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Variational approach to the Davytiov soliton
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The soliton states suggested by Davydov as approximate solutions to the Schrodinger equation
for one-dimensional systems are examined from the standpoint of the variational principle. We
show that the correct equations of motion are, in general, difFerent from those proposed by
Davydov. In addition, we comment on the time evolution of these states.

I. INTRODUcmxON

In a classic study of energy transport in one-
dimensional exciton systems with exciton-phonon cou-
pling, Davydov' has proposed a soliton as a particular-
ly efficient transport state. Experimentally, Scott and
Careri et al. have exanuned crystalline acetanilide and
have discussed the results using Davydov's model. Alex-
ander and Krumhansl have also examined this system
theoretically. In this paper, we concentrate on the
theoretical situation, in particular, the derivation of the
dynamical equations. We derive a new set of equations,
different in some respects from Davydov's equations, and
show that these repair some of the problems of the latter.
Davydov's method is to guess a functional form for the
trial wave function which has a number of parameters.
By identifying these parameters as "momenta" conjugate
to other "coordinates" in the problem, he is able to write
the equations of motion for these parameters in the form
of the classical Hamilton equations. This procedure has
been criticized by Brown et al. ' and shown to have
flaws. In this paper, we examine this problem anew, and

by using the variational principle of time-dependent
quantum mechanics ' we derive corrected equations of
motion for the parameters in Davydov's trial wave func-
tions.

The system consists of molecules on a one-dimensional
lattice with nearest-neighbor separation a. The Hamil-
tonian for this system is

q =e iqnagq=(g q}n

In these forms, a„t(a„) create (destroy) an excitation on
molecule n, J is the resonant-energy-transfer matrix ele-
ment between nearest-neighbor molecules, p„and u„are
the momentum and displacement operators of the mole-
cule at site n, bq (b }create (destroy) a quantum of vibra-
tional (phonon} energy of wave vector q with frequency
coq, ni is the mass of the molecule, k the intermolecular
constant, and finally y(yq ) is the exciton-phonon cou-

pling constant. The local [Eq. (la)] and extended [Eq.
(lb)] forms of H are related by
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Davydov suggested two trial wave functions which we
call, following Brown et al. , ~D, (t) ) and ~Dz(t) ) given

by

~D, (t)}=g A„(t)a„exp g[Pq„(t)b, —P;„(t)bq] ~0)

2

H= g ea„a„+J(a„+,a„+a„a„+,)+
2m and
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+—,'tt(u„+, —u„)z+ya ta„{u„+,—u„,)

or, more generally,

H= +[ca„a„+J(a„+,a„+a„a„+,)]

{la) ~Dz(t) }= g A„(t)a„exp ——g[y (t)p
n m

(3b)

where

+ +fico btb + gyqfttoqa a (bq+b q) (lb)
q, n

Note that the phonon part of ~Dz(t) } is independent of
the site of the excitation n, while the phonon part of
~D&(t)) depends on n The next .step in the Davydov's
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procedure is to identify ifiA„' and i AP»„as the momenta
conjugate to A„and P»„ for ~D, ) and iAA„' and II„as
the momenta conjugate to A„and y„ in ~D2). Finally,
by identifying the Hamiltonian function as the expecta-
tion value of H over either ~D, ) or ~D2), Davydov as-
serted that the evolution of the parameters is described
by Hamilton's equations. This leads for ~D, ) to

in'„= (D) IHID, ) —= (H ), ,
aA„* ' ' =aA„'

variational method described by Langhoff et al. based
on the Frenkel variational method.

Since we are using the variational method, we must in-
sert the condition that the trial state vector be normal-
ized at all times, i.e.,

Thiscondition for either ~D&) or ~D2) reducesto

g A„'(t) A„(t)=1 .

iAA'=—
n

i AP»„=

„&H), ,
n

&H&, ,

(4a)

We therefore introduce a constraint into the variation,
Eq. (6), which now becomes

iAP»„=—

and for ~D2) to

qn

&H&, ,

iAA'=—
n „&H&, ,

n

Vn „(a),,
n

if&A„= (H)z,
aA„'

(4b)

where the role of the Lagrange multiplier A, is discussed
below.

We may now derive equations of motion for the pa-
rameters A„, A„, P»„, and P»„ in ~D& ) and A„, A„, y„,
and II„ in ~Dz) by substituting the form of these trial
state vectors for ~f) in Eq. (9) and performing the varia-
tions with respect to these assumed independent parame-
ters. The equations which replace Eq. (4) are

a&a), =i'
BA„'

rr n &a), .
Vn —

A, A„,
From these starting points and making some further ap-
proximations, Davydov obtained his soliton solutions. '

Recently, Brown et al. ' have shown that the two as-
sumptions of this method [(i) the form of the state vector
and (ii) the equations of motion] are not equivalent to the
Schrodinger equation. In particular, these authors show
that the time evolution of ~D, ) or ~D2) found from
Schrodinger's equation is different from that implied by
(4a) and (4b). That is, these authors found that
~4;(t) ) =e ' ' ~D;(0) ) is different from ~D;(t) ).

