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Distribution of Variances of Single Molecules in a Disordered Lattice
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Single molecule spectroscopy in disordered lattice is investigated from a theoretical point of view. We consider
energy fluctuations of the molecule due to dipolar interactions with two level system (TLS) defects distributed
randomly on a three-dimensional cubic lattice. Each independent TLS is randomly flipping so the energy of
the molecule is time dependent. We investigate the probability distribgfihof the variance of the energy
fluctuations. The exact solution, found for finite systems, exhibits peaks, peaks within peaks, etc., corresponding
to interaction with nearest neighbors, next-nearest neighbors, etc. For an infinite crystal at high defect density,
the distribution of W is shown to depend strongly on the interaction with nearest neighbors and hence on
lattice symmetry. At low defect densitg(W) exhibits several peaks separated by large gaps in wg{\ah

~ 0. We explain these peaks in terms of contributions from single defects located on discrete distances from
the molecule. For the continuum version of our modgWy) is a Levy stable nonsymmetrical probability
density function, decaying according ¢géW) ~ W~32, We discuss the relation between the continuum and
lattice models.

I. Introduction probability p being occupied by a two level system (TLS). In

Mod . | techni h de i ibl this way we study different single molecule spectrum with each
odern experimental techniques have made It possible to configuration of TLSs. Each TLS is flipping, leading to a time

perfofm time dependent measu.remen.ts of the optical SpeCtrumdependent transition energy for the chromophore. We neglect
of a single molecule embedded in a solid. Using smgle-moleculg the interaction among the TLSs and consider only the interaction
spectroscopy_(SMS), one may ;tudy many s_,pectroscoplc deta'lsoetween the TLSs and chromophore. Similar, but distinct,
obscured by inhomogeneous line broadehiolgserved when 4010 have heen used to understand the thermal properties

the line sh_ape of an ensemble of molecules is myestl_gétéd. and the time dependence of various spectroscopic experiments,
When single-molecule spectra are measured in disorderedg,c;y a5 hole burning, photon echo decay, as well as single
solid, one sees that molecules are in a unigue environment that,, 5 jecule spectré 20

fluctuates in time, thus giving rise to a variety of time dependent We calculate the probability density function of the variance
phenomena. The transition eneigft) of each molecule is time of the transition ener fluct)L/Jatiorg(\);V) We show that the
dependent and since each molecule is unique, the Irandomlattice structure hasagt):on influencegmo We first consider
proces<(t) varies from one molecule to the other. We assume the case = 0.5. i.e strong disorder. in aetail and calculate
here that each molecule can be characterized by a variancethe distr?t))ution.o;‘ v'ar'i’ance eg>1<actl ' ’ .

_ y for finite systems. For infinite
W = (E(t)—E(t))*> where the bar denotes time averaging or system the solution is shown to reflect the lattice symmetry,
standard thermal equilibrium averaging. Depending on its exhibiting seven distinct Gaussian peaks corresponding to six
environment\W will vary from one molecule to the other. Our  nearest neighbors. We then consider the cage whall, i.e.,
aim in this paper is to calculate the distribution\WWfusing a weak disorder, and compare the lattice results to earlier
simple model. continuum results.

At least in principle the varianc@/ could be measured based A brief report of our study was presented in ref 21. The
upon single molecule spectroscopy. For example, single- present paper is organized as follows. In section II, the lattice
molecule spectroscopy of pentaceng@iterphenyl (disordered)  model is stated, and we elaborate on the relation between the
crystals, at low temperatures, reveals two classes of moletules. distribution of variances and distribution of line widths that has
The first have time independent resonant frequencies while thebeen measured in several disordered materials. Then in section
second exhibits a random walk in frequency space. Various ||| we find the exact solution of our model. In section IV we
types of such spectral diffusions are observed the typical jump present the exact solution for finite systems and discuss its
length varying from one molecule to the other. Since the spectral degeneracy. In section V we find an approximate solution for
diffusion is clearly bounded by the inhomogeneous line width the infinite system and for strong disordes= /2, which helps
and assuming equilibrium is reached on the time scale of the ys to clarify the meaning of the exact results. In section VI we
experiment, such a spectral random walk is characterized by aanalyze the continuum version of the model using the funda-
finite varianceW. mental generalized central limit theor@i24 The weak disorder

We consider a cubic lattice model with the single chro- case is investigated in section VII. We give an approximate
mophore at the origin and with each lattice point having a solution valid for weak disorder and compare between the
continuum and lattice models. Finally a discussion of our results
* Corresponding author. Faxt-1-617-253-7030. E-mail: sibey@mit.edu.  as well as other related results is given in section VIII.
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II. Lattice Model and the dimensionless factndepends on the line shap&uch

a relation between line width and variance is possible only when
the line shape has a simple shape (e.g., a Gaussian); if the line
shapes split due to strong coupling with defects or if the variance
of line shape diverges (e.g., Lorentzian line shape), clearly
relation eq 2.4 does not hold. Using eq 2.4 the probability
density of line widthsi(Av) is related to the probability density

gf variances according to

Consider a single molecule (e.g., a chromophore) interacting
with defect dipoles which are randomly distributed in space.
The molecule resides on the origin of a three-dimensional cubic
lattice. The lattice spacing ia. Each site is labeled with an
index j. Sitej (not including the origin) is described with an
occupation paramete;, which can take the values 0 or 1,
corresponding to the absence and presence of a defect that flip
on the time scale of the experiment. The probability that lattice _ 2
sitej is occupied ip. We assume that the occupancy of gite h(Av) = (2Av/z) g [(Av) /ZZ] (2.5)

is independent of the occupancy of other lattice sites. To analyze the experimental data in noncrystalline media, a
Let us assume that the defects are uncorrelated TLSscontinuum model was analyZ&tRe[i.e., the continuum version
interacting with a chromophore by a dipolar interaction. The of eq 2.3]. Currently, there is not sufficient experimental data

TLS chromophore interaction was analyze#'fi®within the o determine whether the continuum theory works quantitatively.
stochastic sudden jump approach which considers a continuum
medium. Within this model every flip of a two level system is  |||. The Distribution of the Variance: Exact Results

assumed to shift the transition energy of the chromophore by
the amountgj = 2a/[Tj|3. o is a coupling constant, argl is

the position of the defect on site ¢ are time independent
orientation parameters, taken to Bel or —1 with equal
probability. The total energy of the chromophore is a sum of
contributions from different defects

A. Tools and Definitions. Our aim in this section is to
investigate the probability, ProM\(= x), of finding a variance
W equal tox. This probability function can be formally found
for any finite system. For finite systems, Pro & x) = 0
only on a finite number of points.

