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Single molecule spectroscopy in disordered lattice is investigated from a theoretical point of view. We consider
energy fluctuations of the molecule due to dipolar interactions with two level system (TLS) defects distributed
randomly on a three-dimensional cubic lattice. Each independent TLS is randomly flipping so the energy of
the molecule is time dependent. We investigate the probability distributiong(W) of the variance of the energy
fluctuations. The exact solution, found for finite systems, exhibits peaks, peaks within peaks, etc., corresponding
to interaction with nearest neighbors, next-nearest neighbors, etc. For an infinite crystal at high defect density,
the distribution of W is shown to depend strongly on the interaction with nearest neighbors and hence on
lattice symmetry. At low defect density,g(W) exhibits several peaks separated by large gaps in whichg(W)
∼ 0. We explain these peaks in terms of contributions from single defects located on discrete distances from
the molecule. For the continuum version of our model,g(W) is a Lévy stable nonsymmetrical probability
density function, decaying according tog(W) ∼ W-3/2. We discuss the relation between the continuum and
lattice models.

I. Introduction

Modern experimental techniques have made it possible to
perform time dependent measurements of the optical spectrum
of a single molecule embedded in a solid. Using single-molecule
spectroscopy (SMS), one may study many spectroscopic details
obscured by inhomogeneous line broadening1 observed when
the line shape of an ensemble of molecules is investigated.2-6

When single-molecule spectra are measured in disordered
solid, one sees that molecules are in a unique environment that
fluctuates in time, thus giving rise to a variety of time dependent
phenomena. The transition energyE(t) of each molecule is time
dependent and since each molecule is unique, the random
processE(t) varies from one molecule to the other. We assume
here that each molecule can be characterized by a variance

W ) (E(t)-E(t))2 where the bar denotes time averaging or
standard thermal equilibrium averaging. Depending on its
environment,W will vary from one molecule to the other. Our
aim in this paper is to calculate the distribution ofW using a
simple model.

At least in principle the varianceWcould be measured based
upon single molecule spectroscopy. For example, single-
molecule spectroscopy of pentacene inp-terphenyl (disordered)
crystals, at low temperatures, reveals two classes of molecules.7

The first have time independent resonant frequencies while the
second exhibits a random walk in frequency space. Various
types of such spectral diffusions are observed the typical jump
length varying from one molecule to the other. Since the spectral
diffusion is clearly bounded by the inhomogeneous line width
and assuming equilibrium is reached on the time scale of the
experiment, such a spectral random walk is characterized by a
finite varianceW.

We consider a cubic lattice model with the single chro-
mophore at the origin and with each lattice point having a

probability p being occupied by a two level system (TLS). In
this way we study different single molecule spectrum with each
configuration of TLSs. Each TLS is flipping, leading to a time
dependent transition energy for the chromophore. We neglect
the interaction among the TLSs and consider only the interaction
between the TLSs and chromophore. Similar, but distinct,
models have been used to understand the thermal properties
and the time dependence of various spectroscopic experiments,
such as hole burning, photon echo decay, as well as single
molecule spectra.8-20

We calculate the probability density function of the variance
of the transition energy fluctuationsg(W). We show that the
lattice structure has a strong influence ong(W). We first consider
the casep ) 0.5, i.e., strong disorder, in detail, and calculate
the distribution of variance exactly for finite systems. For infinite
system the solution is shown to reflect the lattice symmetry,
exhibiting seven distinct Gaussian peaks corresponding to six
nearest neighbors. We then consider the case ofp small, i.e.,
weak disorder, and compare the lattice results to earlier
continuum results.

A brief report of our study was presented in ref 21. The
present paper is organized as follows. In section II, the lattice
model is stated, and we elaborate on the relation between the
distribution of variances and distribution of line widths that has
been measured in several disordered materials. Then in section
III we find the exact solution of our model. In section IV we
present the exact solution for finite systems and discuss its
degeneracy. In section V we find an approximate solution for
the infinite system and for strong disorderp ) 1/2, which helps
us to clarify the meaning of the exact results. In section VI we
analyze the continuum version of the model using the funda-
mental generalized central limit theorem.22-24 The weak disorder
case is investigated in section VII. We give an approximate
solution valid for weak disorder and compare between the
continuum and lattice models. Finally a discussion of our results
as well as other related results is given in section VIII.* Corresponding author. Fax:+1-617-253-7030. E-mail: silbey@mit.edu.

342 J. Phys. Chem. B2000,104,342-353

10.1021/jp9924880 CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/22/1999



II. Lattice Model

Consider a single molecule (e.g., a chromophore) interacting
with defect dipoles which are randomly distributed in space.
The molecule resides on the origin of a three-dimensional cubic
lattice. The lattice spacing isa. Each site is labeled with an
index j. Site j (not including the origin) is described with an
occupation parameterâj, which can take the values 0 or 1,
corresponding to the absence and presence of a defect that flips
on the time scale of the experiment. The probability that lattice
site j is occupied isp. We assume that the occupancy of sitej
is independent of the occupancy of other lattice sites.

Let us assume that the defects are uncorrelated TLSs
interacting with a chromophore by a dipolar interaction. The
TLS chromophore interaction was analyzed in9,10,16within the
stochastic sudden jump approach which considers a continuum
medium. Within this model every flip of a two level system is
assumed to shift the transition energy of the chromophore by
the amountEj ) 2Rεj/|rbj|3. R is a coupling constant, andrbj is
the position of the defect on sitej. εj are time independent
orientation parameters, taken to be+1 or -1 with equal
probability. The total energy of the chromophore is a sum of
contributions from different defects

where the sum is over all lattice points excluding the origin.
êj(t) is a time dependent occupation parameter taken to be 1 or
0, corresponding to thejth TLS being in its ground or excited
state, respectively. We assume that all stochastic processes are
independent and statistically identical. That is, we assume that
we can treat the defects as either flipping rapidly on the time
scale of the experiment or frozen on that time. The time average

(êi(t)-êi(t))
2 ≡ δ2 is given by standard thermal equilibrium

occupation of the ground and first excited states of the identical
TLSs.

According to the model’s assumption, we have

We define the dimensionless distance|j| with |rbj| ≡ a|j|, and
hence the variance of the energy fluctuations is given by

W in eq 2.3 will vary from one molecule to the other depending
on the environment each is situated in. In this paper we
investigate the statistical properties of the dimensionless random
variableW.

