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A ~icroscopic description for reactions in condensed media involving hydrogen tunneling, 
valtd ove~ a large temperature range, is presented. The tunneling system, represented by a 
pseudospm (S = 1/2), reaches eqUilibrium when coupled to its environment, modeled by a 
collection of harmonic oscillators that behave like a heat bath. The environment includes both 
modes of the lattice (or solvent) and those molecular vibrations which play an active role in 
the tunneling process. Analytical expressions for the reaction rate are given in various regimes. 

I. INTRODUCTION 

Recent experiments have determined relaxation param­
eters associated with hydrogen transfer reactions in con­
densed media over a wide range of temperatures. 1-4 The sys­
tems which have been studied occur in two tautomeric 
forms, which we shall designate as Land R, respectively. 
The interconversion between these tautomers implies a 
change in the position of one or more hydrogen atoms, and 
the rearrangement of single and multiple bonds in the mole­
cule. Examples of this type of molecule are tropolone and 
malonaldehyde (see Fig. 1). 

The rate constant for this class of reactions presents a 
very complex temperature dependence. A qualitative expla­
nation for the results can be given as follows: At very low 
temperatures, tunneling relaxation occurs through one 
phonon emission or absorption. As temperature increases, 
multi phonon processes become more important, and even­
tually lead to a semiclassical regime in which the rate con­
stant shows the characteristic features of an activated pro­
cess. The high temperature regime has been experimentally 
probed by nuclear magnetic resonance (NMR)2 and inelas­
tic neutron scattering;3 recently, novel optical techniques 
have been applied to access the lower temperature region.4 

The rich variety of behavior displayed by this kind of 
system makes it very difficult to put forth a comprehensive 
theoretical description valid in all the various regimes. 
Hence most ofthe theoretical models that have been consid­
ered in the past focused on rather specific limits and are 
inapplicable otherwise. It shall be our aim to propose a mod­
el which is general enough to cover most of the situations 
encountered in experiments, and yet remain analytically 
tractable. 

II. MODEL HAMILTONIAN 

There are two aspects in the problem which are of par­
ticular interest from a theoretical standpoint: The effects of 
the coupling of the system to its environment, and the multi­
dimensional character of the tunneling. 

The effects of the environment are included in a stan­
dard fashion, within the framework of relaxation theory.5-7 
The second problem has been dealt with by Carrington et al.8 

and Shida et al.9 by means of a multidimensional reaction 
surface description, in which the dynamics along the large 
amplitude modes (e.g., the two C-H bond lengths in the case 
of malonaldehyde in Ref. 8) are treated accurately. A locally 

harmonic approximation is then made for the remainder of 
the modes (small amplitude motion, treated adiabatically). 
In this manner, the dimensionality of the problem is re­
duced, rendering the numerical calculations feasible. Our 
approach to this aspect of the problem is rather different. We 
shall assume that the tunneling process is basically unidi­
mensional,for an appropriately chosen tunneling coordinate. 
Coupled molecular vibrations shall be handled in a perturba­
tive fashion, on the same footing as the lattice (or the sol­
vent) is treated in relaxation theory. Hence in our model, the 
environment comprises both modes of the lattice and those 
molecular vibrations which substantially modify the dynam­
ics along the tunneling mode. We suggest that in this fashion, 
the main features of multidimensional tunneling will be 
properly captured. 

The motion along the tunneling coordinate S takes place 
in a bistable potential (Fig. 2). We shall consider the general 
case of an asymmetric double well, where the asymmetry is 
due either to differences in the structure of the two tau­
tomers or induced by the crystal field. Instead of treating the 
whole problem, we shall restrict our analysis to the subspace 
spanned by the two lowest eigenstates of Hs. The suitable 
restrictions for this approximation to remain valid are: 
Vo> a> ± > 2Llo and K B T < a> ±' where Vo is the barrier 
height, a> ± the vibrational frequencies at the bottom of the 
wells and 2Llo the difference in energy between the lowest 
two levels [i.e., the splitting in the absence of tunneling (see 
Fig. 2)]. Obviously, our treatment will not reproduce the 
features of an activated process with an activation energy 
equal to the classical barrier. The system Hamiltonian is 
thus truncated to that of a pseudospin with S = !. In a local­
ized basis {IL > ,IR > }, the Hamiltonian is 

Hs = - Llouz + Jux , (1) 

where J is the tunneling matrix element and the standard 
definition for the Pauli matrices {u o

} 0 _ is used. The lat-l l-X,y,Z 

tice (solvent) shall be modeled by a collection of harmonic 

o ~o 

C H~ ~ '0 H''',6 '----c H, 

L form Rform 

FIG. 1. Tautomerization reaction for malonaldehyde. 
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Figure 2. Double well potential for the tunneling motion. 