One may limit the investigation of the model to<Op < 5.

Be&(t) Forp > 1/, one can redefine the problem where vacancies (i.e.,
E(t) = za ) (2.1) empty lattice points) are considered as defects. One can show
713 that
] [Tl
where the sum is over all lattice points excluding the origin. ProlQ](W= %I(l) + x) = Prob,q(W= %I(l) - x) (3.1)

&i(t) is a time dependent occupation parameter taken to be 1 or

0, corresponding to thgh TLS being in its ground or excited whereq = p — Y/, is a control parameter arldl) = ¥;1/]j°.
state, respectively. We assume that all stochastic processes are Tnhe variancen eq 2.3, is bounded by 8 W < I(1). This
independent and statistically identical. That is, we assume thatimjies that all moments of Prob\(= x) converge. The first

we can treat the defects as either flipping rapidly on the time vo moments of the variandd/ are given by
scale of the experiment or frozen on that time. The time average

(g(t)—%)2 = 62 is given by standard thermal equilibrium WE= pi(1)
occupation of the ground and first excited states of the identical _
TLSs. W= WE +pl—p) | (2) (3.2)
According to the model's assumption, we have with
e (2.2) m=y— (3:3)
)=o) — . n)= .
Jz|r,-|3 Tl

We define the dimensionless distarigewith [f;| = alj|, and Wherenlz 1, 2, .... The averaging..[] in eq 3.2, is over the
hence the variance of the energy fluctuations is given by occupation parameterfy3j}. The converging sums(n) are
evaluated using a computer, without difficulty. They can also

be evaluated using standard continuum approximation which

aE* - BY) B; replaces the summation in eq 3.3 with an integratfdn. Table
W= > 2 = e (2.3) 1 we give the numerical values th), and we see that lip
o Tl [(n) = 6 which is the number of nearest neighbors on a cubic

lattice.
Let nj;2* be the number of sites on the cubic lattice that are
a distancej|? = 1, 2, 3, ... from the origin. For example,

Win eq 2.3 will vary from one molecule to the other depending
on the environment each is situated in. In this paper we
investigate the statistical properties of the dimensionless random
variableW. max _

max __ max __ max __ max __

Under certain conditions the varian@¢is related to a line no=6,m" =120 =8,n,"=6,n"=24
width év.8y9 Experiment$2>-27in glassy and defected crystalline max max .~ _max_
materials have shown that different guest molecules have Ng =24,n;7=0,ng" =12
different line widths (the stable line shapes were all very much
the same). These experiment found th@v), the probability ng = 30,njg" = 24,n{"= 24
density of line widths of single molecules, is asymmetrical and
long tailed. The line widthAv was related to the variand& and from a standard continuum approximatigfi* ~ 27lj| for
according to il > 1. We do not know of an explicit formula fonj2*

however, these numbers can be easily calculated for large
Av=zJW (2.4) systems.
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TABLE 1
n 1 2 3 4 5 6

I(n) 8.40184 6.20215 6.02388 6.00295 6.00037 6.00005

A disordered system is characterizediyTLSs a distance
j|2 = 1 from the origin,n, TLSs a distancej|? = 2, etc. We
define a disordered state with the sequence of nun{vgrs,,

..., Nm}. Mis an upper cutoff which gives the number of “shells”

we consider.

B. Exact Solution. To find the exact solution we use the

characteristic function defined in Fourikrspace,

@xp (kW)C= [l exp@®/li) + 1 =PI (3.4)
I

The product[]; is over all lattice points. As we show in the

Barkai and Silbey

To generate the solution we begin with a system with only
nearest neighbors interaction. In Figure 1a we show Pvgb (
= x) for the three-dimensional cubic lattice apd= Y,. There
are seven peaks in the figure corresponding to seven states in
which the system can be found these being an empty system, a
system with one occupied site, etc. In Figure 1b we consider a
larger system including the next nearest neighbors interaction.
We see that each peak has split due to the interaction with the
next nearest neighbors. The axis of symmetry of Figure la is
on x = 3. This axis is shifted to 3- 6/2 in Figure 1b; in the
thermodynamic limit ofm — oo, the axis of symmetry is on
1(1)/2 (see details below).

We have emphasized already that there exists a degeneracy
in the model since different microscopic configurations con-
tribute in the same manner to Proly & x). This has helped us
reduce the number of disordered states needed for the calcula-

Appendix, one can use the lattice symmetry and the character-tion: for nearest and next nearest interaction, this means that

istic function to obtain the solution for finite systems

pmax\ [ ymax e
onw—n= 5 (5. (5,
NN NmlX n n, Ny,

PN -p) " (35)

whereN = 3, n"™is the number of lattice sites. In eq 3.5

> mmo..nmx IS @ SUum over all values of

n =0, ..n"™

Ny =0, ...,

m 'm

(3.6)
which satisfy the condition

x=n, + /2 + ...n/m° (3.7)
Forx = ng + ny/2% + ... nyym® we have ProbW = x) = 0.

Eq 3.7 describes the discrete variance spectrum.

