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Triplet exciton dynamics: Exciton phonon scattering at low 
temperaturea) 

Bret Jackson and R. Silbey 

Department of Chemistry and Center for Materials Science and Engineering. Massachusetts Institute of 
Technology. Cambridge. Massachusetts 02139 
(Received 7 April 1982; accepted 3 June 1982) 

In this paper. we calculate the k-k' scattering rates of excitons by acoustic phonons. We consider two­
phonon processes only. having considered one-phonon processes in an earlier paper. We treat one-phonon 
events and a single two-phonon event in both pure and impure crystals. We apply these results to the recent 
experimental work on tetrachlorobenzene and discuss the dependence of the rates on energy mismatch. 

I. INTRODUCTION 

In the last few years, it has been possible to observe 
experimentally the effect of phonon scattering on the 
transfer of resonance excitation energy from one mole­
cule to another. In a series of beautiful experiments, 
the Leiden group has observed the decay of electron 
spin-echo signals in the triplet states of dimers of 
naphthalene1•2 and in the triplet states of linear stacks 
of tetrachlorobenzene (TCB) molecules. 3- 5 In the last 
set of experiments, they observed the populations of the 
exciton states (with wave vector k) as a function of time 
after a laser flash which populated the k= 0 state (the 
top of the exciton band in TCB). The populations nk of 
the various k states obey the master equation 

(1.1) 

The jump rates Wkk , were found from the experimental 
data to be simple functions of temperature from the 
lowest temperature up to T - 2 K5: 

(1. 2) 

and this is successfully explained by an impurity induced 
one-phonon scattering mechanism. The exciton is scat­
tered from k to k' with a single phonon absorption or 
emission, but the k selection rule on the phonon is not 
obeyed due to the presence of impurities. 

Above 2 K, the rate at which excitons are scattered out 
of k=Oincreasesmuchfasterwith TthangivenbyEq. (2). 
Another phonon scattering mechanism must therefore be­
come important at this temperature. A strong possibility 
are two phonon processes which we explore theoretically 
in this paper. There are a variety of such processes which 
have been discussed before prinCipally for the spin relax­
ation of impurity ions in crystals6- S but also for exciton 
scattering. 9 These processes can be broken down into two­
phonon absorption, two-phonon emission, and a com­
bined absorption and emiSSion process. We will see 
that the latter is most important for our study and we 
concentrate on that. This process can be further broken 
down into nonresonant Raman processes and resonant 
Raman processes. Furthermore, two-phonon pro­
cesses can occur by two one-phonon events (i. e. , 

alSupported by NSF (CHE81-00407). 

second order perturbation theory of a linear phonon 
coupling) or a single two-phonon event (first order 
perturbation theory of a quadratiC phonon coupling). 
All of these will be discussed fully in this paper which 
is laid out in the following way: in Sec. II, we discuss 
the quadratiC coupling perturbation for both the pure 
systems (i. e., k conservation preserved) and the im­
purity induced case; in Sec. III, we discuss linear 
phonon coupling taken to second order, including the off 
resonance case and the resonant case; in Sec. IV, we 
calculate Wkk , as a function of temperature and Ek - Ekr 

and discuss the experimental implications of these de­
pendences. 

Two final comments are in order. First, this dis­
cussion shows the close connection between the exciton­
phonon scattering theory we treat and the theory recently 
presented for resonant and nonresonant fluorescence. 10 

Second, the present theory should be applicable to the 
recent experiments by Zewail and his co-workers on the 
excitons in dibromonaphthalene (DBN). 11 In DBN, the 
exciton band is much broader than in TCB so that im­
purity induced two-phonon absorption and emiSSion 
should be more important than in TCB. In addition, the 
presence of another exciton band close in energy to the 
lowest, as well as the low lying librational mode should 
also be important in the scattering processes. The 
methods of this paper will allow a theoretical discussion 
of the results in DBN also. 

II. QUADRATIC COUPLING TO FIRST ORDER 

A. Pure crystals 

The zeroth order Hamiltonian describing the excita­
tions in our TCB system can be written 

(2.1) 

where E:k = 2J cos k, with J being the exchange interac­
tion between nearest neighbors. The operators a~ and 
ak (b~ and bJ create and destroy excitons (phonons) of 
quasimomentum k(~), respectively. A local linear cou­
pling between the excitons and the bath, taken to first 
order, gives a negligible contribution to the scattering 
rate Wk , k' because the steepness of the phonon dis­
persion curve prevents the conservation of both energy 
and momentum for the event. We can write the next 
term, the quadratic coupling, as9 
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2764 B. Jackson and R. Silbey: Triplet exciton dynamics 

v = N
1 L: 1/(A, x) a~. all(b~ + b:,)(b).' + b:).') 

k, Il' 
A, X, 

X5(k' -k-A-A/) , (2.2) 

where N = NxNyN" is the number of sites in the crystal. 

where n). = [exp(j3w). -1]-\ and the brackets in Eq. (2.3) 
denote an average over the bath variables. 

