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We discuss the influence of the environment on the tunneling of molecules at low temperature, using elementary quantum 
mechanics. We show that even in the gas phase dephasing processes can render the tunneling incoherent and that the tunneling 
rate due to dephasing is often enormously decreased relative to the unperturbed period. In addition to these effects, in the 
condensed phase, a renormalization of the effective tunneling matrix element occurs. 

I. Introduction 
One of the earliest problems of molecular quantum mechanics 

was the nature and stability of chiral molecules.’ Since elec- 
tromagnetic forces conserve parity, it was realized that, in its 
simplest form, the behavior of chiral molecules could be repre- 
sented as the motion of a particle in a symmetric double well 
potential V(q)  with the coordinate representing the degree of 
chirality or handedness. The positions of the minima (fq,,) are 
the equilibrium positions of the left-handed and right-handed 
molecules, respectively. The eigenstates of the Hamiltonian for 
this one-dimensional system 

H = T + V(q)  (1) 

f W n ( q )  = € n $ n ( q )  ( 2 )  

namely 

are eigenstates of parity as long as the barrier is neither infinitely 
high nor infinitely wide. Thus, states with a definite handedness 
must be coherent superpositions of the eigenstates and hence are 
nonstationary states. When only the lowest two eigenstates ($*(q)) 
are important in a description of the system, then the “localized” 
or handed states may be written as 

Hence, if the system is prepared at  r = 0 in $L(q),  the mea- 
surement of any handed property (including the position of the 
particle), will yield a result proportional to cos 26t, where 26 is 
the energy splitting between $+ and $-. We call 6 the tunneling 
matrix element. Its magnitude ranges from hundreds of hertz 
to the inverse of the lifetime of the universe, and thus its existence 
has been ignored except as a particularly visual manifestation of 
tunneling and the two-state model. The stability of handedness, 
when considered in a strictly one-dimensional model, was always 
justified by the smallness of 6. 

The discovery that weak neutral currents imply the violation 
of parity at the level of nonrelativistic quantum mechanics2 has 

(1) Hund, F. Z. Phys. 1927.43, 805. A very recent discussion of this issue 
and many of those that follow, albeit in an entirely different manner, may be 
found in: Goldanskii, V. I.; Kunz’min, V. V. Z. Phys. Chem. (Leipzig) 1988, 
269, 216. 
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renewed interest in the tunneling of handed m o l e c ~ l e s . ~  This 
parity violation may modify V(q) through the addition of a small 
antisymmetric potential c(q ) ,  which is determinable from electronic 
structure calculations. The total potential is now V(q)  + c ( q ) ,  
and thus the chiral molecule can be represented as moving in a 
slightly asymmetric double well with the difference in energies 
of the minima being 2e. Of course, which handedness is lower 
depends on the molecule and (within the Born-Oppenheimer 
approximation) the state of the m o l e c ~ l e . ~  

The dynamics of the chiral molecule in the two-state approx- 
imation is changed dramatically by this change in the potential. 
Ignoring the negligible changes in the shape of the wave functions 
in each well, a molecule prepared on the left a t  t = 0 will have 
handed properties that change in time as 

€2 + 62 cos 2(€2 + 6 2 ) W  

€2 + 6 2  
property( t )  = (4) 

Note that e is a manifestation of the properties of the wave 
functions at  fqo ,  its magnitude is on the order of hertz, and it 
is independent of tunneling. Thus although e is small, it may 
swamp the effects of tunneling. This represents the coherent 
competition between localization (e) and tunneling (6). Note that, 
if the tunneling dynamics of an isolated handed molecule prepared 
in a time short compared to its period could be measured, a unique 
confluence of high-energy and chemical dynamic processes could 
be measured. In addition, such a measurement would provide 
a confirmation of parity nonconservation in molecules in a manner 
complementary to spectroscopic measurements that have been 
proposed. 

In the previous paragraph, we emphasized the word isolated. 
The processes that we have discussed involve the ratios of small 
numbers in systems perturbed from exact degeneracy. Clearly, 
omnipresent environmental effects may qualitatively change the 
dynamics. In the rest of this paper, we examine how this comes 
about. We shall consider both gas-phase environments as well 
as condensed matter. Throughout this paper we shall usually 
assume that the effect of static fields may be removed. In addition, 
we will also assume that what may be called “inhomogeneous 
incoherence”-those effects caused by a preparation time scale 

(2) For a recent textbook discussion of these issues see: Commins. E. D.; 
Bucksbaum, P. H. Weak Inferactions of Leptons and Quarks; Cambridge 
University Press: Cambridge, UK, 1983; Chapter 9. 

(3) Harris, R. A.; Stodolsky, L. Phys. Left. 1978, 18B, 313. 
(4) Letokhov, V. Phys. Left. 1975, 53.4, 275. 
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on the order of or greater than an oscillation period of an isolated 
molecule ignoring parity violations need not be considered. In 
practice, these problems may present the greatest experimental 
difficulty. 

Finally, we should point out that although we speak of hand- 
edness and chirality, the general considerations we consider are 
applicable to symmetric and slightly asymmetric double well 
potentials of all kinds. In some specific discussions later on, we 
use the effect of the parity operator on the S matrix to make 
statements about the relaxation rates; these discussions will not 
apply to a general double well potential unless some other sym- 
metry element is operative in that case which plays the role of 
parity in the chiral case. 

In section 11, we define some notation and make some general 
remarks on the effect of fluctuations on tunneling. In section 111, 
we present a crude model for the effect of dephasing on tunneling, 
and in section IV we discuss in more detail a collisional model 
for the dynamics. Finally, in section V, we discuss the effect of 
a condensed phase on tunneling in the simplest spin-boson model. 

11. The Coupling of a Double Well Potential to a Medium: 
General Considerations 

Consider the coupling of the double well coordinate to another 
system. The latter be the other degrees of freedom in the molecule 
itself. Such an interaction occurs when normally decoupled degrees 
of freedom (in the isolated molecule) are recoupled due to the 
interaction between the molecule and a medium. We shall consider 
this situation in some detail when the molecule is in a gas. In 
this case, the new degree of freedom is rotation. When the 
molecule is in a condensed phase such as a solid, rotational motion 
is often severely hindered; in that case other degrees of freedom 
may become important. 

The explicit form the potential energy of interaction takes varies 
with the system and medium. Suppose we call this potential 
V(q,Q),  where the variable Q denotes all the other degrees of 
freedom. In the two-state limit we must be careful to distinguish 
the gas-phase interactions from the condensed-phase interaction. 
In the former case, we consider the isolated-molecule two-state 
system as the starting point and ignore the role collisions may have 
on the molecular double well itself. In the condensed phase, the 
equilibrium positions of the molecules of the medium may change 
the shape of the double well potential sufficiently so that we must 
redefine the starting point as the effective double well potential 
(or effective two-state system) in the medium. In this case, 
however, we need only change the magnitudes of 6 and e. We 
may therefore take the two-level system as a general starting point 
for our discussion. 