FIG. 2. Double well potential for the tunneling motion. 

oscillators, with infinite heat capacity (it behaves as a heat 
bath) and a continuous spectrum (which ensures relaxation 
to equilibrium of the isolated lattice). The main effect of the 
lattice on the system is to induce fluctuations in the asymme­
try of the double well, without substantially modifying the 
tunneling matrix element. Ifwe assume these fluctuations to 
be linear in the lattice oscillator coordinates, the Hamilto­
nian for the supersystem (tunneling system plus environ­
ment) is 

1 N N 

H = - AoO'z + JO'x + - L (p~ + w~q7) + L /;qjO'z, 
2 i=1 i= 1 

(2) 

known in the literature as the spin-boson Hamiltonian. 10 

We note that the term in O'y is not present, as it would break 
time reversal symmetry. In the case of a symmetric double 
well (Ao = 0), the Hamiltonian must be symmetric with re­
spect to spatial parity. This implies that/; must vanish for 
those modes of the bath which are symmetric with respect to 
the parity operator of the bath. 

Finally, we have to modify Eq. (2) in order to include 
the effect of strongly coupled local vibrations. For the sake of 
concreteness, we shall consider one particular vibrational 
coordinate Q assumed to induce fluctuations in both the tun­
neling matrix element and the asymmetry of the system. As 
an example, consider the following case: 

.. 
Q 

The tunneling coordinate is 5, and the molecular vibration 
which has been singled out is Q. We remark that the width 
(and possibly the height) of the barrier depends on the value 
of Q, the 0-0 distance (Fig. 3). Assuming that the change 
of the width of the barrier is linear in Q, the change of the 
splitting J should be exponential I I 

J(Q) = Coe'YQ r<O, 

where the origin for Q has been chosen to be Qe' the equilibri­
um 0-0 distance. This Q dependence should be valid for not 
too high temperatures «Q2) <Q;, where ( ... ) isa thermal 
average, as described later in the paper). The final expres­
sion for the Hamiltonian is 

N+I 

+ L /;q;O'z, (3) 
;= 1 

where the (N + I )th mode is the Q oscillator 
(p= PN+ I' !=!N+ I' andw = WN+ 1)· In the case Ao = 0, 
we must also have! = 0, as Q is symmetric with respect to 
parity. A Hamiltonian of this form has been previously con­
sidered by Borgis et of. II in the same context. However, 
throughout their treatment, the solvent is described by a sin­
gle collective coordinate, and their calculations are restrict­
ed to limiting cases in which only the short time dynamics of 
the solvent are relevant. This should be appropriate for a 
high temperature regime with respect to the solvent 
(/3wc < I, where /3 = l/KB T and We is a suitable cutoff for 
the solvent frequencies), and in the limit of adiabatic solvent 
(we ..... 0). Furthermore, the perturbation chosen in their pa-

Q> Q. 

Q= Q. 

Q < Q. 

FIG. 3. Dependence of the barrier width with the molecular vibration Q. 
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per has a nonzero thermal average and could give rise to 
divergences (due to the presence of secular terms in the per­
turbation expansion) in the rate constant for the symmetric 
case, in particular at low temperatures. Our treatment pro­
vides an explicit model for the solvent, which is adequate 
both in the low and high temperature regimes. Special care 
shall be taken in choosing a perturbation which possesses a 
zero thermal average, thus avoiding spurious divergences. 

III. DYNAMICS 

A.General 

The rest of the paper will be devoted to the study of the 
dynamics generated by the Hamiltonian derived in the pre­
vious section: 

1 N+l 
H = - tl.ouz + CoerQux + - L CP7 + (t)7q7) 

2 ;=1 

N+I N+I 12 
+ L hq;uz + L -'2' 

;=1 ;=1 2{t); 
(4) 

where the last term (a shift in the energy origin) has been 
included for convenience. There are several ways of dividing 
this Hamiltonian into an integrable part Ho and a perturba­
tion V. The criteria we shall use in order to choose a partition 
are: 

( 1) The dynamics generated by Ho should be close to 
those generated by the full Hamiltonian. 