The first two terms above describe the simultaneous 
emission and absorption of two phonons, respectively. 
For these processes w~ + w).' can at most equal the exci­
ton bandwidth. For TCB, 4J= 1. 36 cm-t, and such 
events utilize only a small portion of the available phonon 
spectrum. Also, the phonon density of states and the 
coupling are very small in this region. We therefore 
ignore these processes and combine the last two terms, 
which can utilize any available phonons provided .:l.w 

= - .:l.E II • 

We should also note that for the TCB system, the 
exciton band is flat in two dimensions (x and y). This 
quasi-one dimensionality is due to the coupling J being 
larger between adjacent sites on a chain than between 
sites on different chains. Therefore, Ek = Ell" = 2J cos k" 
and the quantity we are actually measuring in these ex­
periments is 

(2.5a) 

which essentially eliminates the momentum restrictions 
in the x and y directions. In addition, the impurities in 
the stack along the z direction will cut this stack into a 
number of noninteracting segments. Because of this, 
the populations measured in the experiment will be 
those of a number of segments. To take this into ac­
count, we will coarse-grain the master equation for the 
system by summing the rates for the pure system over 
a small range (a) of final k's. Thus, 

(2.5b) 

Let us assume that the average segment length is Nez 
in units of the lattice spacing, then the number of im­
purities per chain in the z direction is approximately 
N./Nexo This is also equal to the average number of 
pure k states in the small range around a k state of a 
segment. As an approximation, we will then take 

(2.5c) 

Due to the very low temperatures involved in these ex­
periments, we consider interactions with the acoustic 
modes only. 1) is a deformation potential coupling, 12 

where rhA, X') = 1)2w~tt.,~. 

The scattering rate to lowest order in V can be written 

(2.4) 

To change the sums in Eq. (2.4) to integrals, we intro­
duce the phonon denSity of states p(tt.). We need to cal­
culate the density of states of the absorbed (tt.) and 
emitted (w') phonons, under the momentum conservation 
restriction, i. e. , 

p(w)p(tt.") 5(k,,+A.-k:-A:) 

= ~Nl L: 5(tt., - <.<.',) 5(<.<." - w~ 5(k.+ X. - k: - A~) 
).t~ 

For an acoustic phonon 

, = [C2 X2 +C2 X2]1I2 U:). 11. ~ , 

(2.6) 

(2.7) 

where X2 = A; + A~. The phonons which are important 
here (in the range 2K - 10 K) are well within the Debye 
part of the spectrum. Eq. (2.7) is reasonably valid in 
this region, which extends out to about 50 cm-1 in most 
molecular crystals. 

Using Eq. (2.7) to calculate Eq. (2.6), we arrive at 
I 

p(w)p(tt.")5(k" + x. - k~ - X~) = (21T)s~" C! (A: - A~) . (2.8) 

This calculation sets the upper and lower bounds on A" 
by requiring 

clIl A" - .:l.k.1 < w', CIII x.1 < w • 

This not only defines the limits on A", 

a W 
X.= -C ' 

11 

I 

& I I w A.= .:l.k,,--C ' 
11 

but also sets a lower bounds on the usable phonons, 
i. e., 

w+ w' ~ CIII.:l.k.1 

or 

(2.9) 

where D is always positive due to the steepness of the 
phonon line (CI1 >2J) and .:l.E=E~-ER. 

We now have 

_ 92 (OlD iGTD 
W If._ II• - 1T2N C4 )~ dwdw' w2(tt.,')2n(w)[n(w') + 1] 

ex.l D D 

X [w+w' -1.:l.k.l] 5(w-w' -.:l.E) . (2.10) 
CII 

For .:l.E <0, 

J. Chern. Phys., Vol. 77, No.6, 15 September 1982 

Downloaded 21 Oct 2012 to 18.111.99.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



B. Jackson and R. Silbey: Triplet exciton dynamics 2765 

(2. 11) 

We set the Debye frequency WD equal to 00, which is valid 
at these low temperatures, and we find that 

27]2 [ ( 6 W~ .k. = 2C4C N exp(-D/kT) 120 kT) 
• 1f J.llex 

+(96D+ 481 AE: l)(kT)5+ [36D2 +36DI AE:I +61 AE: 12) 

X(kT)4 + (8D3 + 12D21 AE: 1 + 4D 1 AE: 1 2)(kT) 3 

+(D4+2D3IAE:1 +D2IAE:12)(kT)2]. (2.12) 

For AE: >0, we get the same result preceded by the': 
Boltzmann factor exp[- (I AE: l/kT). These rates are 
influenced by the factor exp(-D/kT), which favors a 
higher temperature and should weight the scattering 
considerably toward a smaller I Ak I . 