Given this, we may write the most general potential for the 
two-state model ass 

(5) 

(6a) 

= IL) u,lR) = -IR) (6b) 

V q 7 Q )  = Vo(QI1 + v,(Q)*u 

u = Pxu, + P,u, + z,u, 
where we use the notation 

and 

The potentials V,(Q) are given by 

Vo(Q) = 
x[ S d q  h ( 4 )  V(q,Q) k ( q )  + Jdq h ( q )  V(q.Q) + ~ ( q ) ]  

E Y2[(LIW-), + (RIVIR),] (7) 

(8) 

and 

VAQ) = ‘/,[(LIvIL)q - (RIVR)qI 

and 

( 5 )  See Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics; 
Wiley: New York, 1977; Vol. I, for a good discussion of the two-state ap- 
proximation and tunneling in a double well. 

remembering that, in a condensed medium, $L and incorporate 
static effects of other modes. We see that, in this representation, 
V, and V, differ greatly from Vo and V,. If V(q,Q) is a local 
operator, then V, and V, depend on the wave functions in each 
well, while V, and V, depend on the overlap of the wave functions 
in the barrier region. Thus V, and Vo can be taken to be sig- 
nificantly larger than V, and Vy There may be situations where 
this is not the case. For example, if the higher levels in the double 
well become important, one can imagine still treating the system 
as a two-level system by transforming the Hamiltonian so that 
the effect of the higher states is manifested by a nonlocal potential. 
In this case, it may turn out that V, and Vy can be larger than 
6 and must therefore be taken into account. 

We can think about V, and V, as medium-dependent fluctua- 
tions in the depths of the left- and right-hand sides of the double 
well potential and V, and V, as medium-dependent fluctuations 
in the barrier of the double well. (We say fluctuations because 
the average or static part of these terms can simply be added to 
the isolated molecule potential.) For most of the remainder of 
this article we shall assume that the potential is given by 

By causing fluctuations in the well depths, this potential acts as 
a dynamic version of the parity-violating potential (tu,). The effect 
of Vis to promote localization (Le., its eigenstates are IL) and 
IR)) while the effect of 6 is to promote delocalization; hence we 
have again a competition between the delocalization through 
tunneling and localization through parity violation and interaction 
with a medium. Note that the term V,ux is a term that can either 
enhance or suppress tunneling depending on its sign relative to 
that 6 .  When V, becomes large, this will signal the decreasing 
validity of the two-state model. 

111. The Crudest Theory of Dephasing4f’ 
In the previous section we pointed out that, in the absence of 

weak interactions, the dynamics of a molecule in a medium which 
couples to the molecule via a potential given by (10) exhibits the 
competition between delocalization (6uJ and localization V. In 
certain limits this is known as “pure dephasing” since delocalization 
is represented as a coherence of IL) and IR) and localization 
represents incoherence. 

We can exhibit this competition by a very simple model called 
“collision interruptus”. Imagine the handed molecule subjected 
to random collisions in a gaseous, parity-neutral medium. The 
mean time between collisions is T, and the duration of a collision 
is T ~ .  In the extreme case of dephasing we consider 

(11) 
We think of the molecule as freely tunneling for a time T (by freely 
tunneling we mean acting under the Hamiltonian of the isolated 
molecule) and then undergoing a perfect dephasing collision for 
a time T,. By a perfect dephasing collision, we mean a collision 
in which the coherence is completely interrupted and ‘then the 
system begins freely tunneling again, but starting from the con- 
dition after the collision. Quantitatively, we take the density matrix 
of the system to be 

6-1 >> 7 >> Tc 

At )  = X[l  + P(+JI 

d o )  = Y2Cl + 0,) 

(12) 

(13)  

PZ(O) = 1, PX(O) = 0 = PJO) (14) 

Suppose initially, the system is on the left; then 

i.e. 

After a time T, we will have 

(6) Simonius, M. Phys. Reu. Lett. 1978, 26, 980 
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P,(r) = cos 267 (15a) 

P,(r) = 0 (15b) 
Py(r)  = sin 26r (1 5c) 

By our previous arguments, a concomitant of the delocalization 
in L and R (P,(r) ceasing to be I ) ,  there is a buildup in phase 
coherence in the density matrix component Py(r)  (which grows 
from 0). Now, suppose at time r there is a perfect collision (lasting 
a time rc), in which the system is localized by the interaction. Thus 
after the collision Py is again 0, but P, is cos 267. Now the system 
begins to tunnel freely again beginning from this initial condition. 
After N such events 

P, = (cos 267)N (1 - 26272)N = e-2(62T)NT (16) 

p = e-Rt (17) 

Now N r  = t, the time after N events, so that 

Silbey and Harris 

except the tunneling coordinate. If the collision cannot induce 
transitions between IL) and (R) ,  then 

S = Sol + Sin, E SLIL) (LI t SRIR) (RI (26) 
The properties of unitarity of the S matrix demand that 

S S  = 1 = S$Sol + S:SI1 + S:Soa, + S:Sla, (27) 
so that 

stso + s:s1 = 1 

s;s, + s:so = 0 

(28) 

(29) 

StSL = 1 (30) 

S i S R  = 1 (31) 

and 

or, more simply, 

That is, the S matrices for L and R scattering are separately 
unitary; however S:SR is an operator whose norm can range from 
0 to 1. 

With the above in mind, let us calculate the state I*A) from 
By definition 

I q A )  = SI*B) (32) 

(33) 
and the reduced density matrix of the tunneling degree of freedom 
is 

or 

I ~ A )  = CLIL)SLI@) + CRIR)SRI@) 

where the relaxation rate is given by 
R = 262r 

Thus 
R-I >> 6-I >> r (19) 

and pure dephasing acts to stabilize the handed molecule on a 
time scale much longer than the tunneling period, and also much 
longer than the time scale between collisions. 

The crude model discussed above is instructive in two respects. 
First, we can see how pure dephasing may stabilize handedness 
on a time scale long compared to the tunneling period, indeed on 
a macroscopic time scale. Second, we note that whatever time 
development occurs, occurs in such a way that P,(t) shrinks in 
size. 