(2) Assuming that A. is a unitless parameter measuring 
the strength of the perturbation, the characteristic relaxa­
tion time for the system coupled to its environment is 
'TR ~A. - 2. The environment, as included in Ho, should have 
a characteristic relaxation time 'T b < 'T R •

6 

Both of the conditions are fulfilled by the choice 

1 N+ I 

Ho = - tl.ouz + 2" ;~I CPT + (t)Tq7) 

N+I N+I 17 
+ i~1 hq;uz + ;~I 2{t)7' 

(5) 

v= CoerQux (6) 

provided that Co is sufficiently small. 
Performing on H the unitary transformation that diagona­
lizes Ho, 

U = exp{i Nil ~~ uz }, 

J = 1 (t)j 

the following expression is obtained: 
- _ t _ -H - U HU - - tl.oO'z + VUx +Hb , 

1 N+ 1 

Hb = 2" i~l CP7 + (t)7q7) , 

V = coexp{~Q-~z)} 

xexp { - 2i ~tll ~7P;Uz}. (7) 

The thermal average of an observable 0 is defined as 

Trb (Oe - f3Hb) 

Trb(e-f3Hb) . 
(0 ) 

Adding and subtracting the thermal average of V, 

(V) = Co exp{Ls({t)}exp{ - Nil I~ S(W;)}, 
4a> ,=1 (t); 

j3{t) ; 
s({t);) = coth --, 

2 

we obtain 

H = H 0 + tl.lI, 
Ho = - tl.ouz + (V)ux + Hb , 

tl.lI = (V - (V) )ux ' 

(8) 

The physical picture emerging from this choice of zeroth 
order Hamiltonian is that of a particle tunneling together 
with a phonon cloud. This representation was first intro­
duced by Holstein l2 in the theory of electron transport in 
solids; in that context, the dressed tunneling pseudoparticle 
is called small polaron. It should be an adequate description 
whenever V has small fluctuations around its thermal aver­
age (V), and the dressing time, or characteristic time in 
which the bath modes undergo a displacement in order to 
adjust themselves to the instantaneous state of the system, is 
short compared to the time scale of the system relaxation. 

We remark that in the original representation the tun­
neling matrix element is given by 
J= (CoerQ) = Coexp{(y/4{t)s({t)}, whereas after the 
small polaron transformation, this quantity has a different 
magnitude: J = J exp{ - ~f=+/ (2/;1{t);)s({t);)}; the renor­
malization factor exp{ - ~f=+11(2/71{t)f)s({t);)} represents 
the thermal average of the overlap between oscillator wave 
functions displaced by ± <J;1{t);), respectively (Le., it is a 
Frank-Condon factor). 

It shall be convenient for the following discussion to 
make a particular choice for the lattice and the interaction. 
The form of the spectral function Y (w) 

= ~f= I (fJI{t)j )8(w - (t)j) which shall be considered is the 
following: 

(9) 

corresponding to a collection of acoustic modes in a three­
dimensional solid, with a coupling I( w) proportional to w 
(deformation potential approximation); TJ represents a unit­
less parameter measuring the strength of the coupling, and 
Wc ~ 102 cm - I is an appropriate cutoff frequency for the 
bath in molecular solids. The frequency of the Q mode can 
take values ranging from -10 cm - I (torsional modes) to 
_ 103 cm - 1 (optical modes). 

It shall also be useful to define several quantities related 
to the bath and the interaction: EQ = 2/21{t)2 represents the 
difference in energy between the IL> and IR > states of the 
system arising from the displacement of the Q oscillator. The 
analogous quantity for the lattice modes is defined as 
EI = ~f= lEq, = ~f= 1 (2f;I{t)J) = 4TJwc. Finally, 
E1' = y/2, and Etotal = EQ + EI + E1' (see Fig. 4). 

Assuming that a second order perturbation description 
is appropriate, the population relaxation rate in the localized 
basis is7 
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__________ ~~~ __ L_ __ ~~----------~q; 
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(a) 

------------~~~--------~------------.. q; 
-4 

"'. 
(bl 

FIG. 4. (al Adiabatic potential curves for the ith mode of the environment 
(symmetric case). (b) Adiabatic potential curves for the ith mode of the 
environment (asymmetric case). 

