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A model of low-temperature tunneling dynamics in a double-well system is studied. The various relaxation 
rates in the problem are computed as a function of the system-bath coupling strengths. An interpretation of 
frictional effects is made that permits comparison between the quantum tunneling system and classical and 
semiclassical barrier hopping models of excitation transfer in double-well systems. 

Introduction 

The dynamics of a tunneling system interacting with a heat 
bath of harmonic oscillators has been extensively studied in a 
model that considers the lowest two levels of a symmetric 
double-well system, with the coupling taken to be linear in both 
the system and bath Parris and Silbey5 treated 
the more general case of a tunneling system composed of two 
coupled sets of vibrational levels, thus allowing for excited state 
dynamics in the double-well problem. Here we study in detail 
a specific case of the problem treated by Parris and Silbey, 
namely the symmetric double-well system composed of four 
levels, with tunneling between the upper vibrational levels only 
(see Figure 1). In particular, we examine in detail the depen- 
dence of the various rates in the problem as a function of the 
coupling parameters that mediate the system-bath interactions. 

We wish to study this simple model for a variety of reasons. 
First, by providing solutions to the dynamics of the tunneling 
particle, complete with explicit expressions for the various rates 
in the problem, we can hope to make contact with experiments 
probing both the temperature and coupling strength dependence 
of low-temperature systems that contain an interplay between 
tunneling and vibrational relaxation.6 

Our study may also stand on its own as an example of a 
simple quantum system with relaxation properties that depend 
on both tunneling and vibrational dynamics. In this light, our 
system may be viewed as a quantum tunneling analog of the 
double-well extensions of Kramers p r ~ b l e m . ~ . ~  The classical 
Kramers problem treats the transport of a Brownian particle over 
a barrier due to interactions with a heat bath. The problem has 
approximate analytical solutions in two limiting situations. When 
the frictional coupling between the particle and the bath is small, 
thermal equilibration within the well is very slow relative to 
the dynamics of the particle near the barrier top. When the 
damping is large, the well is assumed to be in thermal equi- 
librium, and the rate-limiting step in the escape process is the 
flux near the barrier top. Thus, analytical solutions can be found 
when there is a clear separation of time scales between thermal 
well equilibration and escape dynamics near the barrier peak. 

Our model contains quantum analogs to classical well 
equilibration and barrier flux. In our model, intrawell vibrational 
relaxation mirrors the classical equilibration of the particle in 
the well, while tunneling between excited vibrational states is 
analogous to classical barrier flux. Frictional effects are 
introduced by coupling the particle to a bath of harmonic 
oscillators. We wish to show the similarities and differences 
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Figure 1. Energy level diagram of the tunneling part of the Hamiltonian 
(eq 1). j indicates the tunneling matrix element in the upper (n  = 1) 
vibrational manifold. 2j indicates the tunnel splitting of the upper 
vibrational manifold. 52 is the energy difference of the two manifolds. 
Ut and I/< are the intramanifold relaxation rates caused by interaction 
with the phonon bath. FOI and Flo are the intermanifold relaxation 
rates caused by the interaction with the phonon bath. 

between this simple quantum model and the classical Kramers 
problem. 

Recently, studies have integrated low-temperature quantum 
effects and classical barrier h ~ p p i n g ? , ~ ~ * ~ ~  These “quantum 
Kramers” problems include tunneling corrections to the classical 
rate of escape and show explicitly the crossover between the 
classical and quantum regimes. In contrast, we focus purely 
on the quantum dynamics, so that comparisons may be made 
with the analogous classical problem. 

The Hamiltonian 
Our Hamiltonian may be written as (h = 1) 

H = CWqataq  + QZ, + ~ a , ,  + voa0, + v1alz + V, (1) 
4 

where 

1, = lR,)(R,l + lL,)(L,I (2) 
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VR is the, as yet, unspecified vibrational relaxation term. Such 
a Hamiltonian is a four-level extension of the spin-boson 
Hamiltonian' that includes vibrational relaxation." Our Hamil- 
tonian models a double-well system consisting of left and right 
sites. Each site contains two separate vibrational manifolds. 
The manifolds are linearly coupled to the displacement of the 
modes of a bath of harmonic oscillators, with a coupling strength 
g,,, where q lables the mode of the bath and n lables the state 
of the vibrational manifold (n = 0, 1). The energy separation 
of the manifolds is given by Q, which is assumed to be larger 
than any other energy in the problem, with the exception of the 
cutoff frequency (oc) of the bath. Tunneling occurs only 
between excited vibrational levels. Vibrational relaxation is 
assumed to occur in the vibrational manifolds of a given site 
only (Le. the left and right sites are not vibrationally coupled). 
Figure 1 shows an energy level diagram of our system. 