IV. The Dilute Gas Limit’ 
In order to construct a quantitative version of the extreme 

dephasing model described in the previous section, let us consider 
how a single collision may induce incoherence into the density 
matrix of the tunneling degree of freedom of the molecule. 
Suppose that before a collision (with a gas atom) the overall wave 
function is 

I*B) = I@)(cLIL) + CRIR)) (20) 
where I@) contains the relative coordinate between atom and 
molecule as well as any other molecular degrees of freedom, 
assumed the same for both left and right states. The density 
operator is then 

DB = I*B)(*B~ (21) 
and the reduced density operator for the tunneling degree of 
freedom is 

pB = Tr’ DB (22) 
where Tr’ means the trace over all degrees of freedom except the 
tunneling coordinate. In matrix form in the IL), JR) representation 

and clearly 

PB2 = PB (24) 
We now assume a collision occurs where the duration of the 
collision, rc, is so short that we can talk about the wave function 
after the collision, @A, being described by an S matrix. The most 
general form for the S matrix is 

s = Sol + s a  (25) 
where So and Si are operators in the space of all degrees of freedom 

(7) Harris, R. A,; Stodolsky, L. Phys. Lett .  1982, 1168, 464; J .  Chem. 
Phys. 1981, 74,  2145. Now 

From these equations, the dephasing role of the S matrix becomes 
clear. The difference in populations of L and R is clearly 

P L  - P R  = ICLl2 - lCR12 (35) 
which is unchanged in the collision. However, the density matrix 
elements which regulate the phase of p, namely, PLR and PRL, do 
change: 

( P ~ L R  = (PB)LR(@IS~LI@) (36) 

( P A L  = ( P A L  (@IStSRI@) (37) 

I(@lsZSRI@)I (38) 

and 

Since SL and SR are unitary operators, we have 

Thus pLR is constant or decreases during a collision, and inco- 
herence increases during a collision. 

We are now able to derive a set of homogeneous Bloch equations 
under the assumption that collisions occur at a uniform rate. Let 
us define a rate, or damping parameter, loosely as 

X [(+lStSR(4) - I](number of collisions per second)) (39) 

where the outer brackets indicate certain averaging processes to 
be made more precise later. From (36) and (39), we have 

(40) 

(41) 

PLR + PLR + XPLR dt 

PRL -+ PRL + ~ * P R L  dt 

and 

where we have allowed X to be complex in general. In the limit 
of dt short compared to the time between collisions, but long 
compared to the duration of a collision, we may write 
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($)free = (268, + 2 4 )  x P(2) (43) 

from the equations of motion of P( t )  from tunneling and static 
asymmetry. From (42) and (43) we have 

(5) = X’(P,P, + EYy) + A”?, x P (44) 
coll 

where A’ and A” are the real and imaginary parts of A. The overall 
rate of change of P can then be written 

(5) = v x P - X’P, (45) 

where 
v = 268, + (2€ + A”)?, 

PT = ExPx + g y p y  

(46) 

(47) 

Equation 45 is the Bloch equation in vector form; it does, however, 
suffer from the deficiency that the predicted equilibrium solution 
is equal probabilities in (L) and (R), irrespective of the energy 
asymmetry. If detailed balance is taken into account, the Bloch 
equations will have the correct infinite time solutions. In the gas 
phase where /3t << 1 (0 = (kBT)-’), this difference is of no im- 
portance. In the condensed phase, care must be taken to ensure 
the correct low-temperature behavior. 

Before discussing the solutions to the Bloch equations, we may 
quantify our definition of X and examine the meaning of A’ and 
A”. We consider the dilute gas limit and assume the other degrees 
of freedom act solely as a thermal bath. From standard scattering 
theory, we obtain the result 

and 

Here, i and f refer to all initial and final states of the molecule 
including relative momentum, but excluding total angular mo- 
mentum J .  The probability of finding the colliding system in states 
i with total angular momentum J is d ( i ) .  vi is the relative velocity 
in the initial state, ki the relative wave vector, and n the number 
density of the colliding species. 

The real part of X (A’) plays the role of a damping parameter, 
ubiquitous in kinetic or Bloch type equations. The meaning of 
A” is less clear, but since it adds to the asymmetry (2e) in (46), 
we see that it is a collision-induced energy asymmetry. If the 
medium that interacts with the molecule is parity neutral, we then 
expect A” to be zero. Now, from (36) and (37), we see that A‘‘ 
is zero if 

Tr P‘SZSR = Tr  ( p ’ s t S ~ ) *  (49) 

Or 

Tr p’StSR = Tr  p’SiSL (50 )  

where p’ is the density matrix for all the other degrees of freedom 
before a collision. The total parity operator, P, can be written 
as a parity operator P’operating on the other degrees of freedom 
multiplied by a,: 

P = P’U, (51) 

SR = P’SLP’ ( 5 2 )  

(53) 

(54) 

Under parity, we then have 

Hence 
T r  p’SZS, = Tr  p’P’SRP‘PSLP’ 

Tr (Prp’P’)S;SL = Tr p‘SZSR 

or 

Le., if all the other degrees of freedom have no parity sense, then 
A” = 0. 

When the handed molecule is in a spinless atomic gas, the role 
that angular momentum and parity conservation play in evaluating 
A’ merits discussion. The relevant degrees of freedom here are 
the relative kinetic energy, the relative angular momentum, and 
the rotational energy and angular momentum of the molecule, 
an asymmetric top. We neglect vibrations as being too high in 
excitation energy to contribute. 

Let us represent X as (see (39)) 

X 0: Tr  p’(StSR - 1) (55) 

Using the parity operator, P = P’u,, and the unitarity of SR, we 
may write this as 

a: Tr p ’ [ P s i P s ~  - SiSR] (56) 

0: Tr  ( p ’ [ P s i P ’ -  s i ] s ~ )  (57) 

or 

Consider a given term in (57) involving the relative angular 
momentum, I ,  

I//, E ( ( l l p s R p l l ’ )  - ( ~ ~ s R ~ ~ ’ ) ) ( ~ ~ s R ~ ~ )  

Z,, a ((-I)’+‘’ - 1) 

(58) 

(59) 
Hence, Zrrt vanishes when 1 + l’is even; Le., 11) and 11’) must have 
opposite parity to contribute to X. We now apply the overall parity 
operator to the S matrix itself. Note that the parity operator P’ 
is either that operating on the relative coordinate or that operating 
on the rotational coordinate, so that the total parity operator can 
be taken as the product of these two. In the representation di- 
agonal in J and M ,  we then have 

(rjmlS[!’.’ll?’m’) = (Ijm~PrclProtS~~ProtPre,~l~’m’) (60) 

where we have ignored all other labels. Since P l l )  = (-1)‘Il) 

so that 

(-l)/+/’+lpy+m+m’ = 1 (61) 
Here the states 10,) are eigenstates of parity. Note that the 
allowed values of the pair l j  are fixed by conservation of angular 
momentum. Equations 59 and 61 imply that, in order to contribute 
to A‘, j + j ’  + m + m ‘ must be odd. Since the energy levels of 
an asymmetric top with different values of the pair G,m) are not 
degenerate, we come to the result that only inelastic processes 
contribute to X. This plus the opposite parity of 1 and I’ allow 
two important conclusions. First, the relaxation rate is due to the 
quantum mechanical interference of partial waves, and second, 
if inelastic collisions do not contribute because of the temperature 
or masses, X will be zero. Hence, unlike the usual case, very 
delicate processes are necessary to have a nonvanishing h for 
gas-phase relaxation of handedness. 