To calculate ProbW = x), given in eq 3.5, for all values of
x for which Prob W = x) = 0 we have to consider

g, = (N4 D)™+ 1)...n + 1) (3.8)

disordered states. This is much smaller than a straightforward
consideration of all

max

G = (21 (3.9)
microscopic configurations. Our method uses the symmetry of
the lattice and the fact that the TLSs which are a distdjice
from the molecule contribute in the same way to the charac-
teristic function helped us reduce the number of configurations
we must consider. For a three-dimensional system we dave

~ 2897« ¢;; = 2170 gnd Os = 2171 oy = 254

IV. Strong Disorder p = %,

For the cas@ = %5, the disorder is strong and the contribution
to Prob W = x) from nearest neighbor interaction is non-
negligible. In this case we may expect the lattice structure to
play an important role controlling the shape of Prot € x).

we can easily reduce the problem fromdis= 218 microscopic
configurations tog, = 7 x 13 = 91 disordered states. We
observe a second type of degeneracy when the interaction with
next nearest neighbors are included. In Figure 1b we observe
only 61 < g, = 91 values ofW for which Prob W = x) = 0.

To understand this degeneracy consider the two statesnith
=1,m =8 andn; = 2, np = 0. Since for both cases the value
of W= 1+ 8/28 =2+ 0/2 =2, we have a second degeneracy
in the problem. We call this accidental degeneracy.

For practical reasons one must carry the calculations of the
sums in eq 3.5 with the aid of a computer. However, numerical
inaccuracy might remove the accidental degeneracy. Hence, to
find the exact solution for ProbN = x), it is important to use
exact numerical tools which can identify all the degeneracy in
the problem (e.g., we used Mathematica). As we shall later show
the accidental degeneracy is a significant ingredient in this
problem: its accidental removal alters the shape of Prob
(W= x).

In Figures 1c,d we show the solution for even larger systems.
A detailed structure is emerging. Notice that as we increase the
size of the system the height of the observed peaks is attenuated
while the number of peaks increases. As we increase the
systems’ size, the central peaks are shifting to the right. In Figure
2 we have indicated the location of seven peaks in the limit of
an infinite system (see more details below).

It is instructive to rewrite eq 3.5 as a sum of seven terms

6
Prob W=x) = Zijl ProbWW=xn, =j,) (4.1)
1=

Where Prob\V = x|n; = jy) is the conditional probability that
W = x when the number of occupied nearest neighbors is equal
j1 and

Q= -7 @2)

is the probability thaj; nearest neighbors sites are occupied.
The conditional probability is given by

' pmax pmax
ProbiV=x|n, = j,) = Z ( 2 )"'(nm )x
JER I

N, m
P — )" T (4.3)
and the summation procedure is defined in eq 3.5 witkr j;.

In Table 2 we give the cumulant expansion of Prob
(W = x|n; = jy) valid in the thermodynamic limit of large
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Figure 1. Prob W = x) for p = %, and for different system size. (a) Only interaction with the nearest neighbors is considered and then seven delta
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peaks are observed. (b) We consider the interaction with nearest neighbors and next-nearest neightmors3).eNotice the horizontal shift of
the axis of symmetry relative to case (a). The continuous curve is added to guide the eye, and 61 delta peaks are observed =@, Notice
the change of scale compared to previous cases; 549 delta peaks are observed. Caser(e) Ansmthe maximum number of TLSs in the system

is 32; 3843 delta peaks are observed.

x107°
7 . . . . : T . T

1=x)

Prob(W-
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Figure 2. The same as Figure 1d, Proly & x) with m= 4. We have
indicated the fixed points (stars), found in eq 4.8 below, to which the
peaks of the distribution are converging in the thermodynamic limit.
Also shown is the direction of flow (arrows).

system. To find the cumulanks we have used the conditioned
characteristic function

[exp (kW)L o, = €[] pexp@k/lj|) + (1 - PI} (4.4)

1#i1

where[]j=, is a multiplication over all lattice points excluding

TABLE 2
n Kn

jat 12+ g)i(1) — 6]

(14— AI(2) — 6]

—2(1/4— ?)q[1(3) — 6]

/14— ) (—1/2+ 6cP)[1(4) — 6]

(1/4— ¢P)(4q — 2467)[1(5) — 6]

(14— cP)(L — 30?7 + 120p)[1(6) — 6]

(14— qA)(—17q + 24052 — 720¢)

[1(7) - €]

8 (L4 — ) (—17/4+ 2312 — 2100y* + 5040)

[1(8) — €]

cumulant expansion

~NOoO U WN PP

Kn
In [[@xp(kW)C] ;] = Zi”;k” (4.5)
& onl

The cumulants in Table 2 are given in termsgp& p — Ya.
We have calculated the cumulants using symbolic programming
(e.g., we used Mathematica without which the calculation
becomes cumbersome).

A few features can be seen in Table 2. Firstfio= 1 orp
= 0 (i.e.,q = £%,) all the cumulants excluding the first are
identically zero. This is expected from distributions concentrated
on a point. The odd (even) cumulants are odd (even) functions
of g. Using this odd/even property it is straightforward to prove
eq 3.1. Thenth cumulant is proportional tb(n) — 6, six being
the number of nearest neighbors. As we show in Table 1, the
differencel(n) — 6 approaches zero exponentially fast wimen
is increased. Fop = Y, (i.e.,, g = 0) all odd cumulants

the nearest neighbors, and the standard definition of the (excluding the first) of ProbW = x|n; = j;) are identically
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Figure 3. Prob W = xjn, = 3) for a system with 56 lattice points  Figyre 4. Prob W = x|, = 3) for a system of 80 lattice points (i.e.,
(i.e.,m= 5) andp = *>. Besides an attenuation factor, and small shift, = 6), p = Y. Two highly degenerate peaks andD; are discussed

this structure is very similar to that observed in the central part of Prob i the ‘text. The structure is very different from the structure shown in
(W= x) in Figures 1c,d and 2. Figure 3.

zero as expected from a symmetric distribution. Later we shall
use the cumulants to find an approximate solution for an infinite
lattice system.

