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The connection between the vibronic picture of Raman scattering and the third-order perturbation approach in solid-state 
physics is clarified. Starting from the Kramers-Heisenberg-Dirac formula for Raman scattering, we derive analytical expressions 
for the Condon and Herzberg-Teller terms for polyacetylene in the solid-state limit. Close to resonance the Condon term domi- 
nates and converges to the usual solid-state result. In the off-resonance region the Herzberg-Teller term is comparable to the 
Condon term. in contrast to the small molecule case. 

1. Introduction 

Raman scattering is one of the most important methods for probing the microscopic structures of molecules 
and bulk materials. It is evident that the language for the description of Raman scattering in different fields 
is quite different. For example, in the vibronic approach [ 11, used conventionally for molecules or polymers, 
the Raman cross section is expressed as a sum of Condon and Herzberg-Teller terms. The parameters of excited 
states appear explicitly in the vibronic picture of Raman scattering. In another approach, used primarily in 
solid-state physics [ 21, third-order perturbation theory in the electron-radiation and electron-phonon inter- 
action is used to derive the Raman cross section. The parameters of excited states are hidden in the electron- 
phonon coupling constant &. Although it is generally believed that these two methods are equivalent to each 
other, there have been very few attempts to examine the connections between different descriptions [ 2,3]. 

By studying the simplest one-dimensional model system - polyacetylene, we show the connection between 
the vibronic picture of Raman scattering and the standard third-order perturbation approach in solid-state 
physics. In contrast with the results obtained by Cardona [ 21 and Kurti and Kuzmany [ 31, who claim that 
only Herzberg-Teller terms contribute to the Raman cross section in the solid-state limit (since the potential 
surface for the excited states and ground state are nearly the same and thus the Frank-Condon overlap for 
different vibrational states in the Condon term vanishes), we find that both Condon and Herzberg-Teller terms 
have the same leading behavior in N, the number of unit cells, as N goes to infinity. Higher-order Raman scat- 
tering is not important in the solid-state limit since these contributions are of lower order in N. As a function 
of incident laser frequency however, the most resonant term for the Condon contribution is proportional to 
(o,-E8)-“‘, which has the same singular behavior near resonance as that found by third-order perturbation 
theory [ 41. The frequency dependence of the most resonant Herzberg-Teller term goes like ( oL-Eg) - ‘12, much 
smaller than Condon terms in the resonance region. Far from resonance, the Herzberg-Teller term for large 
N is comparable to the Condon term, which is different from the picture of small molecules. 

Correspondence to; R. Silbey, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02 139, USA. 

0009-2614/92/$05.00 0 1992 Elsevier Science Publishers B.V. All rights reserved. 117 



Volume 197, number 1,2 CHEMICAL PHYSICS LETTERS 4 September 1992 

2. Raman cross section 

The vibronic approach [ I] for Raman scattering starts from the standard second-order perturbation theory 
in the system-radiation interaction. The amplitude from vibronic state 1 mG) to 1 nG) within the adiabatic 
approximation is W=A+B+ . . . . A and B are the so-called Condon and Herzberg-Teller terms respectively, 
which are given by 

(1) 

1 
X + 

I 

%v,Gm -% +iY > wE&Gn + WL + iY ’ 
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where psE = ( G( Q,,) I p I E( Qo) ) is the dipole transition moment between crude adiabatic states I G( Q,) ) and 
I E( Qc,) ) , and I mG) and I uE) are vibrational states on the ground and excited potential surfaces, respectively. 
In obtaining the separation of the Raman amplitude into the A and B terms, the Herzberg-Teller expansion 
for the transition moment around the equilibrium configuration of the ground state has been made: 

P~G(Q)=P~G(Q~)+PLGG(Qo)(Q-Qo). 
For simplicity, we neglect the two-dimensional structure for a polymer with 2N carbons, then there is only 

one optical phonon with K=O coupled to electronic degrees of freedom, which is given by QKco= l/ 
,/%I, (dj’) -d,‘*)) and d,“) and d,(*’ are the displacements of the single and double bond in jth unit cell, 
respectively. The subscript K=O will be dropped later without confusion. Generalization to the multimode case 
is straightforward in the absence of Duschinsky rotation which allows the normal modes of the excited state 
to differ from those of the ground state [ 31 #I. 