B. Impurity induced transitions 

We will now compute the impurity induced scattering 
rate, quadratic in the phonon interaction, but momen· 
tum nonconserving due to the loss of periodicity near an 
impurity. Our methods parallel those of Ref. 4, where 
a linear coupling was considered. 

Consider a site n, in a segment of TCB molecules 
Nez sites long. An impurity in a neighboring stack, 
which is adjacent to site n, will bring about a displace. 
ment in its equilibrium position (Qn) and a change in its 
site energy E, giving rise to a perturbation 

V = (a2E/ aQ!)o Q~ a~ an • 

V= / '" L a;.a/f Q~QA'(a2E/aQ~)0 exp[i(k-k' +i\+i\')n] • 
eX"" k./f 

(2. 13) 
Again using the deformation potential approximation 

for the coupling 

(a2 E/aQ2)0 exp[i(i\ + A')n] = YWA W{, (2. 14) 

we arrive at the following: 

W". k = L W."-'t/ "-'AW>t [ .. dt (Q.(t)(I.(t) QAQA' ) 
At A.. 0 

•• t/ 

xexp[i(E:k - E:/f )t] 

81fy 2 '" 
= N~N L.J w.wq' (n., + 1) n.Ii(E:k - E:/f + "-'. - "-'t/) , 

ex Q ttl 
(2. 15) 

where we have again omitted the terms corresponding 
to absorption and emission of two phonons. We convert 
the sums to integrals, calculating the denSity of states 
from Eq. (2.7), 

1 '" ,,-,2 
p(w) = -N L.J Ii(w - wJ = 2 2C2 C 

A 1f .L 11 

to obtain (for AE:k < 0) , 

2 

W/f.k= 3c4~2 2 [1452(kT)7+732(kT)6IAE:1 
1f .L uN ex 

+ 150(kT)51 AE: 12 + 12(kT)41 AE: 13] 

(2. 16) 

(2.17) 

having again set WD = 00 in the final integration. The 
AE: > 0 rate is the same, multiplied by exp( - I AE: I /kT). 
Equations (2.12) and (2.17) both have the high tempera­
ture dependence which shows up in the TCB experi­
ments above 2 K. We will compare these terms in Sec. 
IV. 

III. LINEAR COUPLING TO SECOND ORDER 

In this section we take both the pure linear phonon 
coupling, and the impurity induced linear coupling to 
second order in perturbation theory. Since we are 
linking two first order processes via some intermediate 
state, we can have both resonant and nonresonant scat­
tering, corresponding to the transitions to and from the 
intermediate being energy conserving and nonconserving, 
respectively. 

Consider the process where an exciton of wave vector 
k absorbs a phonon "-', scattering to some state A. It 
then emits Wi, scattering to k'. One proper way to con­
nect these two events13 is through the propagator 

(k' , Wi 1 U<2)lk, w) 

I ft 

= L (dt1 f dt2 exp[i(E:/f + ,,-,')(t - t1)] ~ Jo 0 

xV .. ~ exp[ - iE:~(t1 - t2)] Vu exp[- i(E: k + w)t2] , 

which gives the usual second order transition rate 

Toyozawa10 has taken a denSity matrix approach, re­
taining only the terms pal3 corresponding to the three 
states involved. Solving for the rate of population 
change in the final state (as t- 00) provides the same 
result [Eq. (3.1)], which contains both the resonant and 
nonresonant contributions. 

A. Resonant case 

In the resonant case (E:~ = E:k + w), to avoid the diver­
gence in the denominator of Eq. (3.1), we must recog­
nize the finite lifetime or width of the state A by intro­
ducing the term iyJ2, where YA is the scattering rate 
out of the intermediate. Toyozawa's derivation intro­
duces h naturally if one includes terms higher than 
second order in V. 10 

One can also take a semiclaSSical approach, similar to 
the denSity matrix derivation, by using a master equa­
tion, as Scott and Jeffries have done. 14 We can write 
expressions for the populations of the initial, inter­
mediate, and final states (Nk , Nu Nit) as follows: 

(3.2) 

where the WO,s are first order tranSition rates. This 
approach is semiclaSSical in that it treats the various ab­
sorption and emission processes as separate uncor­
related events. Therefore, this method can only give the 
resonance contribution, where energy is conserved in 
going to and from i\. Since we do not properly connect 
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the two events in terms of the time spent in the inter­
mediate, we lose the quantum mechanical effect of being 
able to make off-resonance transitions due to the un­
certainty in E:~. 

