” ]}  

( 5 1 b )  
Ir { exp [ i ( A + A ’) n ’1 - ex p[ i ( A + A ’) m ’I} 
N 

d 
SA,, - ‘{exp[ -i( A - A ’)n’] + exp[ -i( A - A’)  m’]} N 

and Bff.  the same matrix with n’, rn‘ replaced by n and m, respectively. The two 
remaining blocks are given by 

where 

fA =exp[(it-Ph)wAI g,, =exp(-itw,). ( 5 1 d )  

Using the same procedure as in the first example of this section we can reduce the 
4 N  x 4 N  determinant of 2 8  to an 8 x 8 determinant. This calculation, though trivial, 
is very tedious. To make it feasible in a reasonable amount of time, we used the symbol 
manipulation program s M P t .  It turns out that the resulting 8 x 8  determinant can 
immediately be simplified to a 4 x 4 one. This determinant is also given in the appendix. 
For the general case, it is probably the most compact form of the result, since its 
expanded form is a lengthy expression. Therefore, this formula shall not be reproduced 

t The program was developed by Stephen Wolfram. Copyright 0 1983, Inference Corporation. 
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here and we consider the special cases n’ = m, m’ = n and n ’  = n, m’ = m only, leading 
to much simpler formulae. These are given by 

(e ;  ( t ) en ( t ) e; e,) = T- 

(0; ( t )  8, ( t )  e: e,,,) = T+ 

where 

T,  = (1 + 4  sinh’ y cosh’ y[1+2(si-  so- ss) 7 ( f , ” - f f+  g i - g ? ) ]  

+ sinh4 y {  -1 + 16[(s0 - f - s,)’ - ( fo - f , ) ( g o  - g r ) ]  

x [(so - i + s r  )’ - ( f o  +L I (8, + gr ) I>)  - ’ 
with 

fk = X ;  n, exp(iw,t) exp(iAk) 
1 1 

gk =XI (n, + 1) exp(-iw,t) exp(iAk). 
A 

fk  and gk are the Fourier transforms of fA / eh and g, / e,, respectively. r, so and s, are 
defined as in (36b). 

Although slightly more complicated, the explicit version of this expression seems 
somewhat more transparent: 

1 
1+4sinh2 ycosh’ y i  (n,n,,{l+ exp[i(w,+w,,)t]} N A A ’  

+ ( n A + l ) ( n A , + l ) { l F  exp[-i(w, + ~ , ~ ) t ] ) ) [ l - c o s ( A + A ’ ) r ]  

+sinh4y[ - l + (  l - ~ ~ , n , ( n , ~ + l ) { l - e x p [ i ( w , - w A , ) t ] }  4 

1 x [ 1 -cos A r  -cos A ‘ r  + cos(A + A ’ ) r ]  

)I}-’ x[ l+cosAr+cosA’r+cos (A+A’ ) r ]  (53) 

Specialising once again to the case N = 2, we see that the summands in the sinh4 y 
term vanish for A = A ’  because of the time factor and for A # A ’  because of the space 
factor (containing cos Ar ,  etc). This eliminates the whole sinh4 y term and we are left 
with 

T,  = [ 1 +sinh2 2y(n+n-{l T exp[i(w++ w-)t])+ ( n + +  l ) (n-+  1) 

x { l  T exp[-i(w++w-)t]))]-’. (54) 

As expected, T- coincides with the Mum-Silbey result for a dimer [ 101. Furthermore 
T+ at t = 0 gives the average of 0:e,,, with y replaced by 2y, as it should. 

However, since the terms containing frequency differences (rather than sums) cancel 
exactly for N = 2, the procedure devised by Silbey and Munn [lo] to obtain an 
approximation for N > 2 by generalising the N = 2 result fails to account for these 
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terms. They are of order y4 and higher as our exact result shows. Therefore, only the 
y 2  terms are correctly reproduced by the procedure in [lo]. 

4. Conclusions 

The method introduced here provides a relatively easy route to the evaluation of 
thermal averages of exponential quadratic phonon operators. In particular, we have 
been able to evaluate a number of averages which Munn and Silbey [lo] introduced 
and were unable to evaluate in their work on quadratic electron-phonon interactions. 
Thus, this method is a powerful approach to these averages and is a useful addition 
to the list of techniques for evaluating these [ll].  
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Appendix 

First, we give the result of the reduction of det2D to a 5 x 5  determinant in the 
calculation of @:+:+,e,): 

-2d,s, ‘ySO 1 - d,so 

The determinant of 2 8  for this problem and for the calculation of (f9,eL) is obtained 
by crossing out the first row and column (and keeping the prefactors). The quantities 
appearing in this determinant are explained in (36b), (446) and (46b). 

element of this determinant leads to a partial 
cancellation of the exponential prefactor in (44a), making the result independent of 
2,. This is reasonable as it preserves the symmetric occurrence of n, and n, + 1 in the 
final formula. (Notice that s, = (1/ N) Z, (n, 1- 1) eihr = (1/ N )  Z, n, eihr for r f 0.) 

It may be mentioned that the 

The general result of our third example is given by 

1 1 
Z cosh22y (det 2B)’’2 

(e;,( ?)e,,( t)e;e,) = 



Quadratic and linear boson operators 

with 

det 2B = ~ d ? ) ~ (  e:) 

X 
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where &, = so- f ,  r ' =  n ' -  m', r = n - m, p = n ' -  n, p' = m'-  m, and the other quantities 
are explained in (366) and ( 5 2 d ) .  
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