2. I. Condon contribution 

In order to calculate the Frank-Condon overlap, the excited state potential surfaces are approximated as 
simple displaced harmonic oscillators #2 Hence, the vibrational wavefunctions of the excited states can be ex- . 
pressed as 

IVE)=exp(-iZEP/fi) I~G)=l~G)-i~jvG)-~ IvG)+ . . . . (3) 

where & is the displacement of the excited I E( Q) ) with respect to ground state potential surface along the 
normal coordinate Q and P=ds i( a-a + ) is the displacement generator. The first term gives only 
elastic scattering, while second and third terms correspond to one- and two-phonon scattering, respectively. In 
the large N limit, the displacement AE= -k,’ (L??.JaQ)ao, where kG is the force constant for the K=O mode 
in the ground (and excited) state and EB is the energy gap. For polyacetylene, AEOC N -‘I2 #3. Since the higher- 
order Raman scattering is of the order N -I, only the linear term in IzE needs being considered in this limit. 
The A term is then given by 

” Duschinsky rotation could be important for the linear chain with N close to 25-35 as been observed by Kuzmany. 

‘* We have shown numerically that the excited state potential surfaces of the finite polymer chains are close to simple displaced harmonic 
oscillators when N> 50. 

a3 More exactly, 1= - (4f,/&BB)N -I”, since the energy gap Eg= 4t& in the small x0 limit. 
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where w,, is the energy difference between the two potential minima, and w, is the vibrational frequency. Since 
only electrons around Fermi surface most strongly interact with phonons in the large N limit, AE can be ap- 

proximated by the electron-phonon coupling constant, ;I, of the LUMO (lowest unoccupied molecular orbital), 

which is of b, symmetry #4. Using IZPA and the orthonormal property, (v,] m,) =d,,, the A term can be 
simplified to 

(5) 

where ws = or- w,, is the scattered light frequency for the Stokes Raman line and os = w,+ o, for the anti- 
Stokes Raman line. Define the function fA (w) as 

The Condon term can then be written as 

A=~(ncliPlm,)va(WS)-fA(WL)l. (7) 

Far from resonances, both wL-oEG and os-oEG are much larger than the phonon frequency w,, the finite 

difference in eq. (7) can be replaced by a derivative with respect to wL. Then we find the following expression 
for the Condon term of the Raman amplitude: 

(8) 

which is similar to that found in the solid-state literature [ 21. Eq. (7) together with eq. (8) are generally true 

for any large system in all dimensions. 
Consider a polyene of N unit cells with periodic boundary conditions and with the n: electronic wavefunctions 

calculated by the Htickel theory (or the tight-binding approximation [ 3,5-71). The resonance integrals are 
assumed to be an exponential in r: /3(r) =Agexp( -r/B,). Diagonalizing the secular equation, we obtain the 
eigenvalue for the one electron state I k) : wk= (Bf + j?$ + 2BIj?2 cos ku) I”, where 8, and BZ are the resonance 
integrals for the single and double bond, respectively, and a is the length for a unit cell. 

In the large N limit, fA ( wL) can be replaced by an integral over the first Brillouin zone, 

f,(w~)=‘N~ ~ dklR(k)~2(2wk_~L+iy- 2wk+loL+iy) 

-n/a 

410 coah xo 

=2N; j 

410 sinh xo 

d~Nci(~)IQ(~)12 c_;+iy - 
( 

(9) 

where Nd( E) is the joint density of states, t( =20k) is the transition energy at k, and to and x0 are defined by 
to=A, exp( - a/2BB) and x0= iBal (r, - r2), respectively. In deriving eq. (9) from eq. (6), we have replaced 