The long ti.me or steady state assumption on the in­
termediate (N~ = 0) allows us to solve the above for Nil, 

Nk=Nk(Wi:k+ Wi~~~1~~) 

-N ... (w.o + w. 0 _ W~~ Wi~r) 
• k-II ~- /I 2h ' (3.3) 

where 2h = ~~~ + wi!~ is the inverse scattering lifetime 
of the intermediate. We see that in addition to the first 
order rate from k to k', we get a second order rate via 
X, which is equivalent to the resonant solution of Eq. 
(3.1). 

If we were to start with a full Paul Master Equation 
in terms of these first order rates WI), 

i\(t) = L PII (t)w}.~~ -Pk(t) L wi~k , (3.4) 
II 11 

where the k's cover all values in the exciton band, 
and somehow solve it numerically, we will have included 
all nth order on-resonanCe transitions via all possible 
intermediates. This is exactly what van Strien et al. 4 

have done in analyzing their experiments. 

For the momentum conserving one-phonon perturba­
tion taken to second order, we have no resonance con­
tribution due to an inability to conserve energy and 
momentum (w< 1) = 0). 

The resonant second order impurity assisted contribu­
tion does not have the high temperature dependence of 
the quadratic perturbations as can be seen from Eq. 
(3.3), using the first order impurity induced rates 
calculated in Ref. 4, 

(1) X2 
Wb-.=N2 2 2 IAE:.bI3n(.~E:), for AE:>O, (3.5) 

u 7TCJ. C I1 

Also, since the intermediates lie within the exciton band 
wand v./ are always less than 1. 36 cm-1 (for TCB), ' 
limiting them to a part of the phonon band with weak 
coupling and low density of states. These terms are 
therefore insignificant when compared with the quadratic 
cases, which accesS all or most of the available phonon 
spectrum. 

B. Off-resonant case 

The off-resonance case is similar to the quadratic 
coupling case to first order, "except that: (1) the pro­
cess is not Simultaneous, and we must distinguish be­
tween absorbing w first or emitting v./ first. (2) the 
contribution from each pair of v/ s is weighted by how 
far the initial process is off-resonance to the inter­
mediate. Therefore, one would expect that these pro­
cesses contribute little to WII._ k • when compared with 
the quadratic rates. Also, the impurity induced 
resonant rates are down by another factor of IINu than 
the quadratic impurity rates, because they are a higher 
order process. 

SolVing Eq. (3.1) for the usual linear phonon per-

turbation (with deformation potential coupling), 

V= ~ L a~akg ..rw;(b~+b_J 6(k+X-k') 
k,1f ,A 

(3.6) 

gives, for absorption of w, followed by emiSSion of w' , 

WII._ k• = 87Ti1N2 

xL w~w~· n~(n)t + 1) () (k. - X~ - k~) 6("" - w' - AE:) 
A.)t [2JcoS(k.+X.)-2JcOSk.-",,)2 . 

(3.7) 
This can be simplified by realizing that the major 
contribution to the sum is from the region w > 2kT > 2J. 
Therefore, we set (AE: - w)2 = w2• Proceeding exactly 
as before, we have for AE: < 0, 

2g 4 exp{ -D/kT) 
WII._ k.= 2N C'C [6(kT)'+(4D+4IAE:IHkT)3 

7T exJ. 11 

+ (D2 + 2D I AE: I + I AE: 12)(kT)2 • (3.8) 

For AE: > 0, w' being emitted first, 

_ 2i 
WII._ k.- 7T2N C4C exp(-DlkT) [6(kT)' 

ex J. 11 

+ 4D{kT)3+ D2(kT)2] • (3.9) 

The reverse of these processes, where AE: >0, are the 
same except for the Boltzmann factor exp( - I AE: I/kT). 