KR~L = f: 00 [(VLR (t) VRL ) - (V)2]eiwLRt dt. (10) 

This expression shall be evaluated in the limit that the asym­
metry 2Llo > 0 is smaller than both the cutoff frequency for 
the solvent we' and the frequency of the molecular vibration 
llJ. In particular, for our model 

V = C e yf1w e yQ exp 2i ~ _po . _ '{ N+l J: } 
RL 0 £.. 2" 

i= 1 llJi 

therefore the rate is 

JOO [ ( {N + 1 f } K R _ L = _ 00 C5 e
yQU

) exp - 2i i~l ~;Pi(t) 

Note that the term 

_ ( { N+ 1 f }) (V)2 = C5 eyQ exp - 2i2: ~i 
,= 1 llJi 

( { 
N+ 1 f }) 

X eyQ exp 2i .2: ~Pi 
,= I llJi 

is being subtracted from the integrand. It ensures that the 
integral of the time correlation function, which defines the 
rate, is convergent and therefore provides a meaningful 
expression for the rate: For r~rb' the characteristic relaxa­
tion time of the bath, the time correlation function factorizes 
and the integrand goes to zero. 

The expression above can be readily evaluated to yield 

2 { r N+ 1 IT } KR~L = Co exp -=--S(llJ) - 2: 2-
3

s(llJi ) 
2llJ i= 1 Wi 

X JOO dt e- 2il>ot [exp{L [s(llJ )cos llJt - isin llJt] 
- 00 2llJ 

- 2 I~ [cos llJt - is(llJ )sin llJt ] 
llJ 

+ Nil 21} [s(llJj ) cos llJjt _ £ sin llJjt ]} - 1]. 
j = 1 llJj 

(12) 

Making a change of variable r = t + £(/3 /2), and deforming 
the contour to the real axis: 

X f: 00 dre- 2i
l>oT 

X [ { 
r cos llJr +. 21r sin llJr exp 1------
2llJ sinh (/3llJ/2) llJ2 sinh (/3llJ/2) 

N+ 1212 cos llJ.r } ] +2:-1 
1 -1. 

j = 1 llJ] sinh (/3llJj /2 ) 
(13) 

In the derivation of this expression, we have assumed that 

J
±t+i(P/2) 

lim dr[integrand of Eq. (13)] =0. 
1-00 ± t 

This is true for the modes {i = 1, ... ,N}, due to the fact that 
they belong to an acoustic branch with an associated disper­
sion Llw~ We' The Q osciIIator has no dispersion associated 
with it. Consequently, the time correlation functions of this 
mode do not factorize at any time, leading to divergences in 
their time integrals when the limits of integration are ex­
tended to infinity. This can be avoided by allowing some 
dispersion in this mode. Grover and Silbey l3 propose several 
alternatives: Assuming that the main dispersion occurs in 
the frequencies, with r( w) and N( w) = (eflw - 1) - 1 re-
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mainingapproximately constant, in Eq. (13), eiw
/ is replaced 

by eiwtA(t), with the definition A(t) = S~ '" dw' p(w')eiw'/, 

where p (w') is the shape of the dispersion in Q centered at w. 
Various forms of pew) give different decays as described in 
Table I. In an equivalent fashion, we could have introduced 
an imaginary component for the frequency, whose origin can 
be assigned to interactions with other modes. If t::. is the 
phonon bandwidth (in the order of several cm - I), for times 
t>t::. - 1 (of the order of 100 ps), the integrand in Eq. (13) 
has decayed to zero and the rate is well defined. Although we 
are not going to include dispersion explicitly in all of our 
calculations, we should bear in mind that it is essential for 
the convergence of the expressions we are using. 

We remark that in Ref. II, the solvent time-correlation 
functions show a Gaussian decay (which automatically en­
sures the convergence of their expression for the rate), in­
stead of factorizing in the manner exhibited in this paper. 
This is due to the fact that only the short time solvent dy­
namics are taken into account. 

B. Limiting case: {3w c <i11 
At high temperatures for the bath ({3we « 1), using the 

form given by Eq. (9) for the spectral function Yew), we 
find 

K R _ L = C~ exp{(.i.. - 2.L)s(w) - ~ - {3~0} 
2w w3 {3w c 

X J: '" dT e - 2i~"r[ exp { (~ + ~32) 

X 
cos (rJT . 2fr sin (rJT ----+ 1-----

sinh (,B(rJ/2) (rJ2 sinh (,B(rJ/2) 

+ 4Tj I } _ 1] (14) 
,Bwc I + rw~ . 