Under certain conditions the varianceW is related to a line
width δν.8,9 Experiments8,25-27 in glassy and defected crystalline
materials have shown that different guest molecules have
different line widths (the stable line shapes were all very much
the same). These experiment found thath(∆ν), the probability
density of line widths of single molecules, is asymmetrical and
long tailed. The line width∆ν was related to the varianceW
according to

and the dimensionless factorzdepends on the line shape.9 Such
a relation between line width and variance is possible only when
the line shape has a simple shape (e.g., a Gaussian); if the line
shapes split due to strong coupling with defects or if the variance
of line shape diverges (e.g., Lorentzian line shape), clearly
relation eq 2.4 does not hold. Using eq 2.4 the probability
density of line widthsh(∆ν) is related to the probability density
of variances according to

To analyze the experimental data in noncrystalline media, a
continuum model was analyzed8,9,28[i.e., the continuum version
of eq 2.3]. Currently, there is not sufficient experimental data
to determine whether the continuum theory works quantitatively.

III. The Distribution of the Variance: Exact Results

A. Tools and Definitions. Our aim in this section is to
investigate the probability, Prob (W ) x), of finding a variance
W equal tox. This probability function can be formally found
for any finite system. For finite systems, Prob (W ) x) * 0
only on a finite number of pointsx.

One may limit the investigation of the model to 0< p e 1/2.
Forp > 1/2, one can redefine the problem where vacancies (i.e.,
empty lattice points) are considered as defects. One can show
that

whereq * p - 1/2 is a control parameter andI(1) ≡ ∑j1/|j|6.
The varianceW, eq 2.3, is bounded by 0< W e I(1). This

implies that all moments of Prob (W ) x) converge. The first
two moments of the varianceW are given by

with

wheren ) 1, 2, .... The averaging〈...〉, in eq 3.2, is over the
occupation parameters{âj}. The converging sumsI(n) are
evaluated using a computer, without difficulty. They can also
be evaluated using standard continuum approximation which
replaces the summation in eq 3.3 with an integration.29 In Table
1 we give the numerical values ofI(n), and we see that limnf∞
I(n) ) 6 which is the number of nearest neighbors on a cubic
lattice.

Let n|j|2
max be the number of sites on the cubic lattice that are

a distance|j|2 ) 1, 2, 3, ... from the origin. For example,

and from a standard continuum approximationn|j|2
max ∼ 2π|j| for

|j| . 1. We do not know of an explicit formula forn|j|2
max;

however, these numbers can be easily calculated for large
systems.

h(∆ν) ) (2∆ν/z) g [(∆ν)2/z2] (2.5)

Probq(W ) 1
2
I(1) + x) ) Prob-q(W ) 1

2
I(1) - x) (3.1)

〈W〉 ) pI(1)

〈W2〉 ) 〈W〉2 + p(1 - p) I (2) (3.2)

I(n) ≡ ∑
j

1

|j|6n
(3.3)

n1
max ) 6, n2

max ) 12,n3
max ) 8, n4

max ) 6, n5
max ) 24

n6
max ) 24,n7

max ) 0, n8
max ) 12

n9
max ) 30,n10

max ) 24,n11
max ) 24

E(t) ) ∑
j

R
âjεjêj(t)

| rbj|3
(2.1)

E(t) ) Rêh∑
j

εjâj

|rj|3
(2.2)

W≡
a6(E2 - Eh2)

δ2R2
) ∑

j

âj

|j|6
(2.3)

∆ν ) zxW (2.4)
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A disordered system is characterized byn1 TLSs a distance
|j|2 ) 1 from the origin,n2 TLSs a distance|j|2 ) 2, etc. We
define a disordered state with the sequence of numbers{n1, n2,
...,nm}. m is an upper cutoff which gives the number of “shells”
we consider.

B. Exact Solution. To find the exact solution we use the
characteristic function defined in Fourierk space,

The product∏j is over all lattice points. As we show in the
Appendix, one can use the lattice symmetry and the character-
istic function to obtain the solution for finite systems

whereN ) ∑i)1
m ni

max is the number of lattice sites. In eq 3.5
∑n1,n2,...nm|x is a sum over all values of

which satisfy the condition

For x * n1 + n2/23 + ... nm/m3 we have Prob (W ) x) ) 0.
Eq 3.7 describes the discrete variance spectrum.
To calculate Prob (W ) x), given in eq 3.5, for all values of

x for which Prob (W ) x) * 0 we have to consider

disordered states. This is much smaller than a straightforward
consideration of all

microscopic configurations. Our method uses the symmetry of
the lattice and the fact that the TLSs which are a distance|j|
from the molecule contribute in the same way to the charac-
teristic function helped us reduce the number of configurations
we must consider. For a three-dimensional system we haveg11

= 239.7, c11 ) 2170 andg5 = 217.1, c5 ) 2.54

IV. Strong Disorder p ) 1/2

For the casep ) 1/2, the disorder is strong and the contribution
to Prob (W ) x) from nearest neighbor interaction is non-
negligible. In this case we may expect the lattice structure to
play an important role controlling the shape of Prob (W ) x).

To generate the solution we begin with a system with only
nearest neighbors interaction. In Figure 1a we show Prob (W
) x) for the three-dimensional cubic lattice andp ) 1/2. There
are seven peaks in the figure corresponding to seven states in
which the system can be found these being an empty system, a
system with one occupied site, etc. In Figure 1b we consider a
larger system including the next nearest neighbors interaction.
We see that each peak has split due to the interaction with the
next nearest neighbors. The axis of symmetry of Figure 1a is
on x ) 3. This axis is shifted to 3+ 6/23 in Figure 1b; in the
thermodynamic limit ofm f ∞, the axis of symmetry is on
I(1)/2 (see details below).

We have emphasized already that there exists a degeneracy
in the model since different microscopic configurations con-
tribute in the same manner to Prob (W ) x). This has helped us
reduce the number of disordered states needed for the calcula-
tion: for nearest and next nearest interaction, this means that
we can easily reduce the problem from itsc2 ) 218 microscopic
configurations tog2 ) 7 × 13 ) 91 disordered states. We
observe a second type of degeneracy when the interaction with
next nearest neighbors are included. In Figure 1b we observe
only 61 < g2 ) 91 values ofW for which Prob (W ) x) * 0.
To understand this degeneracy consider the two states withn1

) 1, n2 ) 8 andn1 ) 2, n2 ) 0. Since for both cases the value
of W ) 1 + 8/23 ) 2 + 0/23 ) 2, we have a second degeneracy
in the problem. We call this accidental degeneracy.