In this article, we use the variational principle of quan-
tum mechanics to derive new equations of motion for the
parameters of the trial state vectors. By doing this we
avoid the second of Davydov's assumptions while keep-
ing the first. We will comment on the form of the trial
states later in this article.

II. VARIATIONAL PROCEDURE

The Schrodinger equation,

Hly) =i~—ly&,
a
at

can be derived from the principle of least action

(6)

if we allow ~P) and (P~ to be varied independently with
the requirement that the variations at the end points van-
ish (see Appendix A). This procedure is equivalent to the

q
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In these equations, we have defined the following:

and
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&H &, =&D, IHID, &

= g EOA„' A„+ g QA„A„fico p'„p „
q n
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q, n
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where J„,J„are defined as
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equation. They point out that the solutions of these and
Davydov's equations differ only by a time-dependent

phase factor, so that although the soliton solution would
still be obtained, differences in some of their predictions
compared to those of Davydov may occur.

We can examine the general validity of the form of
ID, (t) & and ID&(t) & by looking at limiting cases. There
are two limits in which the dynamics of the problem can
be solved exactly: (a) J=0, general yq, i.e., no exciton
motion and (b) yq =0, general J, i.e., no exciton-phonon
interaction.

In the case J =0, Brown et al. showed that
Davydov's approach applied to either ID, & or ID&&

failed to reproduce the exact dynamics. We now show

that our approach, embodied in Eqs. (10) applied to ID, &

yields the exact dynamics in this case.
By setting J =0 in Eqs. (10a},we get

so A „+ g Acoq (Pq„Pq„+gq Pq„+yq 'Pq„)
q

=i' A„—+iAA„Q ,'(P'„P—„P„P—'„)—A, A„,
dj

where

8'= —,
' g —II„+s(y„—y„ i)

1

n

We emphasize that the above set of equations is con-
sistent with quantum mechanics. Whether their solution,
for the initial condition ID, (0) & or ID&(0) &, agrees with
the exactly propagated state depends absolutely on the
proposed structure of the trial state vector.

If, for example, the trial state vector were given as a
sum of a complete set of states of the Hilbert space of the
Hamiltonian 0, with arbitrary coeScients, the set of
equations obtained with the present method (which
would have the form of Hamilton's equations) and those
obtained by using the Schrodinger equation and the
orthogonality condition of the basis mentioned, would
only differ by the inclusion of the Lagrange multiplier.
This, in turn, implies a shift of the zero-point energy or
an overall constant phase factor, which is of course ir-
relevant. For an arbitrary trial state this is not necessari-
ly true: the role of A, has to be assessed once the solution
is obtained.

By multiplying Eq. (11) by A„' and then subtracting the
result from its conjugate, it is easy to show that

(A„*A„)=0, i.e. , A„'(t)A„(t)=const,d
dt

(13)

so that Eq. (12) becomes

iris') A„'A„(P „+yq)=A„'A„ilPq„,

whose solution can be written down immediately:

(14)

P „(t)=e 'P „(0)—g„(1—e ' ) . (15)

By substituting Eq. (15) into Eq. (11), we obtain a linear
differential equation for A„,

A„= / g co

Iraq

l
cosco t A„

d(A„'A„)
ficoq A& A (Pq&+g~& ) i%A& A&Pq&+ &'ifiP

dt

(12)

III. COMPARISON TO EARLIER WORK

Comparing Eqs. (10} with Davydov's equations Eqs.
(4), we see evident differences. Note that for ID&(t)&,
Eqs. (lob) have been derived by Kerr and Lomdahl" also
using quantum-mechanical principles by assuming the
ansatz state to be the exact solution of the Schrodinger

—A„—' y ~,[P,„(0)qq" " '+P;„(Oh'„e'"'~
q

i (co+A). .

+i A„g co, Iraq„
I'—

q

whose solution is

(16a)

A„(t)= A„(0)exp i g lyql —simo t+i glgql coq-
q q

+ —,
' g [P,„(0)yq„*(e ' —1)—P,*„(0)yq„(e ' —1)] . .

q (16b)
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(D (t)~e ' '/"~D, (0})=1 .

In Appendix B, we show that

e iHt/s—)(D (0) ) —
eight/i)~D

(t) )

(17)

that is, they differ by a phase factor, so they represent the
same physical state at all times.