Before going on to condensed-media problems, we briefly exhibit 
the above conclusion using a simple one-dimensional model. Here, 
of course, the angular momentum restriction does not apply, but 
parity and energy consideration play important roles. 

In one dimension SL and S R  are determined by solving the 
Schrodinger equations describing elastic scattering from particles 
localized in the left and right wells of a double well centered at 
the origin. In the two-state model, the interaction of an atom with 
a particle in, e.g., the left wall is a simple potential in the atomic 
degree of freedom localized at  q = -a where -a is the position 
of the minimum in the left-hand well. Thus we are led to the two 
Schrodinger equations: 

HL$L b2/2m + J‘(q+a)I$~(q) = E+L(q) ( 6 2 )  

and 

H R ~ R  b 2 / 2 m  + V(q-a)lJ/R(q) = EJ/R(q) (63) 

where V(q) is the interaction of the atom and a particle localized 
at  the origin. Because we are simulating the three-dimensional 
problem, we assume V(q) is finite. Thus, we are not considering 
in any sense collinear scattering. In passing we note that, in order 
for parity to be conserved, we must have 
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V q )  = V - q )  (64) 

The scattering solutions of (62) and (63) determine SL and SR, 
respectively. 

The scattering states in one dimension are discussed in the 
literature. Both $L and $R can be derived from the solution $ 
of the unshifted scattering problem. 

H$ [p2/2m + V(q)]$  = E$ (65) 

The continuous spectrum of H is double degenerate, so that we 
will label I) by two quantum numbers: the energy E and a 
quantum number p which takes only two values, f l .  The scat- 
tering wave functions are defined with the following boundary 
conditions: 

$k’)(q) = exp(ip.kq) + R,, exp(-Wq), q - --m 

= T,, exp(ipq), q - --m (66) 

E = hzk2/2m (67) 

where 

and T, and R, are the transmission and reflection amplitudes, 
respectively. ( R  here should not be confused with the label R in 
SR and $R, which stands for “right”.) The one-dimensional S 
matrix that corresponds to $(fi)(q) is 

Due to the reflection symmetry of the Hamiltonian, T-I = TI 
and R-l = R1, so that from now on we will denote T-] and TI by 
T, and R-I and R,  ,by R. 

It is an exercise in 1D scattering theory to show that 

) (69) 

where y = exp(2ika). 
The overlap matrix $SR clearly expresses the quantum-me- 

chanical nature of the relaxation process. The nonvanishing of 
the relaxation rate A is due to the simple interference in the 
scattering of the double well. The amplitudes of the scattering 
from each well are simply phase shifted from one another. With 
a small amount of effort one may show that X is given by 

1712 + y21RIZ y * R P  + yR*T 
m.=( y*R*T + y R P  1 7 2  + y*21R12 

= d v ) G ( v )  (70) 

where p is the density of the scatterers, and ( v )  is the average 
speed: 

( v )  = (h/mZ) Jmk exp(-/3h2k2/2m) dk 

= (h@Z)-I = (2/rm/3)-’ (71) 

(72) 

v = @h2/2mA2 (73) 

The function G ( v )  is given by 

C ( v )  = 4 v J - x  exp(-vx2) sinZ x(RI2 dx 

where x = 2ak = Ak, and 

is the only significant dynamical parameter in the one-dimensional 
model. (There may be additional parameters in the problem 
stemming from V(q) . )  In (70), p ( v )  is essentially the geometric 
factor (corresponding to ideal reflection, /Rl2 = 1). The effect 
of the interference between the waves that are scattered from the 
particles localized in the left and right wells is embedded in the 
function G ( v ) .  

Because V(q)  is taken to be finite, classically, lRI2 behaves as 

IRIZ = 1, x < x, 

= 0, x > x, (74) 

where x, = (A/h)(2mE,)ll2 and E, is the energy that is necessary 
to surmount the potential barrier. In fact, (74) is a good ap- 
proximation to the quantum-mechanical reflection coefficient as 
well, so that we can derive the general behavior of C(v)  by using 
the classical reflection coefficient. Denoting the “classical” in- 
terference term for G,,, we get 

x u-312, vx, >> 1 

0: v1/2, vx, << 1 (75) 

Thus, A exhibits a maximum as a function of temperature and 
tends to zero at  both low and high temperatures. 

Extreme quantum-mechanical behavior can be simulated by 
considering the scattering by a 6 function. In this case 

IRI2 = ~ ~ / ( q ’  + x2) (76) 

where 7 is a dimensionless constant. This reflection coefficient 
gives rise to 

(77) 

It may be shown that G6 also vanishes in the limits u - 0, m 
although the asymptotic behavior at v - 0 is different from that 
of (77) for the classical case. 

Since (74) will be a good approximation for the reflection 
coefficient in most cases (the 6 function being an extreme ex- 
ception), GCI may be a more or less universal function. However, 
appreciable deviations can occur if V has a length scale that 
matches the distance between the wells A. This one-dimensional 
model is very similar to the two-slit problem in which only a 
thermally averaged phase remains. 

The important conclusion of this one-dimensional model is that 
X does not have a monotonic behavior as a function of temperature. 
This result, as we argued above, is due to the severe restrictions 
parity and energy conservation imply and thus should be generally 
valid. With this in mind we conclude our discussion of the 
gas-phase problem by examining the relation of the “collision 
interruptus” model of section I11 to the solutions of the Bloch 
equations. 