94 Due to the square-root singularity of the joint density of state at the Fermi surface for the onedimensionai system, the replacement 
of I, by 1 is a good approximation in the large N limit. 
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the summation over many-electron wavefunctions I E) by the summation over single-electron wavefunctions 
I k) and the transition matrix element (E I p I G) by L?(k), which is given by L2= iae-2 (/Ii - /?z). The main 

contribution to eq. (9) comes from the critical regions in the joint density of states which are defined by the 
condition de(k)/dk=O. For polyacetylene, the critical point is at Fermi surface (i.e. k,=x/a). We make the 
parabolic approximation [ 21 around the Fermi surface for the energy band, so that the joint density of states 

(including spin degeneracy) can be simplified to Nd(~)=~-‘(tm)“2(~-E,)-“2~(~/~~), where m( =A2x 
sinh x0/a2t0) is the reduced mass of the interband transition, EB( = 4to sinh x0) is the energy gap, and e(x) is 
the Heaviside step function. fA (0) can be evaluated for y-*0+: 

where 

g(x)=x-4[-x-~x3+(1-x)-“*-(1+x)-“2] (11) 

and & ( = toa/fi) is Fermi velocity for undimerized polyacetylene. The signs of the squares roots of eq. ( 11) 
are determined by drawing a cut in the complex o plane from o=O to --03. The Raman amplitude is pro- 
portional to the derivative offA with respect to the laser frequency: 

#i(m) 

dw_ 
(12) 

where 

h(x)=x-4[3+ix-4x-‘(1-x)- “2+4x-‘(1+x)-“2+$(1-x)-3’2+~(1+X)-3’2]. (13) 

Close to resonance, fA ( wL, E,) =fA ( wL - E,); hence, dfA ( oL) /do,= - dfA ( oL) /dE,. The most resonant term 

of fA goes like (Eg-wL)-“2, so that the singularity for dfA(aL)/dWL goes like (Eg-wL)-3’2. This result is 

consistent with the Horovitz result from the Green function approach for polyacetylene with infinite chain 

length (see fig. 1). Far away from resonance, i.e. normal Raman scattering, we have h(x) x 0.49+ 0(x2) as 
x-0. 

2.2. Herzberg- Teller contribution 

The Herzberg-Teller contribution comes from the dependence of the electronic transition moment on the 
nuclear coordinate. Following the similar procedure for the Condon term, we obtain 

B=2(MQl%>2N; 7 dkQ(k)(d$7, (2L0, + 2$tOL) 
-a/a 

to the lowest order in N, where 

(““Jx’), = - &N-$ (cash 2x0 -2 sinh22xo 5). 

(14) 

(15) 

A factor of 2 in eq. (14) comes from the neglect of the phonon frequency w, relative to the laser frequency 
for this term. The leading term of the dLJ( k)/dQ as N-+cz is proportional to N-‘/2, which is exactly the same 
as the asymptotic behavior of ,I in the Condon term. Hence, to the lowest order in N, both Condon and Herzberg- 
Teller terms should be considered. As to which term is dominant in different spectral regions, we must compare 
the coefficients of these two terms. 

The B term can be simplified to 
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where 

M(t)= a2 Et 
16B& e4 

1+2X&25 
> 

(16) 

(17) 

in the small x0 limit. The transition element vanishes in the equal bond length limit (i.e. x0= 0), as seen from 
the one-band picture for the undimerized polymer, where the selection rule d(ka- k’a?n/2N) for the inter- 
band transition restricts the transition rate to be zero. Note that the formula (41) given by Kurti and Kuzmany 
[ 31 does not go to zero in this limit. Making a quadratic approximation for the energy band, the Herzberg- 
Teller term becomes 

(18) 

where 

fB(~)=~-4{-f-4x~+4x-2+(~-~x~)x2+(1+2x~-2x-2)[(1-x)-“2+(1+~)--’2]}. (19) 