The conditioned moments are given by

WL 5, = k1 =1 + P[I(1) — 6] (4.6)

x107™
6 . . T . . T T T

~
T

and

o’ =1, =W — W =p(1-pIi(2)—6] (4.7)

=3)

1

Prob(W=xIn
©
T

For p = Y, the axis of symmetry of the seven conditional
probabilities is located &iVl4,j,. We believe, but have no proof,
that on these locations the conditional probability attains its
maximal value. In the limit of infinite system these points are
given by

x=1(1)/2, x=1(1)2+1, x=1(1)2+2 (4.8) . AT,
3.2 3.4 3.6 3.8 4 4.2 44 4.6 4.8 5
X
Figure 5. The same as in Figure 4; however, now we have removed
the accidental degeneracy. Comparing this figure and Figure 4 we see
that the accidental degeneracy gives an important contribution to the
fine structure of ProbW = x|n; = 3).

N
T

These are the points shown in Figure 2. Equation 4.8 implies
that the axis of symmetry of Prob\(= X) is on1(1)/2.
A useful identity is

Prob W= x|n, =j,) = Prob W=x+1|n, =j, +1) (4.9)
states which contribute to these peaks. We have defined a

which can be eaS”y understood from eq 4.3. The |dent|ty €q disordered state with the Sequer{g‘ﬁ, ny, ..., nm} describing

4.9 is useful for numerical computations. The calculation of n, defects a distancg|? = 1 from the origin,n, defects a

Prob (v = X) can follow two steps: first calculate Pro/(= distancelj|? = 2 from the origin, etc., and for our case= 6.

X|ny = 0) and then with egs 4.1 and 4.9 calculate P\ X) Seven disordered states contributeDig these being
for all the spectrum ofx. This method further reduces the

computation time. {3,5,7,3,12,1p, {3,5,8,3,12,7, {3.,6,3,3,12,2p
In Figure 3 we show the conditional probability Proly &

x/ny = 3) for a system withm = 5. Not surprisingly the structure {3,6,4,3,12,1, {3,6,5,3,12,%, {3,7,0,3,12,1y

we observe is very similar to the structure of the central part of

Prob (W= x) shown in Figures 1c,d and 2 for smaller systems {371,312

[i.e., Prob W = x) for 3.2 < x < 4.8]. In Figure 4 we show

Prob W = x|n, = 3) for a larger system witim = 6. Now the six disordered states contribute T

detailed structure of Prof\(= x|n; = 3) is very different than
that shown in Figure 3. Many new peaks are observed which {3573127, {3563121p {3623122p
are not observed in the smaller systems. {3,6,3,3,12,12, {3,6,4,3,12.%, {3,7,0,3,12,9

The emergence of this new structure is due to the accidental
degeneracy we discussed previously. In Figure 4 we haveTo see that all these disordered states contribute to the same
marked two points aBy andD;. We have found the disordered peak one can easily check thatlefined in eq 3.7 is identical
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for all the listed states. To illustrate the importance of this o7 ' - x ' ' ' ' T
accidental degeneracy, we show in Figure 5 the conditional
probability Prob (W = x|n; = 3) for the same system as in Figure o5} _
4; however, now we artificially remove the degeneracy. Clearly,
Figure 4 (degenerate and correct) and Figure 5 (nondegenerate) a5k
are nonsimilar. The accidental degeneracy plays an important
role in the shape of Prob\( = x) for finite systems. It is
interesting to remark that the degeneracy of the smaller systems_**
shown in Figures 43 is weaker [i.e., the point®o, D; (and g
many others) are nondegenerate whers 6]. oaf

Finally, we emphasize that the degeneracy can be partially
or fully removed by different physical mechanisms, which break
the lattice symmetry. We believe that this degeneracy implies
that the exact solution exhibits a strong sensitivity to perturba-
tions of different types.

021

0.1F

V. Distribution of the Variance: Approximate Results °

. . . Figure 6. The solid curve ig(W), eq 5.2, exhibiting seven peaks which
Our exact results presented in FiguresSlwere obtained  re que to the lattice symmetry. The dotted curve is a histogram (with

for a finite systems. Let us consider a simple approximate a pin length 0.1) obtained with the exact result for a finite system with

solution for an infinite lattice ang = /,. Whenp = 1/, the m = 8. Also shown (dashed curve) is the solution obtained by a
cumulants in Table 2 shows,+1 = 0 and numerical Fourier inversion of the characteristic function eq 3.4. Good
agreement between the exact, approximate and numerical results is
3K§ >k, obtained.
. TABLE 3
156> kg + 13040, (5.1) n Kn €xact Kn approximate

(e.q., 3c§/;c4 = 21.3). When these inequalities are satisfied, the 1 /2y (1) (172 (1)
conditioned probabilityP(W = x|j = ny) behave like the i (1’;‘/)' (|2)4 16002 (1’3 2)
Gaussian distribution (i.e., it is well-known that the cumulants 5 154 8)6( 1_1;1(6?&%% 9 7(1/48)66
of the Gaussian vanish for> 2). Our approximation neglects 8 (—(1;/(16))_(8() ~)—i17/16)6 0 —((17316)6
all contributions from the conditioned cumulantsin Table 2 10 —(93/12) (10)= —(93.12)6.0 —(93/12)6