Consider the simple case of no asymmetry so that e = A” = 
0. In this case the variable P, is uncoupled from P, and Py, so 
we have 

- -  - 26Py dPz 
dt 

dPY 
(79) - dt = -26P, - A’P, 

which can be put into the form of a damped harmonic oscillator 
equation 

d2P, + A’ dP, - + (26)2P, = 0 - 
dt dt 

when A’ is smaller than 46, P, undergoes damped oscillations to 
the equilibrium, P, = 0. When A’ >> 46, we have 

so that 

~ ~ ( 2 )  N P,(0)e-Rf (82) 

R = (26)2/X’ (83) 

where the rate R is 

in full agreement with the “collision interruptus” model (with 7-l 

While 
high-temperature racemization follows an Arrhenius law, this 
model clearly does not, unless A‘ is proportional to exp(E/kBT). 
Note that if X’ >> ( 2 6 ) ,  the handedness of the molecule may be 

= A’). 
We call this model ”racemization by dephasing”. 
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others) is, of course, a collection of harmonic oscillators. When 
the oscillators couple linearly to the double well, the result is the 
ubiquitous spin-boson model studied at great length by many and, 
in particular recently, by Leggett and his co-workers. The results 
of their labors may be found in the massive article found in 
Reviews of Modern P h y ~ i c s . ~  Our discussion follows a more 
traditional approach and in a way is closely related to the gas-phase 
theory.I0 The theory proceeds in two steps. First, we examine 
what happens to the tunneling frequency when the system is in 
equilibrium. The spin-boson Hamiltonian is given by (in the IL), 
IR) representation) 

stabilized on a time scale enormously long compared to the period 
6 .  In addition, on kinetic theory grounds we expect A’ to decrease 
as temperature decreases; hence R may increase as temperature 
decreases, until the oscillations become underdamped. Similarly 
as the collision rate increases, A’ increases and the rate decreases. 
This paradoxical behavior is characteristic of dephasing as opposed 
to kinetic racemization. 

There is another, intuitive way of describing what happens in 
terms of the mean position of the double well coordinate defined 
as 

= IL)(LlqlL)(Ll + lR)(RlqlR)(Rl (84) 

(85) 

(86) 

4 = -qo(26by (87) 

Since 
-(LlqlL) = +(RlqlR) = qo 

4 = qo[lR)(RI - IL)(LII = -qou, 

we have 

Similarly, from the Heisenberg equations of motion 

Thus far, we have neglected fluctuations; when these are included 
we find 

( q ( t )  ) = -qoP,(t) (88) 
and so the equation of motion of ( q ( t ) )  is that of a damped 
oscillator 

with general initial conditions 
(q (0 ) )  = -qoP,(O) (90) 

( 4 ( 0 ) )  = -26qoPJO) (91) 

The slow relaxation to equilibrium as expressed earlier now be- 
comes manifested in the well-known second relaxation time of an 
overdamped harmonic oscillator, displaced from the origin, with 
no significant initial velocity. (The role of initial velocity is to 
modify the transient.) We shall see that the ideas presented here 
as far as Pz(t) or ( q ( t ) )  obeying a damped oscillator equation will 
persist in a condensed medium. The values of 6 and X will be 
modified significantly, however. The dephasing aspect of the 
problem remains unchanged.8 

What happens when c is not zero? Nothing much in the gas 
phase, as long as P c  << 1. In the equations of motion, all three 
components of P ( t )  are coupled and so, strictly speaking, the 
population difference P,(t) no longer satisfies a damped oscillator 
equation. In the overdamped limit, we find 

-.  
(92) 

so that in this limit, the asymmetry changes the rate by at  most 
a small numerical factor. 

V. Tunneling System in a Condensed Phase 
A.  Renormalization of Tunneling Matrix Element. We now 

turn to the dynamics of a particle in a double well potential when 
placed in a condensed phase.9 Although many of the issues 
mentioned in the preceding sections are also important here, a 
new issue arises when the coupling is strong: the renormalization 
of the tunneling matrix element, 6 ,  due to the coupling. This 
possibility exists because the medium is always present; the idea 
of a collision loses its meaning. The simplest representation of 
a condensed phase relevant to chemical systems (as well as many 

(8) Harris, R. A.; Silbey, R. J .  Chem. Phys. 1983, 78, 7330. 
(9) See Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A,; 

Garg, A.; Zwerger, W .  Rev. Mod. Phys. 1987, 59, I ,  for an extensive dis- 
cussion of the functional integral approach applied to this problem. In ad- 
dition, this paper contains a definitive list of references for the spin-boson 
problem. 

Here we have assumed that the asymmetry c is zero; if there is 
an asymmetry, we add a term ccrr 

The eigenfunctions of this Hamiltonian can easily be found in 
two limiting cases: (i) If gi = 0 for all i ,  then the eigenvalues 
(neglecting zero-point energies) are *6 + Civioi, where vi are 
integers, and the eigenvectors are If) = 1/21/2(IL) f IR)) X I(vj]). 
(ii) If 6 = 0, then the eigenvectors are displaced oscillators whose 
displacements depend on whether the particle is in the left well 
(IL)) or right well (IR)). These latter states can be represented 
as 

where I(vj]) is an eigenstate of the uncoupled harmonic oscillator 
Hamiltonian and A is either L or R. 

When neither of these conditions is met, the eigenstates of this 
Hamiltonian are not known. In this case, we might try standard 
perturbation theory or a variational-perturbation method. The 
latter procedure turns out to be both accurate and instructive, so 
we adopt this approach. The simple variational method we use 
is, of course, not exact and can be improved in a variety of ways.I0 
However, it is a straightforward procedure to describe the main 
qualitative features of the dynamics. For the infrared divergent 
case, in which subtle transitions occur, the variational method is 
only a good zero-order guide to the behavior. For the nondivergent 
cases, we expect it to be better. To begin we consider the zero 
temperature case. 

The key physical idea is that each harmonic model will be 
displaced on average an amount which depends on 6 ,  gj, and mi. 
For large frequency, wj, the harmonic mode will be able to follow 
the tunneling particle exactly, so that if the tunneling particle is 
on the left, the mode will be fully displaced to its left equilibrium 
position and similarly for the right side. For small wj, however, 
the mode will be “sluggish” and unable to follow the tunneling 
particle, so that the displacement of that mode will be substantially 
reduced. Since the effective tunneling matrix element, aOff, will 
be 6 multiplied by a product of Franck-Condon overlap factors 
(one for each mode), beff will depend sensitively on the spectral 
distribution of frequencies (q), the coupling constants (gi) ,  and 
6 itself. We are then led to taking simple approximate forms for 
the trial wave functions based on our knowledge of the form of 
the eigenfunctions when 6 = 0: 

(95) 

Here we have displaced each oscillator by a fraction U;/g j )  of the 
full amount it would be displaced if 6 = 0. Using these trial 

(10) Silbey, R.; Harris, R. A. J.  Chem. Phys. 1984, 80, 2615. Harris, R. 

(1  I )  Carmeli, B.; Chandler, D. J. Chem. Phys. 1985, 90, 3400. Gross, E. 
A.; Silbey, R. J .  Chem. Phys. 1985.83, 1069. 