In order to facilitate the calculation of relaxation rates in the 
problem, we perform a variational polaron transformation* on 
the Hamiltonian (eq 1). The unitary operator 

u = nflun; (n = 0, 1) (6) 

(7) 

effects the transformation. We will be concerned with calculat- 
ing the mean position of the tunneling particle, 

<Q<t>> = (ooz(t> + ~ ' , ( t>)  (8) 

Since uoZ and ulZ commute with U, we note 

We may thus define a reduced density matrix 

from which the dynamics of the tunneling particle are calculated. 
The transformation thus defines an appropriate zeroth-order 
Hamiltonian from which perturbation theory can be used. 

The variational constants fqn are chosen to minimize the free 
energy. In the absence of tunneling and the vibrational 
relaxation term, the Hamiltonian is diagonalized by the choice 
fqn = g,, (since there is no tunneling in the lower vibrational 
manifold,fo, = gofl). When the coupling of the tunneling system 
to the bath vanishes, f,,, = 0. In the general case we expectf,, 
to fall between these two limiting values, while providing an 
upper bound on the free energy. 

After switching to a basis 

the transformed Hamiltonian may be written 

where 

j = J erp[ -'2Tkr c o t h F ) ]  (22) 

(24) 
g 1 n  

flfl = 
(1 + c o t h ( q )  tanhwj)) 

and b (b+) is an annihilation (creation) operator for the mode 
of the bath responsible for vibrational relaxation (e.g. an optical 
mode of the lattice). For our choice of the vibrational relaxation 
term, VR, we keep only the energy-conserving terms and assume 
that there is a single mode in resonance with the transition 
energy Q.l0 To keep the discussion as simple as possible, only 
one-phonon terms are retained. In a more realistic treatment, 
multiphonon processes would be included.10 Note that y is a 
coupling strength with units of energy. 

The vibrational (one-phonon) part of the Hamiltonian is 
postulated in a specific form after the unitary transformation is 
made on the Hamiltonian. Since the thermal average of is 
zero, no modification of the fqn is necessary.* Our form for VR 
will clearly be accurate only in the weak-coupling limit for 
vibrational relaxation. In the strong-coupling limit, we must 
view our form of as merely suggestive of the physics we 
are trying to model. Furthermore, the vibrational scattering rates 
are limited by the vibrational energy splitting S Z .  Since these 
rates must be smaller than SZ (or else distinct vibrational states 
could not be resolved), we need not worry about incorrect use 
of weak coupling equations (Redfield equations) for all physi- 
cally acceptable values of y.  

The variational polaron transformation defines a partitioning 
of the Hamiltonian into "new" unperturbed (fro) and interaction 
(V + VR) parts. Note, however, that a large part of the original 
interaction may be contained in fro. This partitioning of the 
Hamiltonian makes the use of low-order perturbation theory on 
the "new" interaction part possible even in the strong-coupling 
limit, since much of the "old" interaction is placed into Ho. In 
our transformed picture, we note that the tunneling matrix 
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element (eq 22) is "renormalized" by a Franck-Condon factor,* 
which reduces the tunneling rate between sites. 
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Dynamics 
Standard Redfield theory" is used to find equations of motion 

for the population difference between states of the left and right 
wells: 

where o(t) is the time-dependent reduced density operator of 
the system. Defining 

we find, after invoking the usual Redfield-like  approximation^^,^^ 
(neglecting terms connecting states ll), 12) to states (3), 14) due 
to the rapid oscillation in the phase of such terms, and 
decoupling the population and the coherence variables), the 
equations of motion 

sox = -FOP, - FlGlx 

j l x  = -as,, - (t)k - ~ 0 1 ~ 0 ,  - FlOSlx 

Sly = W l ,  - ($,Sly - FOlSOy - FlGs,, 

j o y  = -F01soy - F l o s l y  

The expressions for the rates4 are given by 

1 
t 2 

1 1 
r' 