with n > 3, namely Prob\{V = x|n; = j1) is replaced with a
Gaussian with the variance and mean given in eqs 4.6 and 4.7= 8, for which the exact solution has not yet reached its
when p = 1. Therefore, letg(W)dW be the probability of  thermodynamicr — o) limit. To overcome this obstacle we
finding the variance in a small interval{ W + dW), then used also eq 4.8, which gives the exact location of the axis of
symmetry of the seven conditional probabilities. Hence, we shift
6 1 W—=j; — U)2 (slightly) the exact finite size solution, in such a way that the
gW) = Zijl exp — (5.2) axis of symmetry ofy(W) is on1(1)/2. This is how we obtain
= /Znoi 20% good agreement between exact and approximate solution.
Also shown in Figure 6 ig(W) obtained by a numerical
inversion of the characteristic function eq 3.4. Also here we
use a finite system, however now we use a much larger system
, [1(2)—6] thanm = 8. To find the numerical Fourier transform of the
O=7 4 (5.3) characteristic function we use an upper cutgffin such a way
that [éxp(kW)O= 0, for k > k.. The exact expression of
and [exp(kW)C for any finite system, is a periodic function &f
the period becoming very long as the size of the system is
[1(2) — 6] increased. Since we use the upper cutgffn our numerical
v= 2 (5.4) simulations we do not see the solution as a sum of closely spaced
A peaks. Rather the approximate solution eq 5.2, the exact
In eq 5.2 the sum ovgj reflects the contribution from the six  solution based on eq 3.5 and the numerical Fourier transform,
nearest neighbors interaction while the finite width of the seven all presented in Figure 6, are in good agreement.
Gaussians reflects the interaction with the background. As can A quantitative comparison between the exact and approximate
be seen in Figure 6 the varianoé defined in eq 5.3 is large  solution is made using cumulants. The cumulants of the exact
enough to insure a significant overlap between the nearestsolution, eq 3.6, can be found in terms of the lattice stfm)s
neighbors conditional probabilities. In Table 3 we give the exact cumulants (i.e., foe= 1/,) and
The approximatiorg(W), in eq 5.2, is a smooth continuous the cumulants calculated based on the approximation eq 5.2
probability density function which replaces the exact expression (notice that these results are not the conditional cumulants
for g(W), eq 3.5, which is a sum of closely spaced delta function. presented in Table 2). Using the results in Table 1, for the lattice
To compare between the exact and approximate solution wesumsl(n), we see a good agreement between the exact and the
have built a histogram based on the exact solution. This approximate cumulants.
histogram is shown in Figure 6 together with the approximation ~ Our method used the conditional probabilities Pra® €
eq 5.2. The exact result was derived for a finite system, mith ~ xjn; = j;). One can generalize this approach by defining

where
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08 ' ' T ' T |dr/dx|p(r). Using a uniform distribution of defectg(r)dr ~
r2dr we find

0.55
N E(Q) ~x (6.2)
andy = /,, which means that the first moment of the summand
X diverges. Hence, according to the generalized central limit
theorem, the distribution of variance will be a non symmetrical
(i.e., becaus&V = 0) stable distribution with a characteristic
exponenty = 1/,. For this case the stable characteristic function
is

0.45

0.35

03 [expikW) = exp[—AlkI VA1 — ik/|k|)] (6.3)

and a short calculation shows = p(27)¥43 (herep is a
dimensionless density). Equation 6.3 is one of the few stable
0z’ - " 5 5 = s characteristic functions which can be analytically inverted. The
' ' w ‘ ' ' probability density of the variance is

Figure 7. The central peak off(W) vs W for p = ¥,. We show the
small secondary oscillations due to the next and next to next neighboring

lattice points. gw) = E?(ZW) e F( ) (6.4)

conditional probabilities for nearest neighbor, next-nearest also known as Smirnov’s densityIn probability theory eq 6.4
neighbors, etc. In Figure 7 we show the output of such a describes the limit distribution of first return times of a one-

computation. We have added the effect of next-nearest neighborsglimensional Brownian motion. Similar to the probability density

0.25

and next-to-next nearest neighbors to our calculatiog(di). function §(x) ~ x~%2, the probability density function (6.4)

In this caseg(W) is a sum of 7x 13 x 9 Gaussians. In Figure ~ decays ag(W) ~ W32

7 we show the central peak g{W) vs W. One can observe We see that in the continuum limit the variance averaged

secondary small oscillations. over disorder diverges. This is because in the continuum model
Finally, we note that fop = ¥/, similar approximate solutions  the TLSs are allowed to be situated very close to the molecule

can be found using the same arguments as for theas,. on the origin. A more physical approach would be to consider

Then, one may consider instead of a sum of seven symmetricala lower cutoff (in the lattice model this is the lattice spacing).
Gaussian a sum of seven non symmetric functions (i.e., modified Then the distribution of variance would not be stable; however,
Gaussians). Fqu < 1, the situation is very different since then  for small enough cutoff one can still observe the characteristic
the inequalities eq 5.1 do not hold. This situation is discussed W22 decay with an upper cutoff for large/ (Pfluegl et aP
in section VII. calculated the explicit dependence of the distribution of variance
on the cutoff). Numerical simulatio#s!! and experimentsin

) . , L glassy material show that the probability density of line widths
V1. Continuum Limit —Lévy Statistics h(Av), related to the probability density of variances according
to eq 2.5, has a long tail; however, there is not sufficient data
to determine if this distribution is related to e statistics.

Very recently, Geva and Skinn&r,on the basis of a
continuum model similar to ours, showed that the probability
density of moments of a frequency-frequency auto correlation
function in low-temperature glasses all fit a universal master
curve (eq 2.20 in ref 11). This master curve is Smirnov’s density
eq 6.4. This interesting result is also a consequence of the
generalized central limit theorem.

The continuum version of the model was investig&fed 28
in a context of a single molecule embedded in a glassy material.
The model considerdl — o uncorrelated TLSs, distributed
uniformly in space and interacting with the molecule in the
origin. Here we would like to point out the relation between
this continuum model and vy stable distributions. In the
following section we shall discus the relation between the
continuum and lattice models in the linpt< 1.