P. Preprints, 1988. 
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functions, we can find the matrix elements of H; assuming that 
only the zero quantum (v j  = 0) states (the ground states) need 
be considered at T = 0, we find (neglecting zero-point energy) 

0, and if a Q 1, the integral diverges and the total Franck-Condon 
factor is zero. This implies that the amplitude for tunneling, beff,  
becomes zero (at T = 0) and the two states IL) and IR) are 
degenerate; Le., the symmetry has been broken. For the optical 
isomer example, this would imply that the isomers are stable (at 
this level of approximation); i.e., they never interconvert by 
tunneling, a t  least to this order. 

We have already indicated a difficulty with this argument: the 
low-frequency modes in the bath cause the divergence in the 
integral, but these modes are those which are sluggish and do not 
displace as fully as they can (i.e.,f, # g. for these modes). If 
we now compute the Franck-Condon {actor and beff for the 
variational wave functions using (101a) for f,, we find 

r 1 
The lower eigenvalue of the two-dimensional matrix representing 
the Hamiltonian is then 

we may now minimize this energy-with respect to variations of 
the A. Taking the derivative of E with respect to 4, we find 

= gj(1 + 2Ped/wj)-' (101a) 

This result agrees with the qualitative arguments we made before. 
If the frequency of the mode, wj, is large compared to the effective 
tunneling matrix element (16effl), t h e n 4  N gJ, and so the mode 
is fully displaced wherever the tunneling particle is. That is, this 
mode tracks the tunneling particle as it moves. If however wJ is 
small compared to the effective tunneling matrix element l&frf, 
then f. = gj(wj/216ef& << gj. Thus this mode cannot track the 
tunne6ng particle very well, and its displacement is quite small. 
For many systems of interest, the most important modes are 
relatively high frequency compared to the tunneling matrix ele- 
ment. After all, the vibrational modes of common molecules have 
frequencies of a few hundred cm-' or higher, while tunneling 
matrix elements are usually smaller than 1 an-'. However, when 
the tunneling system is put in a condensed phase, the latter has 
vibrational or other modes with very low frequencies. We must 
be extremely careful in treating the dynamics of these modes in 
particular when these interact with the tunneling particle. It turns 
out, as we shall see, that the important measure of the interaction 
between the tunneling particle and the thermal bath is given by 

Notice that if g; is a function of wj only (Le., g; = 2 ( w j ) ,  then 

where p ( w )  is the density of states of the harmonic modes in the 
thermal bath as frequency w .  

The effect of the modes on the effective tunneling matrix can 
be rather large. Consider the formula for bCff: 

6eff = 6 exP[-lCf:/wj?l (1 04) 

The exponential is, as we have stressed, the product of Franck- 
Condon factors for the modes. For the high-frequency modesfj 
LZ gj and the Franck-Condon factor for that mode is a e-gJ2/wJ2 < 
1. For the low-frequency modes, the result is more complex. 
Consider what would happen iff, = gj (note this is not the var- 
iational solution) for all modes: the total Franck-Condon factor 
in this case is 

e x p [ - { E g ~ / w ~ J ]  = exp[-JucJ(w)/wz d o ]  (105) 

This formula shows how the Franck-Condon factor (and ulti- 
mately the dynamics of the two-level system) depends on J(w), 
the spectral density. Notice that if J ( w )  varies as wa near w = 

(106a) 

This is a self-consistent equation for 6eff, which can be solved by 
iteration or, in certain, cases, by analytic means. 

We will consider the cases J(w) = vawa for a = 1 and 3. 
Consider a = 3, which corresponds to the coupling constant and 
density of states for three-dimensional phonons interacting with 
a localized system. In this case 

The integrand goes to zero as w - 0 quickly enough, so that for 
6/w, small, we have 

6eff 6 exp[-[a3o,2/211 (108) 

From the form of the variational energy ((loo)), we have 

The latter term is the potential energy decrease due to the dis- 
placement of all the oscillators. For this case then, we find that 
the low-frequency modes play little role in the tunneling dynamics 
and the high-frequency modes act to diminish the tunneling matrix 
element by introducing a small Franck-Condon factor. As the 
coupling to the bath increases (7, gets larger), the tunneling matrix 
element deff becomes smaller, but never becomes zero until 63 - 

Now consider the Ohmic case, J ( w )  = qlw. As we pointed out 
above, this can lead to 6erf = 0 if all f, = gj. The variational 
equation for deff is now 

m. 

So the self-consistent solution is either 16effl = 0 or 

It is easy to see that for vl < 1 the latter is on the lower energy 
solution to the variational problem, while for p1 > 1 the former 
is the lower energy solution. Thus the variational calculation 
predicts that as the coupling to the bath increases (9  gets larger) 
from zero, the effective tunneling matrix element becomes smaller 
and smaller and goes to zero for a finite coupling to the bath (0' 
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= 1). Note that the potential energy due to the displacement of 
the modes which is given by 

-71wc (113) 
does not become infinite even for 6,m = 0. 

For temperatures above 0 K, we can calculate an upper bound 
on the free energy with the same set of states and find the re- 
normalized tunneling matrix element by minimizing the free 
energy with respect to f j  again. This procedure leads to a tem- 
perature-dependent befr 

The only differences between 0 K and finite temperature are 
the weighting of oscillator frequencies by the ubiquitous coth /30/2 
and the concomitant realization that the ground state of the 
two-state system is not 100% populated. These facts are expressed 
in the equation for the renormalized frequency and shifted os- 
cillator amplitude, namely, 

= 6 exp[-2Cf?~,-~ coth (/3wI/2)] 6e-2F (106c) 
I 

and 

fi = g,(l + 26, l f~r l  coth (/3w1/2) tanh /36# (101b) 

In terms of the coupling density of states, the equation for F may 
be written as 

J(w) coth (/3w/2) 
dw 

= X W c [ w  + 2aeff coth (j3w/2) tanh /36,,]’ 

We see explicitly in these equations how sluggish versus quick 
modes are scaled by 8. 