For the cases of strong and moderate coupling [Tj - () ( 1 ) ], 
the condition 4Tj/,Bwc > I allows the possibility of evaluating 
the integral in Eq. (14) by the method of stationary phase. 
Expanding the exponent to second order in T, around the 
saddle point T = 0, and evaluating the resulting Gaussian 
integral, the following result is obtained: 

K C2( 1T )112 {r 1 + cosh(,B(rJ/2) 
R_ L = 0 exp - -'----.....:.:....---'-

rw/4 sinh (,Bw/2) + l: [1}/(rJj sinh (,B(rJj/2) ] 2(rJ sinh(,B(rJ/2) 

N ~ I 21J 1 - cosh({3wJ2) ,BA} {I [2~0 - 2Ir/sinh ({3w/2) P } + ~ -. - Uo exp - - . 
j = 1 wJ smh ({3(rJj /2) 4 wr /4 sinh (,Bw/2) + l: [f]/ Wj sinh ({3wJ2) 

(15) 

This expression can be simplified for the different tempera­
ture regimes with respect to the Q vibration. 

1. {3w « 1 (high temperature limit for the Q mode) 

xexp{ - -,B-(2t::.o + Etotal - 4 fr )2}. (16) 
4E,otal ,Bw 

Note that in the expression above, the tunneling matrix ele­
ment has been evaluated at Q = -I /w2

, which corresponds 
to the displacement ofthe Q mode when the system is fixed in 
the localized state IL>. The temperature dependence re­
sembles that of an activated process, with an activation ener­
gy which is temperature dependent 

E = [2~o + Etot - 4(fr/,Bw) ]2 _ 4Ey _ Ey. 
a 4Eto, ,B 2(rJ2 2 

In the symmetric case (~0=OJ=0)Ea=(E,-Ey)/4 
- (4E)'/,B2W1 ). 

2. ,Bwp 1 (low temperature limit for the Q mode) 

K _ C 2 (Er - EQ)/W( 1T{3)I12 { a (2~0 + E,)2} 
R-L - oe - exp - v . 

E, 4E, 
(17) 

The splitting is now evaluated at Q = 0, due to the fact that 
the Q mode is frozen in its ground state. Its effect simply 

I 
amounts to a redefinition of the tunneling matrix element, 
which becomes Co = Coe(Er -EQ)/2W. The behavior is truly 
activated, with an apparent barrier of Eo 
= (2t::.o + E, )2/4E, for the asymmetric case, and Ea 
= EJ4 for the symmetric one. Note that, in both cases Ea is 

just the reorganization energy due to the displacement of the 
lattice oscillators (the energy of the crossing point of the two 
adiabatic curves in Fig. 4). 
In case of extremely weak coupling, where we still assume 
,B(rJe « 1, but 4Tj/,Bwe ~ 1 the expression for the rate is 

K R _ L = C~ exp{(.i..- 2
f

:)s(W) -~-,Bt::.o} 
2liJ w ,Bwe 

X J: '" dTe-2i~"r 
X [ {r + 2/2 cos liJT exp - -------

2liJ liJ2 sinh (,BliJ/2) 

+ . 2/r sin WT } 
I --;;;z sinh (,BliJ/2) 

X (1 + 4Tj I 2 + () ( Tj2 ») - I]. (18 ) 
,Bwe 1 + rWe 

In the low temperature limit for the Q oscillation (,BliJ> 1): 

K - C 2 4Tj1T e(Ey - EQ)/w 
R_L - 0,B 2 

We 

xexp - ,Bt::.o - -- - 2-- , { 
4Tj It::.ol} 

f3we We 
(19) 
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TABLE I. Models for the dispersion in the Q mode and the resulting decay 
functions (from Ref. 13). 

p(w) AU) 

Lorentzian 
I:J. e- A1rl 
-; 1:J.2 + u? 

Gaussian ~-w'/A' e - .6'!'!/4 

1:J.1T'/2 

Optical w(k) =@o+l:J.cosk Jo(l:J.t) 

which gives rise to a linear T dependence for the rate (since 
the terms in the exponent do not have a significative contri­
bution in this region). 