The variance for the continuum model is

N VII. Continuum Approximation vs Lattice Model: p<1
W=3)x=0 (6.1)
1= What is the relation between the solution of the continuum
and lattice models? One might anticipate that for low defect

andx = L/r{. Equation 6.1 describes a random walk in which gensity,p < 1, the TLSs situated far away from the molecule
the length of each independent stepiisTherefore the central  play an important role and then the lattice structure is of lesser
limit theorem and its generalization is of fundamental jmportance. We rewrite the characteristic function eq 3.4 as
importance??—24 While the standard Gaussian central limit
theorem applies when the variancexp€onverges, the general- [@xpkW)Ll, = expf z|n[1 + p(€e ki _ D (7.1)
ized central limit theorem applies when the variancexof
diverges. The problem at hand can be analyzed in terms of the

generalized central limit theorem. and the subscript indicates that we are considering a lattice
Let £(x) be the probability density function describifig;} model. We expand the logarithm to obtain

which are independent identically distributed random variables.

The probability density functio§(x) is related to the probability exp{kW)Ll, = exp[—pZ(l ity (7.2)

density of the random variablés;}, p(r) according to(x) =
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Figure 8. The real part of the characteristic function vs the Fourier _ . . . .
variablek, with p = 0.01. The fluctuations of the exact lattice solution ~F19uré 9. The solid curve ig(W) for the casep = 0.01, obtained by

(solid curve) are due to the lattice structure and are not a finite size & numerical Fourier transform of the lattice characteristic function.
effect. The stable Smimov characteristic function (dashed curve), with D@shed curve is Smirnov's stable probability density function obtained
A = p(27)¥3/3, obtained from a continuum picture with no cutoff and  Within the continuum approximation with. = 0. The deviations

a continuum characteristic function with a finite cutoff (dotted curve) Petween the lattice and continuum model are large in the tail of the
are indistinguishable on the scale of the plot. In the inset we show the probability density function. Also shown is the continuum solution with

behavior of the exact and continuum solutions for srkalliotice the a finite cutoff r (dotted curve), which on the scale of the plot is
non analytical behavior of the stable characteristic functiok =t0. indistinguishable from the continuum model with no cutoff. In the inset

The exact lattice characteristic function as well as the continuum model W& Show the tail ofy(W) on a semilog plot.
exhibit an analytical behavior close ko= 0, due to the cutoffa and

r., respectively. We have chosen= [(47p)/9WRLL]Y° = 0.838, so _ ) . _
that for valuesk < 1 the analytical continuum model and the lattice function eq 6.3 together with the continuum model with a cutoff

model exhibit similar behaviors. eq 7.5. The lattice solution exhibits large oscillations which look
random. In contrast, the continuum solution with and without a
cutoff behave smoothly. Choosing= a = 1, the continuum

< i i
for p < 1. The smalk behavior of eq 7.2 is solutions with and without a cutoff are very much alike, except

) pl(2) for small values ok. The exact lattice results were calculated
[expikW)LL ~ 1+ ipl(1)k — Tkz +.. (7.3) for a finite system. We have checked that the solution does not
depend on the size of the system.
Converting the sum in eq 7.2 into an integral, we find In Figure 9 we shovg(W), obtained using numerical Fourier

transform of the exact solution eq 7.1. We observe satellite peaks
[explk = expl—o4/3 [“dr¥1 — "Y1 (7.4 due to the lattice structure. These peaks are separated by large
P on PLpaz ﬁc ( 1 (7.4) gaps in whichg(W) = 0. While g(W) is mostly concentrated in
a small region close to the origin (s8ly < 0.01), corresponding
to interaction with distant defects, nevertheless, rare events with
very large varianc&V are predicted to be significant.
Also shown in Figure 9 are the stable Smirnov density eq
4 3 6.4 and the numerical Fourier transform of the characteristic
@xkaMQ0m=exr{—?prc[nm’S(«/M) N function with finite cutoff ro eq 7.5. We find qualitative
Y o/ inyi2 agreement between the lattice and continuum models, but only
'MC( |Y|)] —(1-e )]} (7.5) for small W. The deviation of the lattice solution from the
continuum solution is most significant in the lary¢ tail of
whereS(x) and C(x) are the tabulated Fresnel sine and cosine g(W) where the continuum models predicts a power law decay.
integrals andy = (21)/(rrS).3! Taking the limitre — 0, in eq This behavior can be easily understood. A molecule whose
7.5, we obtain the stable characteristic function eq 6.3. The small varianceW s large implies that lattice points close to the origin
k behavior of the continuum characteristic function, eq 7.5 is are occupied by defects. For the defects close to the origin we
4 o can hardly expect a continuum model to work well. Since the
@xXpKW) [, ~ 1+ i pk 5 Ekz (7.6) continuum approximation does not work well we develop

wherer is a low cutoff and the subscript indicates that we are
considering a continuum model. The continuum characteristic
function eq 7.4 was analyzed in ref 9, integrating by parts

3 rg qualitative approximation valid for smafl in the following
subsection.
where we have neglected terms proportionapto Equation A. Weak Disorder Quantitative Approximation. The origin

7.6 exhibits an analytical behavior and therefore the moments of the satellite peaks shown in Figure 10 is now investigated.
of the continuum model with finite cutoff, converge; this is We follow an approached sketched by Stoneham (see section
different from the nonanalytical behavior of the stable charac- 5.2 in ref 1) and used by Orth et &.in the context of

teristic function eq 6.3 whose moments diverge. inhomogeneous line broadening. We divide the crystal into two
In Figure 8 we use the exact solution of the lattice model eq regions. Within the first spherical inner region, which we call
7.1 to show the real part déxp(kW)i}: as a function ofk. region 1, the lattice is treated as discrete and the rest of the

Also shown in Figure 9 is Smirnov’'s stable characteristic crystal, region 2, is treated as a continuum. The radius of the
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Figure 10. The same as Figure 9 with the approximate solution, eq
7.11 added. To obtain the approximate result we use®.