B. Tunneling Dynamics. We now turn to a calculation of the 
dynamics of the tunneling particle based on this variational 
procedure. Since the set of states that we have used to find the 
effective tunneling matrix elements ((99)) can be generated by 
a unitary transformation U of the noninteracting states, with 

we can transform the original Hamiltonian with this Lr: 
fi = V ‘ H U  

= 6(1L)(RJ eEflPJl°F + hc) + I/2x:(P/z + w:q:) + 
J 

Ckj -fj)qjuz + CV,’ - 2fjgj/wj? (1 15) 
J J 

If we average the terms containing the remaining tunneling boson 
interactions over the harmonic bath, we find, after adding and 
subtracting this average 

A = 6,fPz + I/’C(Pjz + wj%/2) + 762 - 2gf,)/w? + 
j 

4IL)(RIe + IR) (LIe+l+ Fkj -fj>qjuz (1 16) 

(1 17) 

with 

e = exp(~i2fipj/w:),- e-2uFfwt 
J 

The first three terms in H are those which give the upper bound 
on E (or A at  finite T )  while the last two terms arefluctuations 
of the boson-tunneling particle interactions due to the thermal 
bath. Here, we are implicitly assuming that the boson bath 
remains close to the equilibrium defined by the average interaction 
to the tunneling particle. It is instructive to examine H in this 
light. Notice that i f f j  = 0, i.e., the best displacement for all the 
bosons is no displacement, then the fluctuations are proportional 
to uz; Le., they are population relaxation in the L, R representation 
or dephasing in the eigenstate (h) representation. If howeverfj 
= gj, i.e., all the oscillators are displaced fully, then the fluctuations 
are in the tunneling matrix element term and are population 

relaxation in the f representation (or dephasing in the L, R 
representation). On the basis of the arguments presented above, 
we would say that in a qualitative sense the high-frequency modes 
(w j  >> 6,ff) cause fluctuations in the tunneling matrix element, 
while the low-frequency modes cause fluctuations in the L-R 
energy difference. Of course, this is based on the transformed 
states which already include the major part of the interaction. 

We may now calculate the effect of these fluctuations on the 
tunneling dynamics by treating these terms to second order in 
perturbation theory. The most straightforward procedure is to 
calculate the reduced density matrix, prd, defined as 

Prcd(t) = Trbath d t )  (118) 
where p( t )  is the density matrix for the entire system, tunneling 
particle plus all the bosons. The reduced density matrix is still 
an operator in the two-level system space with matrix elements 
defined as 

Pz = (Ll(Pred)lL) - (RlPrtxilR) 

P x  = (LlPrdlR) + (RlPredlL) 

P y  = i[(LIPr,(R) - (Rl~redlL)I (1 19) 

The standard Redfield theory for the reduced density matrix of 
a system weakly interacting with a bath allows us to calculate the 
equations of motion of Pz, Py, and P,. We find at  temperature 
T = (k@)-’ 

pz = 26effPy - Y I P ,  

Py = -26,ffPz - yzPy 

P,  = + r ( i  - A )  - r ( i  + A)P, (120) 
where A = e~p(-2@/6,~11), and 

7 2  = r p D  + (1 + A)~+me-iz6..’(Vo(f)Vo) -m dt (121) 

+m 

71 = r p D  + (1 + A ) J  -m e-i26”(~LR”(t)~LR”) dt (122) 

r p D  = I /Z~+~(VLR’(I )VLR’)  dt (123) 

+ m  r = 1 dt e-i26’”((VO(t)Vo) + (VLR”(f)VLR”)] (124) 
-m 

and 

VO = Ckj - f j )qj  

vLR’ = -(e + e+) 

VLR” = - (e - e+) 

(1 25) 

(1 26) 

(127) 2i 
These rather formidable expressions simplify when gj = fj ( Vo = 
0) or whenfj = 0 (VLR’ = VLR” = 0). The equation of motion 
for P, can be seen to be that of a damped harmonic oscillator with 
complex frequency given by 

J 

6 
2 

U = -i( 7) 71 + Yz f (( y)’ + 46eff2)1’z (128) 

In the very weak coupling limit,f, = 0, thus y I  = 0, and 
Pz = 26,ffPy 

Py = 26,ffPz - y2Py 

P, = (1 - ~ ) r  - (1 + A)rp ,  

(1 29) 

in agreement with (78) and (79). Note however that the equation 
of motion of P, is different in the present case, because it allows 
for the Boltzmann distribution (in the i representation) at 
equilibrium. 

In the limit t h a t f j  # 0, then y, # 0, and the equations of 
motion Pi differ from (129). This is due to the coupling of the 
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bath to the tunneling particle which is taken into account by the 
unitary transformation, U. That is, the viewpoint is that the 
tunneling particle now has a cloud of bosons surrounding it, and 
which it must carry as it tunnels. The scattering by the bath is 
now different from in the very weak coupling limit, and this is 
realized by the new form of the equations of motion. Notice that 
the manner in which the coupling to the bath enters the damping 
is quite complex now. For example, the complex frequency of 
the damped oscillator has the bath coupling in beff as well as y1 
and y2. As the coupling to the bath increases so that& becomes 
closer to gj, then &,gets smaller, and in addition, y1 - y2 becomes 
smaller (Le., Vo - 0 and a detailed study of (VLR”(t)VLR”) shows 
that it too becomes small). In this limit then, the damping is due 
largely to the term (yl + y2)/2 in U and not to the relative values 
of beff and (y l  - y2) in the square root. From the definition of 
rpD, one can see that r p D  (and yI  and y2) is proportional to 6,n2 
in this limit, so that the decay of P, is approximately proportional 
to 6&,, where 7, is the characteristic decay time of the correlation 
function in the definition of r p D .  This agrees with the strong 
coupling limit discussed above. 

C. The Asymmetric Double Well. Essentially negligible 
modification of the theory of the previous two sections is necessary 
when the double well possesses an intrinsic asymmetry. 

The unitary transformation, U, commutes with the asymmetry 
tu, and hence still diagonalizes the Hamiltonian in the limit of 
no tunneling. The resulting equation for (fi) and 6,n is of course 
modified by the presence of tu,; namely, (101b) now reads 

(1 30) I 2Beff2 coth (Pwi/2) tanh @(e2 + 6,f;)1/2 
f;.=gi 1 + 

Wi(6,ff2 + €2)1/2 I 
The self-consistent equation for beff is a simple generalization of 
(106), namely 

beff = 6 exp - 1 S - d .  J ( w )  coth (F) x I.. 
L 

w + 26eff2 coth (@w/2) tanh @(e2 + 6,ff)1/2 

(?jeff2 + t y 2  I 
Clearly if 6 , ~  >> t, t plays a totally insignificant role. So we assume 

>> 6cff 

[ w + f6en2 coth (Pw/2) tanh Pt (1 32) 1’1 
For T >> t and T > wi (for the wi of importance, which are near 
wi = 0), we find 

r 1 

J (133) 
w 

(w2 + 46,,2)2 

When J ( w )  = gwe-w/wc (Ohmic case) 

the only solution to this equation is aeff = 0. Thus the breaking 
of the symmetry on a level large compared to deff completely 
suppresses the tunneling. 