For practical reasons one must carry the calculations of the
sums in eq 3.5 with the aid of a computer. However, numerical
inaccuracy might remove the accidental degeneracy. Hence, to
find the exact solution for Prob (W ) x), it is important to use
exact numerical tools which can identify all the degeneracy in
the problem (e.g., we used Mathematica). As we shall later show
the accidental degeneracy is a significant ingredient in this
problem: its accidental removal alters the shape of Prob
(W ) x).

In Figures 1c,d we show the solution for even larger systems.
A detailed structure is emerging. Notice that as we increase the
size of the system the height of the observed peaks is attenuated
while the number of peaks increases. As we increase the
systems’ size, the central peaks are shifting to the right. In Figure
2 we have indicated the location of seven peaks in the limit of
an infinite system (see more details below).

It is instructive to rewrite eq 3.5 as a sum of seven terms

Where Prob (W ) x|n1 ) j1) is the conditional probability that
W ) x when the number of occupied nearest neighbors is equal
j1 and

is the probability thatj1 nearest neighbors sites are occupied.
The conditional probability is given by

and the summation procedure is defined in eq 3.5 withn1 ) j1.
In Table 2 we give the cumulant expansion of Prob

(W ) x|n1 ) j1) valid in the thermodynamic limit of large

TABLE 1

n 1 2 3 4 5 6

I(n) 8.401 84 6.202 15 6.023 88 6.002 95 6.000 37 6.000 05

〈exp (ikW)〉 ) ∏
j

[p exp(ik/|j|6) + (1 - p)] (3.4)

Prob (W ) x) ) ∑
n1,n2,...,nm|x

(n1
max

n1
)(n2

max

n2
)...(nm

max

nm
)×

pΣi
m)1ni(1 - p)N-Σi)1

m ni (3.5)

n1 ) 0, ...,n1
max

.

.

.

nm ) 0, ...,nm
max (3.6)

x ) n1 + n2/2
3 + ... nm/m3 (3.7)

gm ) (n1
max + 1)(n2

max + 1)...(nm
max + 1) (3.8)

cm ) (2)Σq)1
m nq

max
(3.9)

Prob (W ) x) ) ∑
j1)0

6

Qj1
Prob(W ) x|n1 ) j1) (4.1)

Qj1
) pj1 (1 - p)6-j1 (6j1) (4.2)

Prob(W ) x|n1 ) j1) ) ∑
j1,n2,...,nm|x

′ (n2
max

n2
)...(nm

max

nm
)×

pΣq)2
m nq(1 - p)N-6-Σq)2

m nq (4.3)
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system. To find the cumulantsκn we have used the conditioned
characteristic function

where∏j*j1 is a multiplication over all lattice points excluding
the nearest neighbors, and the standard definition of the

cumulant expansion

The cumulants in Table 2 are given in terms ofq ≡ p - 1/2.
We have calculated the cumulants using symbolic programming
(e.g., we used Mathematica without which the calculation
becomes cumbersome).

A few features can be seen in Table 2. First forp ) 1 or p
) 0 (i.e., q ) (1/2) all the cumulants excluding the first are
identically zero. This is expected from distributions concentrated
on a point. The odd (even) cumulants are odd (even) functions
of q. Using this odd/even property it is straightforward to prove
eq 3.1. Thenth cumulant is proportional toI(n) - 6, six being
the number of nearest neighbors. As we show in Table 1, the
differenceI(n) - 6 approaches zero exponentially fast whenn
is increased. Forp ) 1/2 (i.e., q ) 0) all odd cumulants
(excluding the first) of Prob (W ) x|n1 ) j1) are identically

Figure 1. Prob (W ) x) for p ) 1/2 and for different system size. (a) Only interaction with the nearest neighbors is considered and then seven delta
peaks are observed. (b) We consider the interaction with nearest neighbors and next-nearest neighbors (i.e.,m ) 2). Notice the horizontal shift of
the axis of symmetry relative to case (a). The continuous curve is added to guide the eye, and 61 delta peaks are observed. (c) Nowm ) 3, notice
the change of scale compared to previous cases; 549 delta peaks are observed. Case (d), nowm ) 4 so the maximum number of TLSs in the system
is 32; 3843 delta peaks are observed.

Figure 2. The same as Figure 1d, Prob (W ) x) with m ) 4. We have
indicated the fixed points (stars), found in eq 4.8 below, to which the
peaks of the distribution are converging in the thermodynamic limit.
Also shown is the direction of flow (arrows).

〈exp (ik‚W)〉n1)j1
) eikj1{∏

j*j1

[p exp(ik/|j|6) + (1 - p)]} (4.4)

TABLE 2

n κn

1 j1 + (1/2 + q)[I(1) - 6]
2 (1/4- q2)[I(2) - 6]
3 -2(1/4- q2)q[I(3) - 6]
4 (1/4- q2)(-1/2 + 6q2)[I(4) - 6]
5 (1/4- q2)(4q - 24q3)[I(5) - 6]
6 (1/4- q2)(1 - 30q2 + 120q4)[I(6) - 6]
7 (1/4- q2)(-17q + 240q3 - 720q5)

[I(7) - 6]
8 (1/4- q2)(-17/4+ 231q2 - 2100q4 + 5040q6)

[I(8) - 6]

ln [〈exp(ikW)〉n1)j1
] ≡ ∑

n)1

in
κn

n!
kn (4.5)

Distribution of Variances J. Phys. Chem. B, Vol. 104, No. 2, 2000345



zero as expected from a symmetric distribution. Later we shall
use the cumulants to find an approximate solution for an infinite
lattice system.

The conditioned moments are given by

and

For p ) 1/2 the axis of symmetry of the seven conditional
probabilities is located at〈W〉n1)j1. We believe, but have no proof,
that on these locations the conditional probability attains its
maximal value. In the limit of infinite system these points are
given by

These are the points shown in Figure 2. Equation 4.8 implies
that the axis of symmetry of Prob (W ) x) is on I(1)/2.

A useful identity is

which can be easily understood from eq 4.3. The identity eq
4.9 is useful for numerical computations. The calculation of
Prob (W ) x) can follow two steps: first calculate Prob (W )
x|n1 ) 0) and then with eqs 4.1 and 4.9 calculate Prob (W ) x)
for all the spectrum ofx. This method further reduces the
computation time.