The fact that Eq. (10a} yields the correct Schrodinger
dynamics for the wave function in the limit J=0 con-

In order to show that ~D((t}) with Eqs. (15}and (16}is
the solution to the Schrodinger equation with initial con-
dition ~D) (0)), we only need to verify that their overlap
equals unity for all times, i.e,

trasts sharply with the dynamics embodied in Eq. (4a),
which as Brown et ai. ' have shown, yields incorrect re-
sults when applied to this limiting case. The reason for
this discrepancy lies in the very different way the terms
A„A„(the probability of the excitation being on site n)

appear in Eq. (4a) and Eq. (10a). We note that for the
general case, J&0, these terms are responsible in
Davydov's equations for the interesting dynamics of the
soliton. '

We now turn to the other limiting case mentioned
above, that of no exciton-phonon interaction, yq=O.
The initial wave function ~D2(0}) represents the direct
product of a coherent phonon state and a general exciton
state; therefore, it will retain its form under the time evo-
lution of the Hamiltonian with yq =0. That is,

~Dz(0)) = g A„(0)a„~O),„exp g [y (0)p —II (0)u ]
n m

A (0)a ~0) „exp + g [Pq(0)bq Pq (0)bq ] ~0)&),

with

Pq =(2fiMNco ) g [Mco y (0)+iII (0)]e

Note that the phonon state is independent of the exciton state for all t. The exact dynamics for yq =0 is straightfor-
ward,

e ' '~Dz(0))= g g —A (0)e'"" e ' + '"' a„~O) „exp —g[Pq(0)e q
bq Pq(0)e q b—q] ~0)zh . (20)

n m, k q

This agrees with the solutions to Eq. (10b) [as well as Eq. (4b)]; therefore, the variational approach (and Davydov's ap-
proach) yields the exact dynamics for this wave function.

When we turn to the dynamics of ~D) ) in this limit (i.e., J&0}we find that neither Davydov s approach nor the vari-

ational approach can yield the exact dynamics. This can be seen by examining the exact time-evolved state:

e ~D((0) ) =e ' g A„(0)a„exp g [Pq„(0)bq Pq„(0)bq] ~0)
q

[Note that ~D, (0) ) cannot be factored into a simple direct product of an exciton state with a phonon state. ] Thus

e ' ~D)(0})= pa g —g e ' " e ' + A„(0)exp g [Pq„(0}e bq Pq„(0)e bq] ~0) (22)
m n k

—)/2lt) (0)l q„(0}

1=0
(23)

where we have expanded the exponential phonon operator and written

(t)— —'
( —

)
—l(r+ o )1

n —m
k

(24)

If we compare this to the assumed form of ~D, (t) ),

~D)(t) ) = g A (t)a exp g [Pq (t)bq Pq (t)bq] ~0)
q

(25)

= g A (t)at g e ' g, (bt)'~0),
m q 1=0

(26)
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we find that there is no way to make (23) and (25) equal
(unless J=0, which is a trivial case) unless P is in
dependent of m in which case ~Di(0) & becomes identical
to ~D (0) &.

Thus the exact dynamics of the problem for y=0,
J&0, cannot be represented by the Davydov D, ansatz
for the wave function and neither Eq. (4a) nor Eq. (10a)
can yield exact results. Another way of saying this is that
if the wave function has the form ~D, (0) & at t =0, it does
not retain this form for t )0 if y=O and J+0, and thus
the D, ansatz fails.

IV. CONCLUSIONS

There are two different components of Davydov's
theory of soliton transport in one-dimensional coupled
exciton phonon systems. The first is the form of the wave
function (either ~Di & or ~Dz &); the second is the set of
equations describing the time evolution of these wave
functions. In the present paper, we have examined both
of these components using a variational approach; we
find the following.

(i} The equations of motion for the parameters in
Davydov's trial wave functions are different from those
suggested by Davydov. ' In particular, the equations
using ~D, & are much more complex than believed hereto-
fore. Those for ~Dz& are found to be as given by Kerr
and Lomdahl. "

(ii) In the limit that J=0 (no exciton transport), the
new equations of motion for the parameters in ~D, & are
exact and lead to the correct state at all times, while the
equation of motion suggested by Davydov yields in-
correct results in this limit.

(iii) In the limit of no exciton-phonon interaction, the
ansatz ~D, & for the wave function cannot yield the exact
dynamics since this wave function does not retain its
form under the exact time evolution. On the other hand,
~D2 & can yield the exact dynamics, and both the varia-
tional and Davydov approaches to the dynamics yield
this correct answer.