C. Limiting case: pWc $> 1 

For low temperature with respect to the lattice 
([3we ~ 1), two extreme behaviors are encountered: 

( 1) In the high temperature limit for the Q vibration the 
condition l/sinh([3w/~) -2/[3w~ 1 provides a large pa­
rameter, which suggests the possibility of evaluating the in­
tegral by the stationary phase method. The integral is going 
to be dominated by contributions in the vicinity of the saddle 
points given by the equation 

(20) 

provided that Ey - EQ is not too small. Note that, unless a 
dispersion is assumed for the Q mode, there is an infinite 
number of such saddle points, each giving the same finite 
contribution. The rate would thus diverge. If the dispersion 
in Q has been included, only tJ(whrA) points contribute. 
We shall assume a dispersion such that the decay function is 
a step function B( A I t I - 1) (i.e., each of the whrA points 
yields the same contribution). With this assumption, the re­
sult is 

K =~Cz rr[3 
R_L rrA 0 lEy - EQI 

{ 
E -E } 

X exp 4f.t y [3w2 Q - 21/ - [3Ao 

X I yw - 2flzt.,.;w exp { _ [3 A~ } 
yw + 2f lEy - EQI 

(21) 

where f.t = 1 for Ey - EQ > 0 and f.t = 0 for Ey - EQ < O. 
This formula is also valid in the limit of high temperature for 
both the lattice and the molecular vibration, and extremely 
weak coupling ([3we <,l,[3w<,I,41//[3we <,1), with the sub­
stitution of 21/ by 41//[3we in the expression above. 

(2) In the low temperature region ([3w~ 1 and[3we ~ 1) 
we can expand the integrand in Eq. (13) disentangling the 
contributions from one-phonon, two-phonon processes, etc. 
If the calculation is restricted to one-phonon processes (tak­
ing into account that these are not possible for the Q vibra­
tion) the result derived by Skinner and Trommsdorff14 ob­
tains. The calculation is valid for the limit in which 2Ac/3~ 1, 
but has failed to explain the temperature dependence of the 
rate constant in the opposite regime for at least one experi­
mental situation: measurements in benzoic acid dimers with 
small asymmetries, at low temperature.4 An explanation of 

the unusual temperature dependence (the rate increased as 
- T4 between 1-5 K) was attempted by Silbey and Tromms­
dorff,15 who stressed the role of two-phonon processes 
(which are assumed to be dominant over the one-phonon 
contribution) and of an experimentally observed local 
mode. We shall therefore explicitly calculate the contribu­
tions of up to two vibrational quanta. There are four contri­
butions which shall be considered separately: 

(22) 

The contribution from one phonon emission or absorption 
( depending on the sign of Ao, 

4 A - pt. .. 
KIP=C~e-2'1 1T1! oe e-zlt.ol/we 

w~ sinh [3Ao ' 

which has an activated behavior at low temperature 
(Ea = 2Ao if Ao > 0, or Ea = 0 if Ao < 0), and increases lin­
early with Tin the opposite limit, 2Ac/3 <,1. There are several 
processes involving two quanta: 
( a) two-phonon emission/absorption 

Kzp = C~e-2'1e-pt..,21T1!z e-21t..,I/We 

w~ 

i ZI!>..)1 w(21A I - w) 
X dw 0 • 

o sinh([3w/2)sinh([3(2IAol - w)/2) 

In the limit 2AJ3<,I, it leads to a T2 dependence 

K = C 2e- 2'1e -Pt.., 161T1!21A le-21t.oI/We. 
2P 0 [32 4 0 

We 

(b) Two-phonon Raman processes 

K - c- z - 2'1 - Pt..) 4rr1/2 
- 21t..,l/we 

R- oe e ~ 
w~ 

X r" dw w(211lo1 + w) e - Zw1we. 
Jo sinh([3w/2)sinh(/3(211lo1 + w)/2) 

A T3 behavior obtains for 2 AJ3 <, 1: 

K = C Z e - 2'1e - pt.., 16~1/2 e - 21t..,l /we 
R 0 3[33W! ' 

which is closer to the experimental measurements K - T4 than 
the usual T7 dependence. 
(c) Raman processes involving one phonon and one quantum 
of the Q vibration 

e -wlwe 

X . 
sinh([3w/2 ) 

IV. CONCLUSIONS 

The goal of the present investigation has been to develop 
a microscopic treatment for hydrogen transfer reactions in 
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condensed media, in the limit that these occur through tun­
neling without vibrational activation. The description we 
have presented is a minimal one, in the sense that we have 
tried to characterize the reaction by the least possible num­
ber of microscopic parameters, and a simple model Hamilto­
nian: 

The isolated reactants and products are represented by 
the two lowest lying states of a double well potential, with 
the assumption that the barrier between the wells is very 
large. In this fashion, the isolated system is characterized by 
26.0' the difference in energy between reactants and products 
in the absence of tunneling, and J, the tunneling matrix ele­
ment. Note that this model does not allow excitations within 
each of the wells. 