In Figure 3 we show the conditional probability Prob (W )
x|n1 ) 3) for a system withm) 5. Not surprisingly the structure
we observe is very similar to the structure of the central part of
Prob (W ) x) shown in Figures 1c,d and 2 for smaller systems
[i.e., Prob (W ) x) for 3.2 < x < 4.8]. In Figure 4 we show
Prob (W ) x|n1 ) 3) for a larger system withm ) 6. Now the
detailed structure of Prob (W ) x|n1 ) 3) is very different than
that shown in Figure 3. Many new peaks are observed which
are not observed in the smaller systems.

The emergence of this new structure is due to the accidental
degeneracy we discussed previously. In Figure 4 we have
marked two points asD0 andD1. We have found the disordered

states which contribute to these peaks. We have defined a
disordered state with the sequence{n1, n2, ..., nm} describing
n1 defects a distance|j|2 ) 1 from the origin,n2 defects a
distance|j|2 ) 2 from the origin, etc., and for our casem ) 6.
Seven disordered states contribute toD0, these being

six disordered states contribute toD1

To see that all these disordered states contribute to the same
peak one can easily check thatx defined in eq 3.7 is identical

Figure 3. Prob (W ) x|n1 ) 3) for a system with 56 lattice points
(i.e.,m ) 5) andp ) 1/2. Besides an attenuation factor, and small shift,
this structure is very similar to that observed in the central part of Prob
(W ) x) in Figures 1c,d and 2.

〈W〉n1)j1
) κ1 ) j1 + p[I(1) - 6] (4.6)

σ2 ) κ2 ) 〈W2〉n1)j1
- 〈W〉 n1)j1

2 ) p(1 - p)[I(2) - 6] (4.7)

x ) I(1)/2, x ) I(1)/2 ( 1, x ) I(1)/2 ( 2 (4.8)

Prob (W ) x|n1 ) j1) ) Prob (W ) x +1|n1 ) j1 +1) (4.9)

Figure 4. Prob (W ) x|n1 ) 3) for a system of 80 lattice points (i.e.,
m ) 6), p ) 1/2. Two highly degenerate peaksD0 andD1 are discussed
in the text. The structure is very different from the structure shown in
Figure 3.

Figure 5. The same as in Figure 4; however, now we have removed
the accidental degeneracy. Comparing this figure and Figure 4 we see
that the accidental degeneracy gives an important contribution to the
fine structure of Prob (W ) x|n1 ) 3).

{3,5,7,3,12,15}, {3,5,8,3,12,7}, {3,6,3,3,12,20}

{3,6,4,3,12,12}, {3,6,5,3,12,4}, {3,7,0,3,12,17}

{3,7,1,3,12,9}

{3,5,7,3,12,7}, {3,5,6,3,12,15}, {3,6,2,3,12,20}

{3,6,3,3,12,12}, {3,6,4,3,12,4}, {3,7,0,3,12,9}
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for all the listed states. To illustrate the importance of this
accidental degeneracy, we show in Figure 5 the conditional
probability Prob (W) x|n1 ) 3) for the same system as in Figure
4; however, now we artificially remove the degeneracy. Clearly,
Figure 4 (degenerate and correct) and Figure 5 (nondegenerate)
are nonsimilar. The accidental degeneracy plays an important
role in the shape of Prob (W ) x) for finite systems. It is
interesting to remark that the degeneracy of the smaller systems
shown in Figures 1-3 is weaker [i.e., the pointsD0, D1 (and
many others) are nondegenerate whenm < 6].

Finally, we emphasize that the degeneracy can be partially
or fully removed by different physical mechanisms, which break
the lattice symmetry. We believe that this degeneracy implies
that the exact solution exhibits a strong sensitivity to perturba-
tions of different types.

V. Distribution of the Variance: Approximate Results

Our exact results presented in Figures 1-5 were obtained
for a finite systems. Let us consider a simple approximate
solution for an infinite lattice andp ) 1/2. Whenp ) 1/2 the
cumulants in Table 2 showκ2n+1 ) 0 and

(e.g., 3κ2
2/κ4 = 21.3). When these inequalities are satisfied, the

conditioned probabilityP(W ) x|j ) n1) behave like the
Gaussian distribution (i.e., it is well-known that the cumulants
of the Gaussian vanish forn > 2). Our approximation neglects
all contributions from the conditioned cumulantsκn in Table 2
with n > 3, namely Prob (W ) x|n1 ) j1) is replaced with a
Gaussian with the variance and mean given in eqs 4.6 and 4.7
when p ) 1/2. Therefore, letg(W)dW be the probability of
finding the variance in a small interval (W, W + dW), then

where

and

In eq 5.2 the sum overj1 reflects the contribution from the six
nearest neighbors interaction while the finite width of the seven
Gaussians reflects the interaction with the background. As can
be seen in Figure 6 the varianceσ1

2 defined in eq 5.3 is large
enough to insure a significant overlap between the nearest
neighbors conditional probabilities.

The approximationg(W), in eq 5.2, is a smooth continuous
probability density function which replaces the exact expression
for g(W), eq 3.5, which is a sum of closely spaced delta function.
To compare between the exact and approximate solution we
have built a histogram based on the exact solution. This
histogram is shown in Figure 6 together with the approximation
eq 5.2. The exact result was derived for a finite system, withm

) 8, for which the exact solution has not yet reached its
thermodynamic (m f ∞) limit. To overcome this obstacle we
used also eq 4.8, which gives the exact location of the axis of
symmetry of the seven conditional probabilities. Hence, we shift
(slightly) the exact finite size solution, in such a way that the
axis of symmetry ofg(W) is on I(1)/2. This is how we obtain
good agreement between exact and approximate solution.

Also shown in Figure 6 isg(W) obtained by a numerical
inversion of the characteristic function eq 3.4. Also here we
use a finite system, however now we use a much larger system
than m ) 8. To find the numerical Fourier transform of the
characteristic function we use an upper cutoffkc, in such a way
that 〈exp(ikW)〉 ) 0, for k > kc. The exact expression of
〈exp(ikW)〉, for any finite system, is a periodic function ofk,
the period becoming very long as the size of the system is
increased. Since we use the upper cutoffkc in our numerical
simulations we do not see the solution as a sum of closely spaced
∆ peaks. Rather the approximate solution eq 5.2, the exact
solution based on eq 3.5 and the numerical Fourier transform,
all presented in Figure 6, are in good agreement.