Thus, neither ansatz for the wave function ( ~D, & or
~D2&) can yield the exact dynamics in both limits dis-
cussed in this paper; however, either (or both) form may
be useful in describing the dynamics away from these lim-
it. We believe that the new equations of motion for the
evolution of these wave functions, derived by a time-
dependent variational method consistent with the princi-
ples of quantum mechanics, are more general than those
derived by Davydov, and will be useful to describe the
dynamics in this interesting system.
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APPENDIX A

In this appendix we review how the time-dependent
Schrodinger equation can be derived from the principle

of least action in its Hainiltonian form, i.e., Eq. (6).
Let 8be the Hamiltonian of the system

(Al)

where f' is the kinetic energy operator and P' the poten-
tial energy term. We consider only time- and/or
velocity-independent interactions.

The Schrodinger equation is

(A2}

or in the position representation, with f(x}=(x~f& be-
ing the wave function

V f(x)+ V(x)g(x)=i' P(x)—.8
2m

(A3)

Now, by defining a Lagrangian density

L(li~(x), f(x)}=i%/'(x)g(x) —(iri /2m)VQ'(x) Vg(x)
—V(x )1i~'(x }f(x}, (A4)

Eq. (A3) can be derived from the principle of least ac-
tion' by considering P(x) and P(x) as independent:

5f dt fdx L(x)=0, (A5)
1

with 5$=5|t=0 at the end points.
Since we are interested in its Hamiltonian form, we

first find the canonical conjugate momentum to g(x):

II(x)= . L = iAP'(x),
5$(x)

then, the Hamiltonian density is

(A6)

H(g(x), iirig'(x)) =L(x)—ikey'(x)g(x) (A7)

or

11(x)
" V'y(x) —11(x)P(x)y(x)
2m

(A8)

where we have already performed an integration by parts
on x.

Using Eq. (A8), the Schrodinger equation follows from
the variational principle in the form

t2 a5f dt f dx H(x) II(x)—P(x) =—0
at

(A9)

E2 asf dt g H —IR—g)=0.
Bt

(A 10)

Hence from Eq. (A10) we can formally assume that, by
varying ( g~ and

~ 1( & independently, we obtain the
Schrodinger equation, Eq. (A2).

by varying II(x), or g (x), and P(x) independently with
the variations vanishing at the end points.

Now, by disposing of the x representation, Eq. (A9) be-
comes
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We show here that

APPENDIX B H = U HU = g eoa„a„+g %to b bq
q

—gfuu~lyql a„a„. (B3)

I@(t)) e
—iHt/AID (p) ) ikt /A'ID (p) )

q, n

(Bl) We may therefore write

by using the fact that the Hamiltonian, given by Eq. (lb),
can be diagonalized by the transformation

l@(t)&=UUte ' ' "UUtlD, (0))
—iHi/AUtID (0) ) (84)

U = exp —g (gq b yq'—b )it a
q, m

(B2)
Now, we note that

ID&(0)) = QA„(0)at exp g [P „(0)bq Pq„—(0)bq] IO)

That is, so that we may write

UtlD|(0)) =U g A„(0)atUU exp g [Pq„(0)bq Pq„(0)bq] UU Ip)
q

However,

U a„U=a„exp g(yqb yq'b —)

q

and

U bqU=bq gyq ata

(B5)

(B6}

(B7)

Noting that U Ip) = Ip) and a a IO) =0, we find

U ID, (0))= g A„(0)a„exp + g(yqb yq*b )—exp + g[P „(0)b —P'„(0)b ] IO) .
q q

(BS)

Returning to Eq. (B4) and noting that the evolution of
Qp bq and bq are simple under the Hamiltonian H, we

may write

I

IQ(t)) —Ug A (p) t int n — n Utlp) (B13)

= g A„(0)a„e " e '"'e " e " IO), (B14)
I4(t})=Up A„(0)a„e '"'e " e " IO),

where

(B9)

(B10)

using a~a IO) =0 again. We must now combine the ex-
ponentials F„(0), F„(t), and G„(t) which do not com-
mute. However, since the commutator of any two is a c
number, we have

and

F„(t}=g(yqb e ' y„'bqe '—},
q

(B1 1) —F„(0) +F„(t) G„(t)
e " e " e

= exp[ —F„(0)+F„(t)+G„(t)]

G„(t)=g [P „(0)b e ' P'„(0)b e —' ] . (B12) X exp j + —,
' [F„(t),G„(t)]——,

' [F„(0),F„(t)]

We may now insert U U = 1 in front of Ip) in Eq. (B9) to
find (noting Ulp) = IO) ) Thus

—
—,'[F„(0),G„(t)]I . (B15)

e " e " e " = exP g [[Pq„(0)e +g„(e ' —1)]bq [Pq„e q +g—„(e ' 1)]bI—
q

X exp g [ —,'[y„p „(0}(1—e ' ) —y„p „(0}(1—e ' )]——,'Iraq l (e —e
q

By substituting (B16) into (B14) and comparing to Eqs. (3a), (16b), and (15), we find

l@(t}&=e'"""ID(t}&

' )] . (B16)

(B17)
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