The resonant term in the Herzberg-Teller contribution goes like ( Eg - wL) - ‘I2 This singularity is weaker than . 
the Condon term in the resonance region, while far off resonance, we have 2&(x) = -0.66+ 0(x2) as x+0, 
which is slightly larger than the contribution from the Condon term (see fig. 1). For small molecules far from 
resonance Condon terms are larger than Herzberg-Teller for totally symmetric modes since the Condon term 
corresponds to the diagonal element in the vibronic coupling, while the Herzberg-Teller term comes from the 
off-diagonal coupling between different electronic states [ 11. Except for nontotally symmetric modes, where 
AK (El (a*(Q) /CJQ)* I E) vanishes exactly, the A term is more important than the B term. However, since 
the displacement, 1, of the excited state vanishes as N-WXJ in the solid-state limit, is is then hard to estimate 
which term is dominant. Fig. 1 shows that the B term is slightly larger than the Condon term in the normal 

Fig. 1. Comparison of different contributions to the Raman ex- 
10-l - 

, ,.. 
,’ citation profile for a polyene with infinite chain length. The solid 

,’ 
,0-r _ ;’ 

line is the contribution from the Condon term calculated by eq. 
( 13), i.e. 1 h(x) 1, the dashed line is from the Herzberg-Teller 

,o” .i 
term, 2 Ifs(x) I, and the dotted line is the sum of Condon and 
Herzberg-Teller term, 1 h(x) - 2&(x) I. The dash-dotted line is 
the Raman profile calculated by the AMM theory [ 8 1. Note that 

104 ’ I 
0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2 we multiply the Herzberg-Teller term by 2 since the coefficient 

for the B term is twice of that of the A term except the dimension- 
x less factors h(x) andf.(x). 
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Raman region for polyacetylene, i.e. large N, which is different from the small molecule picture. 

3. Discussion 

Cardona [ 21 argues that the potential surfaces are nearly the same for the ground and excited states for the 
solids and large molecules. Therefore, ( nG] uE) =a,,, and no Raman scattering results from the A terms. But 

we have shown that the displacement of the potential curves, 13, in the A term and the derivative of the transition 
moment with normal mode Q, (dL!/dQ),, in the B term both go as N -‘12, as the number of unit cells N goes 

to infinity. The contributions of both terms to the Raman cross section ( a 1 L%? ) 2, are then proportional to the 
size of the system in the solid-state limit, in other words, both A and B are extensive quantities. Although the 
size dependence of the two terms is the same, the singular behaviors around and far away from resonance as 
a function of laser frequency are different. The A term is proportional to the derivative offA( o) with respect 
to the laser frequency, while the asymptotic behavior of the B term close to the resonance is the same asfA (w ). 
Hence, the resonant behavior for the A term is stronger than for the B term. The higher-order Raman scattering 

goes like Ln ( 1) which can be neglected in the thermodynamic limit, so that only the first-order Raman scattering 
is important when there are no impurity centers present. The connection between the vibronic picture of the 
Raman scattering and the third-order perturbation used by solid-state physics is now clear. It is the A term 

which converges to the solid-state limit in the resonance region even though the excited state potential surface 
is displaced only to 8 (N--I”) with respect to the ground state. Fig. 1 shows the dependence of 2 I&(x) I and 
I h(x) I on the incident laser frequency. Close to resonance, the Condon term is much larger than the Herzberg- 
Teller term due to much stronger singularity for the Condon term, while in the normal nonresonance Raman 
region, the Condon term is slightly smaller than the Herzberg-Teller term. In fig. 1, we also plot the result from 
the amplitude mode theory (AMM). The agreement with the Horovitz AMM [ 8 ] is very good in the resonance 
region since the singular behavior for the Condon term and AMM theory are the same at resonance. The dis- 
crepancy in the off-resonance region comes from the neglect of nonresonant diagrams in the Horovitz cal- 
culation. However, the AMM is only valid in the solid-state limit, while the vibronic picture is more general 
in the sense that it provides a way to describe Raman scattering for polymers from short chains to infinite 

chain length. 
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