We now assume that J(w) - yw3e-wIwc for the case of a De- 
bye-like spectrum. Here 

r 

We see that the solution of this equation is a 6eff > 0. 

When T << t, we have ( T  > wi of interest) 

Here 6ef f  is again 0 for all but the lowest temperatures for the 
Ohmic case ( J (w)  - w )  and also for J(w) - w2).  We must turn 
to dynamics to obtain a fuller picture of what is happening. 

We shall assume that fi2/t << 1 irrespective of the form of J(w). 
We see thatf;: i= gi for almost all modes. Accordingly, an analysis 
equivalent to that of the previous section gives rise to a master 
equation for P J t )  

p,(t)  = -[1 + e-2@f]I’P, - [l - e-2@e]r (137) 

Since IL) has a higher zero-order energy than IR), the decay rate 
of P, is directly related to the population relaxation rate r, given 
by the golden rule 

r = S m d 7  -m e-2iel ( vLR(7) VRL(0)) (138) 

(139) 

with the operator X given by 

X = exp(C2igjPj/w:) (140) 
I 

What we have here is nothing more than the old-fashioned 
emission rate between Born-Oppenheimer states separated by a 
gap 2t. We shall consider the low- and high-T limits of r. The 
explicit expression for r in terms of J(w) is well-known from 
polaron theory. 

r = 1/,6261d7 e-i2er[&(T) - 11e-N)) (141) 

where 

$47) = ?$-dw ””[ i sin w7 + cos w7 coth - ”1 (142) 
A 0  u2 2 

In the high-T limit $(7) - $(O) is related to the memory function 
K(7) associated with the classical double well coupled to an os- 
cillator 

4(7) - 4(0) = 4’x‘dl’K(t) - L$Tdtl SDf’dt, K( t2 )  (144) 
A PA 0 

Of course, under those circumstances for which only the short-time 
behavior of 4(7) is important, e.g., where K(7)  has a short cor- 
relation time 

4 i  4 
A PA 

$ ( 7 )  - $(O) = -a7 - -a72 (145) 

where a = SO”J(w)/w dw. This yields for r the classical Arrhenius 
behavior: 

At low temperatures, the precise form of the cutoff in J ( w )  
enters. Using the exponential form which has been used 
throughout this section, and leaving out the well-known but delicate 
details, we find for Ohmic J(w) 
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where y(x) is the gamma function, agreeing with Leggett et al.9 

VI. Conclusions 
There are a number of conclusions that may be reached from 

our study of the influence of a medium on the tunneling in a double 
well. First, static and dynamic asymmetries are additive in their 
effects, in both the binary collision, dilute gas, and the harmonic 
oscillator medium cases. Second, the role of a small asymmetry 
of the wells in the tunneling dynamics is only quantitative at finite 
temperature as long as one is not in a region where the tunneling 
amplitude dCff vanishes. When 6,, is zero as in the Ohmic density 
of states case at a > 1, the low-temperature tunneling dynamics 
of the asymmetric well is qualitatively different from that of the 
symmetric well. 

In the symmetric case at  T = 0, the localization is total in the 
renormalized golden rule limit, but absolutely symmetric. That 
is, if the system begins in IL) it stays in IL) forever. Similarly, 
if it begins in IR) it stays in IR) forever. In a sense we must say 
that localization really is not symmetry breaking. Any incoherent 
mixture of IL) and IR) could be created. It is just that their 
mirrors would be equally probable and stay in the original con- 
ditions forever. As Tis  raised, there will be incoherent tunneling 
from IL) and IR) and vice versa. 

When the wells are asymmetric, there is a golden rule rate that 
is spontaneous emission (plus induced emission at  higher tem- 
peratures) for a transition from the higher energy well to the lower 
energy well, and induced emission backward, exactly like the 
Einstein A and E coefficients. Like the symmetric case bCrr = 0 

ARTICLES 

has rendered everything incoherent, but the broken symmetry has 
created populations that incoherently tunnel into one another via 
the transformed interaction. At zero temperature, since only 
spontaneous emission can occur, the higher energy state alone 
decays, and the lower state is stable forever. Thus, the medium 
has truly broken the mirror symmetry; for in the absence of the 
medium, even through the tunneling is asymmetric, the mirror 
tunneling is identical. At zero temperature in the asymmetric 
well, when 6,ff = 0, the medium has truly destroyed the mirror. 

For many physical systems of interest to physical chemists and 
condensed matter physicists, the bath is not Ohmic; thus, the 
behavior of the dynamics of a tunneling system interacting with 
a bath is relatively straightforward. The methods we have reviewed 
in this paper provide a good description of this behavior. 

We stress that there are a number of other methods that may 
be used to derive the results presented here. In addition, the 
systems for which these methods and concepts are applicable range 
from high-energy processed2 to macroscopic quantum  mechanic^'^ 
to good old fashioned NMR.I4 
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Self-consistent field calculations have been performed on the compounds FNO, ( X  = 1, 2, 3) using 4-31G, 6-31G*/MP2, 
and PDZ/MP2 basis sets. Dipole moments, Koopmans' ionization potentials, and predicted geometries are reported. The 
predicted relative stability for FN02 isomers is FN02 > c-FONO > t-FONO. FONO2 is predicted to only slightly prefer 
a planar configuration in agreement with experiment. The FONOl isomer is more stable than FOONO by about 40 kcal/mol. 

Introduction 
The halogens play an important role in the chemistry of the 

atmosphere, In most investigations, chlorine has been the center 
of attention since it is the catalyst of the well-known c10 Ozone 
depletion cycle 

However, it is evident from atmospheric measurements' that 
fluorine, bromine, and iodine may also be important in atmospheric 
chemistry. Bromine is Predicted to Play an important role in the 
chemistry of the stratospheric antarctic ozone hole.'*2 A primary 
constituent of the oceanic troposphere is CH31, which yields the 
iodine atom upon photolysis by the sun.3 It is well-known that 
C1 and C10 react with several nitrogen oxides to produce ClNO, 

( 1 )  McElroy, M. B.; Salawitch, R. J.; Wofsy, S. C.; Logan, J. A. Nurure 

(2) Tunk, K. K.; KO, M. K. W.; Rodriquez, J. M.; Sze, N. D. Nature 

(3) Chameides, W.; Davis, D. D. J .  Geophys. Res. 1980, 85, 7383. 

c1 + 03 - c10 + 0 2  

C10 + O3 - C1 + 2 0 2  

2 0 3  - 3 0 2  (London) 1986, 321, 755. 

(London) 1986, 322, 8 1 1 .  Georgia Institute of Technology. 
*Atlanta University Center. 
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