A quantitative comparison between the exact and approximate
solution is made using cumulants. The cumulants of the exact
solution, eq 3.6, can be found in terms of the lattice sumsI(n).
In Table 3 we give the exact cumulants (i.e., forp ) 1/2) and
the cumulants calculated based on the approximation eq 5.2
(notice that these results are not the conditional cumulants
presented in Table 2). Using the results in Table 1, for the lattice
sumsI(n), we see a good agreement between the exact and the
approximate cumulants.

Our method used the conditional probabilities Prob (W )
x|n1 ) j1). One can generalize this approach by defining

3κ2
2 . κ4

15κ2
3 . κ6 + 15κ4κ2 (5.1)

g(W) ) ∑
j1)0

6

Qj1

1

x2πσ1
2

exp[-
(W - j1 - V)2

2σ1
2 ] (5.2)

σ1
2 )

[I(2) - 6]
4

(5.3)

V )
[I(1) - 6]

2
(5.4)

Figure 6. The solid curve isg(W), eq 5.2, exhibiting seven peaks which
are due to the lattice symmetry. The dotted curve is a histogram (with
a bin length 0.1) obtained with the exact result for a finite system with
m ) 8. Also shown (dashed curve) is the solution obtained by a
numerical Fourier inversion of the characteristic function eq 3.4. Good
agreement between the exact, approximate and numerical results is
obtained.

TABLE 3

n κn exact κn approximate

1 (1/2)I (1) (1/2)I (1)
2 (1/4)I (2) (1/4)I (2)
4 -(1/8)I (4) = -(1/8)6.00295 -(1/8)6
6 (1/4)I (6) = (1/4)6.00005 (1/4)6
8 -(17/16)I (8) = -(17/16)6.0 -(17/16)6

10 -(93/12)I (10) = -(93.12)6.0 -(93/12)6
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conditional probabilities for nearest neighbor, next-nearest
neighbors, etc. In Figure 7 we show the output of such a
computation. We have added the effect of next-nearest neighbors
and next-to-next nearest neighbors to our calculation ofg(W).
In this caseg(W) is a sum of 7× 13 × 9 Gaussians. In Figure
7 we show the central peak ofg(W) vs W. One can observe
secondary small oscillations.

Finally, we note that forp = 1/2 similar approximate solutions
can be found using the same arguments as for the casep ) 1/2.
Then, one may consider instead of a sum of seven symmetrical
Gaussian a sum of seven non symmetric functions (i.e., modified
Gaussians). Forp , 1, the situation is very different since then
the inequalities eq 5.1 do not hold. This situation is discussed
in section VII.

VI. Continuum Limit -Lévy Statistics

The continuum version of the model was investigated8,9,11,28

in a context of a single molecule embedded in a glassy material.
The model considersN f ∞ uncorrelated TLSs, distributed
uniformly in space and interacting with the molecule in the
origin. Here we would like to point out the relation between
this continuum model and Le´vy stable distributions. In the
following section we shall discus the relation between the
continuum and lattice models in the limitp , 1.

The variance for the continuum model is

andxi ≡ 1/ri
6. Equation 6.1 describes a random walk in which

the length of each independent step isxi. Therefore the central
limit theorem and its generalization is of fundamental
importance.22-24 While the standard Gaussian central limit
theorem applies when the variance ofxi converges, the general-
ized central limit theorem applies when the variance ofxi

diverges. The problem at hand can be analyzed in terms of the
generalized central limit theorem.

Let ê(x) be the probability density function describing{xi}
which are independent identically distributed random variables.
The probability density functionê(x) is related to the probability
density of the random variables{ri}, F(r) according toê(x) )

|dr/dx|F(r). Using a uniform distribution of defects,F(r)dr ∼
r2dr we find

andγ ) 1/2, which means that the first moment of the summand
xi diverges. Hence, according to the generalized central limit
theorem, the distribution of variance will be a non symmetrical
(i.e., becauseW g 0) stable distribution with a characteristic
exponentγ ) 1/2. For this case the stable characteristic function
is

and a short calculation showsA ≡ p(2π)3/2/3 (here p is a
dimensionless density). Equation 6.3 is one of the few stable
characteristic functions which can be analytically inverted. The
probability density of the variance is

also known as Smirnov’s density.30 In probability theory eq 6.4
describes the limit distribution of first return times of a one-
dimensional Brownian motion. Similar to the probability density
function ê(x) ∼ x-3/2, the probability density function (6.4)
decays asg(W) ∼ W-3/2.

We see that in the continuum limit the variance averaged
over disorder diverges. This is because in the continuum model
the TLSs are allowed to be situated very close to the molecule
on the origin. A more physical approach would be to consider
a lower cutoff (in the lattice model this is the lattice spacing).
Then the distribution of variance would not be stable; however,
for small enough cutoff one can still observe the characteristic
W-3/2 decay with an upper cutoff for largeW (Pfluegl et al.9

calculated the explicit dependence of the distribution of variance
on the cutoff). Numerical simulations10,11 and experiments8 in
glassy material show that the probability density of line widths
h(∆ν), related to the probability density of variances according
to eq 2.5, has a long tail; however, there is not sufficient data
to determine if this distribution is related to Le´vy statistics.

Very recently, Geva and Skinner,11 on the basis of a
continuum model similar to ours, showed that the probability
density of moments of a frequency-frequency auto correlation
function in low-temperature glasses all fit a universal master
curve (eq 2.20 in ref 11). This master curve is Smirnov’s density
eq 6.4. This interesting result is also a consequence of the
generalized central limit theorem.

VII. Continuum Approximation vs Lattice Model: p , 1

What is the relation between the solution of the continuum
and lattice models? One might anticipate that for low defect
density,p , 1, the TLSs situated far away from the molecule
play an important role and then the lattice structure is of lesser
importance. We rewrite the characteristic function eq 3.4 as

and the subscript indicates that we are considering a lattice
model. We expand the logarithm to obtain

Figure 7. The central peak ofg(W) vs W for p ) 1/2. We show the
small secondary oscillations due to the next and next to next neighboring
lattice points.