1 = rpd + -[ 1 + e - 2 ~ j ~  [r - r'] 

- = rpd + 1 + e-2D'~ [r + r '] 

rpd = 2Jm -_ dt (Y(r)Y(O)) 

r = J" -m dt e2"'(@+(t)@(O)) 

r' = Jm -m dt e2"'(@(t)@+(0)) 

F = ,-B[Q+IIA+ + ,-B[Q-JIA- 
01 

F,, = A+ + A- 

2 
A+ = $J-:dr (b(t)b+) ei[Q+J1' 

A- = $J: m dt (b(t)b+) ei['-jJr 
2 

Expressions for the vibrational relaxation rates are readily 
evaluated, 

x is a unitless vibrational coupling strength defined through the 
relationship 

where @(a) is the density of states of the bath at frequency Q. 
Note that we have approximated g(Q + j )  as g(Q) since s2 >> 

To proceed further in the determination of the coupling 
dependence of the various rates, we choose a spectral density 
of the form 

j .  

where A is a dimensionless coupling strength. This definition 
of the spectral density corresponds to that of a three-dimensional 
harmonic solid in the deformation potential approximation. 1,2 

The effective tunneling matrix element, j ,  can be expressed 

l ( w )  coth@o/2) dw 
j = J exp --I [ a (w + 2j  coth@0/2) tanh@j))2 

where J is the value of the tunneling matrix element in the 
absence of the bath. For this choice of the spectral density, the 
behavior of j is very simple. For small values of A, j % J .  
When A is large, j decreases to zero exponentially with 
increasing A. 

With the previous definitions, the pure dephasing rate can 
be expressed as 

where 

4 (cos(wt)coth@w/2) - i sin(wt)) 

(w + 2j  coth@w/2) tanh@j))* 
5(4  = ;J-:dw lm 

For small A 

8 j2a2 -do w6 ~sch~@w/2)(e-~"'l~' + 1) 
(w + 25 coth@o/2) tanh(~!?J))~ rpd % 

For large A, we evaluate eq 45 by expanding about the saddle 
point z = t + iCp/2) = 0 in the Cp, t )  plane. Under this 
approximation, the pure dephasing rate takes the form 

where 
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In the limit of fast interwell dynamics compared to vibrational 
relaxation, (j, 1 1 z >> F), we again find competition between 
coherent and incoherent population transfer. In this case, 
however, dephasing is faster, and the rate is essentially given 
by F,  the vibrational scattering rate. This is again indicative 
of the rate-limiting step, which, in this regime, corresponds to 
vibrational scattering between the ground and excited states by 
phonons. 

The physical processes in two limits discussed above resemble 
the processes that govern the high and low damping limits in 
the classical Kramers problem.* The similarities, however, are 
quite vague, due to the fact that there seems to be no simple 
analog to classical friction in this simple model. In the case of 
a two-level system coupled to a harmonic bath, it is well- 
kno~n’9’~  that a macroscopic (Markovian) friction parameter 
may be related to the coupling strength only when the bath has 
an ohmic spectral density ( j ( w )  - w for small 0). In this case, 
7, the macroscopic coefficient of friction, is proportional to A. 
In our model, the spectral density is “superohmic”, and thus 
the classical equations of motion for our particle would contain 
a memory term corresponding to a frequency-dependent friction. 
Furthermore, the introduction of vibrational relaxation (and thus 
an additional coupling parameter) further hinders the comparison 
to the classical Kramers problem. 

As a simple example, we can construct a model that shows 
some interesting similarities with the classical treatment. We 
will interpret the escape rate Res, as the rate of population 
transfer, as previously discussed. We assume that the bath has 
an ohmic spectral representation. Further, we assume that the 
relationship between the macroscopic friction parameter 11 and 
the coupling strength A is valid even when vibrational relaxation 
is possible. Lastly, as a simple and crude approximation, we 
assume that the coupling strength to the optical modes is equal 
to the average coupling strength to the acoustic modes. Thus, 
x2  = A. 