The lattice (solvent) is assumed to be a collection of 
independent harmonic oscillators (i.e., a boson field) and is 
characterized by the spectral function Y (w). In this paper 
we have chosen a particular form for the spectral function 
corresponding to an acoustic phonon branch in a Debye sol­
id. However, an entirely analogous analysis can be carried 
out within the same framework for other boson fields (opti­
cal phonons, radiation, local phonons, and so on) provided 
that their spectrum is continuous. 

Finally, modes of a different nature than those of the 
lattice (e.g., molecular vibrations) have been included expli­
citly. 

From this model Hamiltonian we have derived the rel­
evant reaction rate making use of the principles of relaxation 
theory and avoiding the use of phenomenological assump­
tions as much as possible. This scheme requires that we make 
a felicitous choice for a (separable) zeroth order Hamilto­
nian and a perturbation. A convenient perturbation term 

TABLE II. Summary of the results obtained in this paper. 

Coupling T for local 

with zero thermal average is identified after performing a 
unitary transformation that shifts the eqUilibrium position 
of the oscillators. Another important point is the way in 
which those special modes which cannot be included in the 
lattice (solvent) are treated: Instead of including explicitly 
the effects of multidimensional tunneling, we have assumed 
that there is a single tunneling coordinate; the dynamics 
along the tunneling mode are affected by the dynamics along 
the other modes, the effect of which is included in the form of 
a perturbative analysis. This picture should be valid if the 
renormalized tunneling coordinate is weakly coupled to the 
rest of the vibrations; hence the weakness of this coupling 
should be a necessary criterion to Make a suitable choice for 
the tunneling mode. 

Despite its simplicity, our model is sophisticated 
enough to reproduce the diverse experimental results: At 
low temperatures, the rate constant has a rather complex 
temperature dependence and reflects the various elementary 
processes that are involved in the reaction (one-phonon, 
two-phonon processes, etc.). The high temperature region is 
closer to a statistical limit in which the Gaussian approxima­
tion is valid; the rate constant presents the features of an 
activated process, with a barrier which almost in all cases has 
a direct physical interpretation. A summary of these results 
is given in Table II. We have also been able to confirm some 
results of previous investigations, which were made with less 
detailed models and asystematic approximations. 

It is our hope that this paper will serve as the basis for 
the study of systems of greater complexity, and as a clarifica­
tion of the experimental situation, which may appear confus­
ing due to the lack of knowledge of the relevant microscopic 
parameters. 

Expression 
T for lattice strength vibration Method of evaluation for the rate Remarks 

High T 

(,8«.> <I) 

LowT 
(,8(U, » I) 

Strong/moderate 

(417/,8«.>, > I) 

weak 

weak/moderate 

High T 
(,8«.>~ I) 

Low T 
(,8«.» I) 

HighT 
(,8«.><1) 

LowT 
(,8«.» 1) 

HighT 

LowT 
(,8«.» I) 

Stationary phase. 
Saddle point provided 

by solvent. 
Stationary phase. 

Saddle point provided 
by solvent 

Stationary phase. 
Several saddle points 
provided by the local 

vibration 

Taylor expansion 

in 417/,8«.> c 

Stationary phase. 
Several saddle points 
provided by the local 

vibration. 

Taylor expansion 
of expression (15) 

(16) Activated process. Temperature dependent 
activation energy. 

(17) Activated process. Activation energy is 
temperature independent. 

(21), substi· Complex temperature dependence. 
tuting 

417/,8«.>< 
for 217 

(19) 

(21) 

(22) 

Linear temperature dependence. 

Complex temperature dependence. This 
expression for the rate is only valid for 

the limit E" #EQ • 

The reaction proceeds by several mechanisms: 
1 phononl2 phonon absorption (or 

emission for exothermic reactions), Raman 
processes involving the lattice only or both 

lattice and local vibration, etc. 
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