W ) ∑
i)1

N

xi g 0 (6.1)

ê(x) ∼ x-(1+γ) (6.2)

〈exp(ikW)〉 ) exp[-A|k|1/2(1 - ik/|k|)] (6.3)

g(W) ) 1

A2

2

xπ(2W

A2 )-3/2
exp(- A2

2W) (6.4)

〈exp(ikW)〉lat ) exp{∑
j

ln[1 + p(eik/|j|6 - 1)]} (7.1)

〈exp(ikW)〉lat ) exp[-p∑
j

(1 - eik/|j|6)] (7.2)
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for p , 1. The smallk behavior of eq 7.2 is

Converting the sum in eq 7.2 into an integral, we find

whererc is a low cutoff and the subscript indicates that we are
considering a continuum model. The continuum characteristic
function eq 7.4 was analyzed in ref 9, integrating by parts

whereS(x) andC(x) are the tabulated Fresnel sine and cosine
integrals andy ≡ (2l)/(πrc

6).31 Taking the limit rc f 0, in eq
7.5, we obtain the stable characteristic function eq 6.3. The small
k behavior of the continuum characteristic function, eq 7.5 is

where we have neglected terms proportional top2. Equation
7.6 exhibits an analytical behavior and therefore the moments
of the continuum model with finite cutoffrc converge; this is
different from the nonanalytical behavior of the stable charac-
teristic function eq 6.3 whose moments diverge.

In Figure 8 we use the exact solution of the lattice model eq
7.1 to show the real part of〈exp(ikW)〉lat as a function ofk.
Also shown in Figure 9 is Smirnov’s stable characteristic

function eq 6.3 together with the continuum model with a cutoff
eq 7.5. The lattice solution exhibits large oscillations which look
random. In contrast, the continuum solution with and without a
cutoff behave smoothly. Choosingrc = a ) 1, the continuum
solutions with and without a cutoff are very much alike, except
for small values ofk. The exact lattice results were calculated
for a finite system. We have checked that the solution does not
depend on the size of the system.

In Figure 9 we showg(W), obtained using numerical Fourier
transform of the exact solution eq 7.1. We observe satellite peaks
due to the lattice structure. These peaks are separated by large
gaps in whichg(W) = 0. Whileg(W) is mostly concentrated in
a small region close to the origin (sayW< 0.01), corresponding
to interaction with distant defects, nevertheless, rare events with
very large varianceW are predicted to be significant.

Also shown in Figure 9 are the stable Smirnov density eq
6.4 and the numerical Fourier transform of the characteristic
function with finite cutoff rc eq 7.5. We find qualitative
agreement between the lattice and continuum models, but only
for small W. The deviation of the lattice solution from the
continuum solution is most significant in the largeW tail of
g(W) where the continuum models predicts a power law decay.
This behavior can be easily understood. A molecule whose
varianceW is large implies that lattice points close to the origin
are occupied by defects. For the defects close to the origin we
can hardly expect a continuum model to work well. Since the
continuum approximation does not work well we develop
qualitative approximation valid for smallp in the following
subsection.

A. Weak Disorder Quantitative Approximation. The origin
of the satellite peaks shown in Figure 10 is now investigated.
We follow an approached sketched by Stoneham (see section
5.2 in ref 1) and used by Orth et al.32 in the context of
inhomogeneous line broadening. We divide the crystal into two
regions. Within the first spherical inner region, which we call
region 1, the lattice is treated as discrete and the rest of the
crystal, region 2, is treated as a continuum. The radius of the

Figure 8. The real part of the characteristic function vs the Fourier
variablek, with p ) 0.01. The fluctuations of the exact lattice solution
(solid curve) are due to the lattice structure and are not a finite size
effect. The stable Smirnov characteristic function (dashed curve), with
A ) p(2π)3/2/3, obtained from a continuum picture with no cutoff and
a continuum characteristic function with a finite cutoff (dotted curve)
are indistinguishable on the scale of the plot. In the inset we show the
behavior of the exact and continuum solutions for smallk. Notice the
non analytical behavior of the stable characteristic function atk ) 0.
The exact lattice characteristic function as well as the continuum model
exhibit an analytical behavior close tok ) 0, due to the cutoffsa and
rc, respectively. We have chosenrc ) [(4πp)/9〈W2〉lat]1/9 ) 0.838, so
that for valuesk , 1 the analytical continuum model and the lattice
model exhibit similar behaviors.

〈exp(ikW)〉lat ∼ 1 + ipI(1)k -
pI(2)

2
k2 + ... (7.3)

〈exp(ikW)〉con ) exp[-p4π/3∫rc

∞
dr3(1 - eik/|r|6)] (7.4)

〈exp(ikW)〉com ) exp{- 4π
3

prc
3[πx|y|[S(x|y|) -

i
y
|y|C(x|y|)] - (1 - eiπy/2)]} (7.5)

〈exp(ikW)〉com ∼ 1 + i
4π
3

p

rc
3
k - 2π

9
p

rc
9
k2 (7.6)

Figure 9. The solid curve isg(W) for the casep ) 0.01, obtained by
a numerical Fourier transform of the lattice characteristic function.
Dashed curve is Smirnov’s stable probability density function obtained
within the continuum approximation withrc ) 0. The deviations
between the lattice and continuum model are large in the tail of the
probability density function. Also shown is the continuum solution with
a finite cutoff rc (dotted curve), which on the scale of the plot is
indistinguishable from the continuum model with no cutoff. In the inset
we show the tail ofg(W) on a semilog plot.
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inner region isxl and l is an integer. We write

with

andN ) ∑i)1
l ni

max. Here Prob (W ) x|n1 ) j1, ...,nl ) jl) is the
probability thatW ) x subject to the condition that the number
of n1 sites isj1, etc. The sum is overj1 ) 0, ..., 6, etc. Our
approximation, valid forp , 1, involves two steps, first we
replace the conditional probabilities Prob (W ) x|n1 ) j1, ...,nl

) jl) with smooth normalized nonnegative probability densities
and then truncate the sum eq 7.7. The integerl in eq 7.7 divides
the system into two, and the limit of largel must be considered.
Practically, we increasel until our results converge. As in section
V, we replace the discrete Prob (W ) x)-with the continuum
probability density functiong(W).

The first step is to replace the conditional probability Prob
(W ) x|n1 ) j1, ..., nl ) jl), in eq 7.7, with its continuum
approximation. For this aim we use the conditioned characteristic
function

where the multiplication is over all lattice points excluding those
in region 1 and withxmin ) ∑l

i)1ji/i3. We now use the same
procedure given in eqs 7.1-7.5, and then Prob (W ) x|n1 ) j1,
..., nl ) jl) in eq 7.7 is replaced with

where Sm(rc, W) is the inverse Fourier transform of the
continuum characteristic function eq 7.5.Sm(rc, W) is found
here numerically. In eq 7.10rc ) xl is the low cutoff
reflecting the fact that we are treating region 2 as a continuum.