inner region isvl and! is an integer. We write

Prob W= x) = z Q,..;Prob W=xin, =jy, ...n =j)
R (7.7)

with

max

w w6
Q, =@~ p)" 2}=°]'pzl=oj'(j )(n'
1 1 Jl

) (7.8)
andN = 2::1 n"® Here ProbW = x|n; = jy, ...,n = j) is the
probability thatwW = x subject to the condition that the number
of n sites isji, etc. The sum is ovejp = 0O, ..., 6, etc. Our
approximation, valid forp < 1, involves two steps, first we
replace the conditional probabilities Proly & x|n; = jy, ..., Ny
= ji) with smooth normalized nonnegative probability densities
and then truncate the sum eq 7.7. The intégereq 7.7 divides
the system into two, and the limit of lar¢genust be considered.
Practically, we increadeuntil our results converge. As in section
V, we replace the discrete ProW/(= x)—with the continuum
probability density functiorg(W).

The first step is to replace the conditional probability Prob
(W= xny = j1, ..., y = Jj), in eq 7.7, with its continuum

Barkai and Silbey

The main assumption that we are using is that whisnlarge
enough the exact lattice sums may be replaces with the
appropriate integrals.

For largel, the summation in eq 7.7 is formidable, for
example, ifl = 9, the sum is over? states. However, singe
<1 we may use a second approximation and truncate the sum
in eq 7.7. The lowest order of approximation is to consider only
contribution from an empty region 1. The first-order corrections
arel terms in eq 7.7 proportional ©1,0.0,0,. Qo,1,00,. €tc. These
terms imply that a single defect is residing in region 1. The
[(I + 1)/2 second-order terms af@® 1,0,0., Q1,1,00.. €tc., and
Q2.0.., Qo.2,.., etc. We therefore find

Z Q,.ig,.;(W + ... (7.11)
jitia =2

where the summatiof,+j,+..j=1 is over all values o1 = 0, j»
> 0...which satisfy the conditiop + j, + ..j; = 1.

The probability that region 1 is empty for a very largend

finite p is given by

Qooo,. = liMA—p"=0 (7.12)
and then the truncation procedure is not valid. Our approxima-
tion will work well only if | is large; howevem is small enough
to ensure that the truncated sum eq 7.11 is approximately
normalized to unity. For a givep and| this can be easily
checked, since the functior®m(re, W — Xmin) in eq 7.11 are
normalized, probability densities.

Figure 10 shows the approximate solution eq 7.11 together
with the results obtained using numerical Fourier transform of
the characteristic function eq 7.1, for the cgse 0.01. The
approximation was calculated using the first- and second-order
correction terms. Good agreement between the numerical and
approximate result is found. Each peak we observe in Figure
10 can be related to a microscopic configuration of defects
within region 1. For example, the peaks labeRedP,) in Figure
10 correspond to a defect situated on one of the nearest neighbor
(next to nearest neighbors) sites, respectively. We notice that
peakP; is taller than pealPy; this is due to the fact that for a
three-dimensional cubic lattice the number of next-nearest sites
is larger than the number of nearest sites. Hence the probability

approximation. For this aim we use the conditioned characteristic that the “second shell” will be occupied is larger than the “first

function
— ikXmin ;16
[@xpkW)L ;. = €[] [pexpk/|jl”) +

L IR
A-pI} (7.9

where the multiplication is over all lattice points excluding those
in region 1 and withxmin = Y'i=4ji/i%. We now use the same
procedure given in eqs =1.5, and then ProbN = x|ny = j1,
.. =1j)ineq 7.7 is replaced with

SI’T(TC, W-— Xmin)

it W> X
g,..,W) = {0

it wex. (710

where Sn{r,, W) is the inverse Fourier transform of the
continuum characteristic function eq 7.5um(r., W) is found

here numerically. In eq 7.10. = V1 is the low cutoff

reflecting the fact that we are treating region 2 as a continuum.

shell”.
B. Gaussian and Lery Behaviors. According to eq 6.3, a
signature of stable behavior kispace is

2‘7_[ 3/2
5

1/2

RdlogéxpikW)d,] = — (7.13)

On the other hand the exact smatbehavior of the lattice model
shows

k
Relogexp(kW)GL] = —pZ[l — co{—s)] (7.14)
] lil
The two-solution eq 7.13 and eq 7.14 are clearly different with
the lattice solution exhibiting strong oscillations.
To use the continuum approximation for quantitative purposes
one has to define statistical functions that are not sensitive to
the lattice structure. One may filter out the lattice oscillations
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Figure 11. The casg = 0.001,r. = 0.847. The dashed curve is the
exact lattice result, the continuous curve is the continuum approxima-
tion, the dotted curves are the sniafind largek asymptotic behaviors.
We observe a crossover from Gaussian behaviok fer1l andJ(k) ~

k® to Lévy behavior withJ(k) ~ k¥2 for k > 1. The interesting feature

is that only two distinct scaling regimes are seen.

by defining
3K = — [, Reflog@xpk' W) Jdk (7.15)
The small and larg& behaviors of this function are
% QK k<1
(7.16)

B P

where A was defined in eq 6.3. The sm&lbehavior can be
understood on the basis of the integration of

Reloglexp(kW)LL] ~ Kpl(2)/4

For largerk we get the stable behavior which can be predicted
on the basis of

k<1 (7.17)

Relog@xp(kW)LL] ~ —Ak*+ fluct  (7.18)

The fluctuation term in eq 7.18 becomes very small after an
integration with respect t& (i.e., after filtering out the lattice
oscillations). A more detailed calculation based on the con-
tinuum model eq 7.5 gives

Jcon(k)=p%”{2k3’2¢2ns( [2) +
7l

ri—3k + 2k cos/rd) + r’ sin(k/rg’)]}

(7.19)

Figure 11 present3(k) for the lattice model eq 7.1, for the

continuum model eq 7.19, and for the asymptotic results eq 7.16.
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tails of the distribution and the stable characteristic function.
The crossover between the two behaviors is controlled by the
low cutoff (i.e., the lattice spacing in the lattice model).