For the impurity induced rates, we use a perturba­
tion similar to Eq. (2. 13), which is discussed else­
where.' That is, 

1 1" 
V=N 'N ~ Xa~allwqQqexp[i(k-k')n]. 

ex Y.1V k,1I ,q 

(3.10) 
For AE: < 0, with absorption of w first, the same 

methodology as before leads to 

2X4 
WII _k = ~ C4 C2 3 [25(kT)5 + 19 1 AE: I (kT)' 

ex J. 111r 

+ 71 AE: 12(kT)3 + 21 AE: 13(kT)2] , 

and for AE: < 0, with w' being emitted first, 

WII _k = N3 cf~; 3 [25(kT)5+6IAE:I(kT)4]. 
ox J. 111r 

(3. 11) 

(3.12) 

As before, the reverse rates differ only by the Boltz­
mann factor. 

IV. CONCLUSIONS 

As mentioned earlier, the off-resonance rates of 
Sec. III are Similar in form to the quadratiC first order 
equations, but are much smaller in magnitude because 
of the weighting. They become even less significant 
as the temperature increases, due to a lower order 
temperature dependence. The resonant second order 
impurity induced case has already been included in 
the master equation calculation of van Strien et al. and 
is also small in magnitude and temperature depen­
dence. Therefore, the scattering in these experiments 
(above 2 K) is probably described by the quadratic rates. 
To compare Eqs. (2.12) and (2.17), we must generalize 
the latter to the case of n impurities and determine 
reasonable values for C11 and Nez. 
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These resonance experiments involve a crystal con­
taining a large number of excitons in many TCB chains 
of varying lengths. An impurity defines the end of a 
chain (i. e., we assume no transport through an impurity 
site). Most of the signal received can be thought of as 
coming from a set of most probable or average chains, 
estimated to be approximately 50 sites in length. 4 Each 
of these average chains has an impurity at each end and 
approximately four impurity affected sites in between, 
due to the impurities in the four neighboring chains (we 
are assuming one impurity every 50 sites on the aver­
age). Repeating the derivation of Eq. (2.17) for a 
random set of n impurity affected sites, we get Eq. 
(2. 17) times n, plus a string of cross terms which 
average to zero. We therefore estimate n/ N •• '" 1/8. 

Values for Cl1 were extracted from the slopes of 
experimentally determined phonon dispersion curves15 

for molecular crystals similar to TCB. For the three 
acoustic branches, we get values of approximately 10, 
20, and 30 cm-!. 

Taking Cl1 == 10 cm-!, and assuming the coupling con­
stants are approximately the same (71 '" ')I), we see that 
the pure phonon rate is dominant, although the impurity 
induced process may contribute as much as 15%-20% 
of the scattering. 

It would be useful to be able to estimate the coupling 
constants 71 (the pure two-phonon constant), ')I (the im­
purity induced two-phonon constant), and A (the im­
purity induced one-phonon constant). Unfortunately, it 
is very difficult to calculate these quantities accurately. 
We can however estimate these by comparing our theo­
retical results to the experiment. From our earlier 
work' we can estimate that ,\2 - O. 05 cm-I , assuming 
that the low T experimental results are due to the im­
purity induced one phonon processes. It is likely that 
,,2 is smaller, or the same magnitude, since 

ACC( ::Jo and ')ICC (~)o . 
Thus, we expect the impurity induced two-phonon pro­
Cesses to be small. If we assume then that the higher 
temperature experimental results' are due to pure two­
phonon processes, we estimate that 712 - 0.005-0.01. 

Also, there is some doubt as to the correct value 
for N ... Dlott, Fayer, and Wieting, 16,17 in a set of ex­
periments monitoring trap emission in TCB, estimate 
Nez - 2. 2 X 104• This would make the pure two-phonon 
process considerably more dominant, and we should 
consider N .. == 50 to be a lower limit. 

At low temperatures, the pure phonon rate heavily 

favors a small t:..k (small t:..€) due to the prefactor 
exp(-D/kT). The effect diminishes as the temperature 
increases. For the steeper acoustic bands (Cu '" 20, 
30 cm-!) the weighting is even more significant, since 
D is approximately two and three times larger. In 
more realistic systems, where the phonon dispersion 
curves become less steep near the Brillouin zone edges, 
this effect should be somewhat less pronounced. 

The impurity assisted case very slightly favors a 
larger I t:..€ I (large t:..k), an effect which also diminishes 
with higher temperature. It also favors less steep 
acoustic bands. Both rates exhibit the rapid increase 
with temperature indicated by the experiments 
(T6.4<O.06)4. 

To sum up, the pure quadratic phonon interaction 
seems to be the dominant mechanism for the scattering 
of excitons in these low temperature (2 to -10 K) one­
dimensional systems, favoring a small change in k •• 
The impurity induced rates, however, may not be small 
enough to neglect, and become even more important with 
higher temperature, greater impurity concentration, and 
steeper acoustic bands. 
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