The main assumption that we are using is that whenl is large
enough the exact lattice sums may be replaces with the
appropriate integrals.

For large l, the summation in eq 7.7 is formidable, for
example, ifl ) 9, the sum is over e21 states. However, sincep
, 1 we may use a second approximation and truncate the sum
in eq 7.7. The lowest order of approximation is to consider only
the term proportional toQ0,0,...,0, and this term gives the
contribution from an empty region 1. The first-order corrections
arel terms in eq 7.7 proportional toQ1,0,0,0,..., Q0,1,0,0,..., etc. These
terms imply that a single defect is residing in region 1. The
l(l + 1)/2 second-order terms areQ1,1,0,0,..., Q1,1,0,0,..., etc., and
Q2,0,..., Q0,2,..., etc. We therefore find

where the summation∑j1+j2+...jl)1 is over all values ofj1 g 0, j2
g 0...which satisfy the conditionj1 + j2 + ...jl ) 1.

The probability that region 1 is empty for a very largel and
finite p is given by

and then the truncation procedure is not valid. Our approxima-
tion will work well only if l is large; however,p is small enough
to ensure that the truncated sum eq 7.11 is approximately
normalized to unity. For a givenp and l this can be easily
checked, since the functionsSm(rc,W - xmin) in eq 7.11 are
normalized, probability densities.

Figure 10 shows the approximate solution eq 7.11 together
with the results obtained using numerical Fourier transform of
the characteristic function eq 7.1, for the casep ) 0.01. The
approximation was calculated using the first- and second-order
correction terms. Good agreement between the numerical and
approximate result is found. Each peak we observe in Figure
10 can be related to a microscopic configuration of defects
within region 1. For example, the peaks labeledP1 (P2) in Figure
10 correspond to a defect situated on one of the nearest neighbor
(next to nearest neighbors) sites, respectively. We notice that
peakP2 is taller than peakP1; this is due to the fact that for a
three-dimensional cubic lattice the number of next-nearest sites
is larger than the number of nearest sites. Hence the probability
that the “second shell” will be occupied is larger than the “first
shell”.

B. Gaussian and Lévy Behaviors. According to eq 6.3, a
signature of stable behavior ink space is

On the other hand the exact smallp behavior of the lattice model
shows

The two-solution eq 7.13 and eq 7.14 are clearly different with
the lattice solution exhibiting strong oscillations.

To use the continuum approximation for quantitative purposes
one has to define statistical functions that are not sensitive to
the lattice structure. One may filter out the lattice oscillations

Figure 10. The same as Figure 9 with the approximate solution, eq
7.11 added. To obtain the approximate result we usedl ) 9.

Prob (W ) x) ) ∑
j1,...,jl

Qj1,...,jl
Prob (W ) x|n1 ) j1, ...,nl ) j l)

(7.7)

Qj1,...,jl
) (1 - p)N-Σi)0

l j ipΣi)0
l j i(6j1)...(nl

max

j l ) (7.8)

〈exp(ikW)〉n1)j1,...,nl)jl
) eikxmin{ ∏

j*j1,...,jl

[p exp(ik/|j|6) +

(1 - p)]} (7.9)

gj1,...,jl
(W) ) {Sm(rc, W - xmin) if W > xmin

0 if W < xmin
(7.10)

g(W) ) Q0,...,0g0,...,0(W) + ∑
j1+j2+...jl)1

Qj1,...,jl
gj1,...,jl

(W) +

∑
j1+j2+...jl)2

Qj1,...,jl
gj1,...,jl

(W) + ... (7.11)

Q0,0,0,...) lim
lf∞

(1 - p)N ) 0 (7.12)

Re[log〈exp(ikW)〉con] ) -
(2π)3/2

3
p|k|1/2 (7.13)

Re[log〈exp(ikW)〉lat] ) -p∑
j [1 - cos( k

|j|6)] (7.14)
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by defining

The small and largek behaviors of this function are

whereA was defined in eq 6.3. The smallk behavior can be
understood on the basis of the integration of

For largerk we get the stable behavior which can be predicted
on the basis of

The fluctuation term in eq 7.18 becomes very small after an
integration with respect tok (i.e., after filtering out the lattice
oscillations). A more detailed calculation based on the con-
tinuum model eq 7.5 gives

Figure 11 presentsJ(k) for the lattice model eq 7.1, for the
continuum model eq 7.19, and for the asymptotic results eq 7.16.
As can be seen, the continuum and lattice solutions are in good
agreement. The reason for this is that we are considering the
function J(k) which does not depend strongly on the lattice
structure. The main reason to consider such a function is that it
exhibits two well-known behaviors. The first is an analytical
smallk Gaussian behavior which is controlled by the low lattice
cutoff and the converging moments of the distribution function.
The secondk3/2 behavior, for largek, can be traced back to the

tails of the distribution and the stable characteristic function.
The crossover between the two behaviors is controlled by the
low cutoff (i.e., the lattice spacing in the lattice model).

VIII. Discussion

Stoneham1 has used the so-called “statistical method” to
analyze inhomogeneous line broadening. This approach uses a
continuum approximation for the lattice structure and was used
here to analyze the continuum model. We have used two other
techniques to analyze the lattice model.

(a) We have found the exact solution of the lattice model eq
3.5. This solution exhibits many peaks, their number increasing
sharply with the size of the system; hence, exact results can be
obtained only for finite systems. Most applications are concerned
with the infinite crystal limit for which only a smooth continuum
solution is meaningful. Using a histogram, and forp ) 1/2, we
were able to construct a smooth exact solution, for large enough
systems, in such a way that the exact finite size solution agrees
quantitatively with a solution obtained by numerically inverting
the characteristic function.

(b) We use the mathematical theory of stable distributions
(i.e., the generalized central limit theorem) to analyze the
continuum model and show thatg(W) is Smirnov’s stable density
with index γ )1/2.