In this highly idealized model we find, for small friction (A 
= 7 << l),  an escape rate arising from the vibrational relaxation 
rate (see eq 43), 

Note that this rate has a familiar form identical to the hopping 
rate in the theory of the small p0lar0n.l~ It can easily be shown 
that, in the high-temperature limit for the bath (pw, << l),  the 
pure dephasing rate has the activated form 

(54) r = Ae-E/kbT 
Pd 

where A = (h/[ / [2(2WckbT)1/2]  and E = 2wch/x. 
We now compute the A dependence of the rates l / t  and l /d .  

Using the properties of thermal averaging of boson operators 
over an equilibrium phonon di~tribution,’~ we find 

.3 
r = %-2i’”c(coth@j) + 1) +j’J: m dt e2’ir sinh(&t)) (55 )  

wc n 

A similar calculation holds for r‘. In the small A limit, 

to lowest order in A. For large A, 

1 - 1 1  - Ae-BA ----- 
t 22‘ A (57) 

showing the same behavior in this limit as the pure dephasing 
rate (to lowest order in A). We see that, in both the small and 
large A limit, 1 1 t 1 1 d. This allows for great simplifica- 
tion in the solution to eqs 26-29 in these two limits. 

First we consider F >> j ,  11  t, Le. the limit of fast 
vibrational relaxation. Here we find (assuming sox(0) = 1 and 
all other initial values are zero) 

where we have let the fast transients that establish thermal 
equilibrium to the left well damp out. 

In the limit J ,  1 1 z >> F (Le. slow vibrational relaxation) we 
find 

Discussion 
The two limits considered above provide fertile ground for 

simple physical interpretation. First we must determine what 
constitutes the rate of population transfer in each case. 

In the limit F >> j ,  1 1  t, i.e. vibrational relaxation is fast 
compared to interwell dynamics, our solution exhibits two 
competing processes. The first is dephasing described by the 
damping rate (l/t)(&* + l)-l. The second is coherent tunneling 
with a rate 2j(dn + l)- l .  In most low-temperature situations 
for which F >> j ,  11  t (with a spectral density &w) - w3, 
realistic values for the critical frequency, wc, and A - &l)), j 
>> Ut. Thus we can consider the population transfer to be 
coherent and governed solely by j(A). This agrees with our 
intuition; when F >> j, 1 1  z, the system essentially starts out 
with an equilibrium Boltzmann distribution of population in the 
left well, and the rate-limiting step is the tunneling to the right 
well. 

For larger values of A (A > n/4) the tunneling matrix element 
j vanishes. The escape rate becomes ( l / t ) (dR + l ) - l .  Care 
must be taken in the calculation of l/z due to an infrared 
divergence in the integral. The result, valid for pw, >> 1, is16 

Res, 

Note that in both cases the rate shows a complex activation 
and that the rate increases for small friction and then turns over 
and goes to zero for large values of friction. In the limit n/(kbT)  
>> 1, the escape rate in both the small and large A limits show 
approximate Arrhenius behavior with an activation energy S2. 
This vibrational energy gap is analogous to the barrier height 
in the classical case. The rate increases linearly with friction 
for small friction and goes to zero in a fairly complicated way 
for large friction. In the low-friction, low-temperature limit, 
our result is identical to the “quasiclassical behavior” - 
exp(-@B)A. For larger values of friction and low temperatures, 
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Figure 2. Behavior of Re, for values of A > d4. Solid lines represent 
R,,,, and dotted lines represent “quasiclassical” rate - exp(-BQ)( 1/ 
A) normalized to the same starting value. The upper group is for /?Q 
= 5 while the lower group is for BS = 6. J is taken to be 1 cm-l, w 
= 100 cm-I. and Q = 50 cm-I. 

the rate vanishes more quickly than the “quasiclassical” - 
exp(-PQ)( l/A), although the behavior is qualitatively similar 
(see Figure 2). This can be compared to the classical case,* 
where the temperature dependence shows Arrhenius behavior 
(with a barrier height activation energy) and the rate is 
proportional to 7 for small 7 and to l/q for large 7. Thus, in 
this case the ohmic bath quantum model shows behavior similar 
to that of the classical model, for a superohmic bath, the 
quantum model shows distinct behavior. 
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