VIII. Discussion

Stoneharh has used the so-called “statistical method” to
analyze inhomogeneous line broadening. This approach uses a
continuum approximation for the lattice structure and was used
here to analyze the continuum model. We have used two other
techniques to analyze the lattice model.

(a) We have found the exact solution of the lattice model eq
3.5. This solution exhibits many peaks, their number increasing
sharply with the size of the system; hence, exact results can be
obtained only for finite systems. Most applications are concerned
with the infinite crystal limit for which only a smooth continuum
solution is meaningful. Using a histogram, and fior= /5, we
were able to construct a smooth exact solution, for large enough
systems, in such a way that the exact finite size solution agrees
quantitatively with a solution obtained by numerically inverting
the characteristic function.

(b) We use the mathematical theory of stable distributions
(i.e., the generalized central limit theorem) to analyze the
continuum model and show thgW) is Smirnov’s stable density
with indexy =%,.

One may use the mathematical theory on stable distributions
to generalize the continuum results with= 0. Consider a
generalized interaction with \& ¥;1/|r;|? in dimensiorD. Then
assuming a uniform density of defectgyV) will be a nonsym-
metrical Lery stable probability density witly = D/6 < 1.

For our modeD = 3 and according to eq 2.8,= 6 and hence

y = Y,. If we consider a two-dimensional system, with similar
three-dimensional dipole interactién= 6, we gety = /3. Then
g(W), given in closed form in ref 33, followg(W) ~ W~43,
which is slower than the decay gfW) whenD = 3. It is also
interesting to point out that two symmetrical stable distributions
are used to analyze inhomogeneous line broadening, these being
Holtsmark line shape with = %/,, and the Lorentzian line shape

y = 11 Furukawa, Nakai, and Kunitorffihave used Mssbauer
spectroscopy and found that the distribution of internal magnetic
fields in Au(Fe) spin glass alloys is"kg stable. Zumofen and
Klafter'® have shown that the short time evolution of a single
molecule coupled to a system of two levels systems is described
by symmetrical Ley stable Green functions. As mentioned in
section VI, Geva and Skinnéthave shown that moments of a
certain dynamical auto correlation function are also described
by a stable distribution. All these results are a manifestation of
the generalized central limit theoréfn?4 which was shown to
play an important role in diverse physical phenom&ra.

The generalized central limit theorem can be used when (a)
the defects interact with the molecule according to a slow power
law (b) the defects are distributed uniformly is space (i.e., with
re = 0) (c) the defects are non interacting (d) the defects are
statistically identical (e.g., all TLS-chromophore couplings are
assumed identical). The relaxation of some of these assumptions
was investigated in some detail. For example, the effect of
introducing a cutoff or interacting TLS¥ or the inclusion of

As can be seen, the continuum and lattice solutions are in gooddistributions of TLSs parametéfsor lattice structure as
agreement. The reason for this is that we are considering theconsidered here, all result in deviations from thevry stable

function J(k) which does not depend strongly on the lattice

behavior. However, under certain conditions these deviations

structure. The main reason to consider such a function is that it may become small and then the stable behavior may be expected

exhibits two well-known behaviors. The first is an analytical
smallk Gaussian behavior which is controlled by the low lattice
cutoff and the converging moments of the distribution function.
The second?®?2 behavior, for largek, can be traced back to the

to hold.

The slow power law decay of(W) found within the
continuum picture is a result of defects situated close to the
molecule. In the lattice results and fp+=0.01, this power law
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is not found; rather, we observe well separated peaks in the tailwherem is an upper cutoff and we want to consider the limit
of g(W). Hence the larg&V behavior ofg(W) is very sensitive of largem. Using the Binomial expansion
to the lattice structure. This is expected, since defects in the

vicinity of the molecule contribute to the larg® behavior of P ax
g(W) and then the lattice structure cannot be approximated by [éxp (kW)= (nl )(py)”l(l _ p)nTaLnl «
a continuum. o\
Itis interesting to note that lattice models of inhomogeneous PR
line broadening by point defects predict the appearance of Zb(nz )(pyllf)nz(l_ p)erre
satellite structure in the inhomogeneous line sHai3eSuch e=o\M2
satellite structure was observed experimentally and was clafhed .
(and references therein) to reflect the lattice structure. The Z Ny (pyllm?*)nz(l_ p)nmaan (9.2)
satellite structure reported¥his rather weak, suggesting that eo\Mm '

the lattice structure is only slightly perturbing the inhomoge-

neous line shape of the appropriate continuum model. On the,, .+, y = ek
other hand, as we show here, the distribution of variag{vd

exhibits a strong sensitivity to the lattice structure. As observed npongax  pmax

in Figures 6 and 10 the lattice structure is not a weak (nTax)(ng“ax)
[exp(kW)[=
ptac= 5 5.5 (0

and rearranging the summations we find

perturbation, slightly modifying continuum results, but rather

has a strong influence on the density of variang@4). The max
isi ive i i i n S, N=S1mi N/ 28+ n/mB

reason for this is that the effective interaction exponent in eq [nz ]p 1M1 — p) iy P N (9.3)

ng n

2.3 is 6; hence, the interaction decays in space rather fast and
this in turn implies a strong sensitivity on the occupation of
nearby neighbors and hence on the structure of the lattice. ~ whereN = 3, n™is the number of lattice sites. We use the

In glassy materials our results are clearly not quantitatively inverse Fourier transform to find eq 3.5.
valid. In calculation%®11.280of the distribution of variances it
has been assumed that the glass has no structure and that the
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