One may use the mathematical theory on stable distributions
to generalize the continuum results withrc ) 0. Consider a
generalized interaction with W) ∑j1/|rj|θ in dimensionD. Then
assuming a uniform density of defects,g(W) will be a nonsym-
metrical Lévy stable probability density withγ ) D/θ e 1.
For our modelD ) 3 and according to eq 2.3,θ ) 6 and hence
γ ) 1/2. If we consider a two-dimensional system, with similar
three-dimensional dipole interactionθ ) 6, we getγ ) 1/3. Then
g(W), given in closed form in ref 33, followsg(W) ∼ W-4/3,
which is slower than the decay ofg(W) whenD ) 3. It is also
interesting to point out that two symmetrical stable distributions
are used to analyze inhomogeneous line broadening, these being
Holtsmark line shape withγ ) 3/2, and the Lorentzian line shape
γ ) 1.1 Furukawa, Nakai, and Kunitomi34 have used Mo¨ssbauer
spectroscopy and found that the distribution of internal magnetic
fields in Au(Fe) spin glass alloys is Le´vy stable. Zumofen and
Klafter18 have shown that the short time evolution of a single
molecule coupled to a system of two levels systems is described
by symmetrical Le´vy stable Green functions. As mentioned in
section VI, Geva and Skinner,11 have shown that moments of a
certain dynamical auto correlation function are also described
by a stable distribution. All these results are a manifestation of
the generalized central limit theorem22-24 which was shown to
play an important role in diverse physical phenomena.35,36

The generalized central limit theorem can be used when (a)
the defects interact with the molecule according to a slow power
law (b) the defects are distributed uniformly is space (i.e., with
rc ) 0) (c) the defects are non interacting (d) the defects are
statistically identical (e.g., all TLS-chromophore couplings are
assumed identical). The relaxation of some of these assumptions
was investigated in some detail. For example, the effect of
introducing a cutoff9 or interacting TLSs16 or the inclusion of
distributions of TLSs parameters10 or lattice structure as
considered here, all result in deviations from the Le´vy stable
behavior. However, under certain conditions these deviations
may become small and then the stable behavior may be expected
to hold.

The slow power law decay ofg(W) found within the
continuum picture is a result of defects situated close to the
molecule. In the lattice results and forp)0.01, this power law

Figure 11. The casep ) 0.001,rc ) 0.847. The dashed curve is the
exact lattice result, the continuous curve is the continuum approxima-
tion, the dotted curves are the smallk and largek asymptotic behaviors.
We observe a crossover from Gaussian behavior fork , 1 andJ(k) ∼
k3 to Lévy behavior withJ(k) ∼ k3/2 for k . 1. The interesting feature
is that only two distinct scaling regimes are seen.

J(k) ≡ -∫0

k
Re[log〈exp(ik′W)〉]dk′ (7.15)

Jlat(k) ) {p
6
I (2) k3 k , 1

2A
3

k3/2 k . 1
(7.16)

Re[log〈exp(ikW)〉lat] ∼ k2pI(2)/4 k , 1 (7.17)

Re[log〈exp(ikW)〉lat] ∼ -A|k|1/2 + fluct (7.18)

Jcon(k) ) p
4π
9 {2k3/2x2πS(x 2k

πrc
6) +

rc
3[-3k + 2k cos(k/rc

6) + rc
6 sin(k/rc

6)]} (7.19)
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is not found; rather, we observe well separated peaks in the tail
of g(W). Hence the largeW behavior ofg(W) is very sensitive
to the lattice structure. This is expected, since defects in the
vicinity of the molecule contribute to the largeW behavior of
g(W) and then the lattice structure cannot be approximated by
a continuum.

It is interesting to note that lattice models of inhomogeneous
line broadening by point defects predict the appearance of
satellite structure in the inhomogeneous line shape.1,32 Such
satellite structure was observed experimentally and was claimed1,32

(and references therein) to reflect the lattice structure. The
satellite structure reported in32 is rather weak, suggesting that
the lattice structure is only slightly perturbing the inhomoge-
neous line shape of the appropriate continuum model. On the
other hand, as we show here, the distribution of varianceg(W)
exhibits a strong sensitivity to the lattice structure. As observed
in Figures 6 and 10 the lattice structure is not a weak
perturbation, slightly modifying continuum results, but rather
has a strong influence on the density of variancesg(W). The
reason for this is that the effective interaction exponent in eq
2.3 is 6; hence, the interaction decays in space rather fast and
this in turn implies a strong sensitivity on the occupation of
nearby neighbors and hence on the structure of the lattice.

In glassy materials our results are clearly not quantitatively
valid. In calculations8,9,11,28of the distribution of variances it
has been assumed that the glass has no structure and that the
defects two level systems are distributed uniformly in space.
This assumption is valid for large distances from the chro-
mophore. We believe that the short range structure of the glass
may influence the distribution of line widths. This is expected
to be observed mainly in the tail of the distribution.

Reilly and Skinner37 have modeled spectral diffusion of
pentacene inp terphenyl crystal,7 using what they have called
a 2D model. They associate TLSs with lattice sites in a plane
at a given distance from the single molecule. This modeling is
motivated by the assumption that the dominant contribution to
spectral diffusion arises from TLSs residing on domain walls.
These domains are characterized by TLSs with different
orientation. The Skinner Reilly model is different than ours since
we assume that the occupation probability of each lattice site
is independent of the occupation of other sites.

In this work we have assumed that the molecule in the origin
does not distort the lattice structure. When the size of the
molecule is approximately identical to the size of the host
molecule, this assumption is reasonable. The variance might
be controlled by mechanisms different than ours for example
due to coupling to phonon bath, laser intensity, and detection
efficiency,38 we have assumed that all these effects are
negligible. Other assumptions we have used are discussed in
Section II.
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IX. Appendix A

To construct the solution we rewrite the characteristic function
for a finite system

wherem is an upper cutoff and we want to consider the limit
of largem. Using the Binomial expansion

with y ) eik and rearranging the summations we find

whereN ) ∑i)1
m ni

max is the number of lattice sites. We use the
inverse Fourier transform to find eq 3.5.
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(n1
max

n1
)(py)n1(1 - p)n1

max-n1] ×

[∑
n2)0

n2
max

(n2
max

n2
)(py1/23

)n2(1 - p)n2
max-n2]...

[ ∑
nm)0

nm
max

(nm
max

nm
)(py1/m3

)n2(1 - p)nm
max-nm] (9.2)

〈exp(ikW)〉 ) ∑
n1

n1
max

∑
n2

n2
max

...∑
nm

nm
max

(n1
max

n1
)(n2

max

n2
)...

[n2
max

n2
]pΣi)1

m ni(1 - p)N-Σi)1
m niyn1+n2/23+...nm/m3

(9.3)
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