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Abstract 

Non-linear optical experiments in glasses exhibiting spectral diffusion give strong support for the importance of two-level 
system excitations (TLS). The difference in the line widths measured by these experiments and fast two-pulse photon echo 
experiments has been ascribed to slowly relaxing TLS. The sudden jump model is found to be an appropriate description of the 
dynamics; within this model, we derive new analytical results for three-pulse experiments at all temperatures. These experiments 
and the dynamics of TLS in glasses are discussed within the context of these results. 

1. Introduction 

The standard description of a glass as a random array of two-level systems (TLSs), proposed by Phillips [ 1 ] 

and Anderson et al. [ 21 to explain low-temperature acoustic and thermal properties of disordered materials, has 
recently received some support from optical experiments. Several groups [ 3-61 have reported the presence of 
spectral diffusion, detected by hole-burning spectroscopy (HB) and three-pulse photon echo (3PE) experi- 
ments performed on a chromophore embedded in a glassy matrix. For some glasses, these experiments yield an 
effective homogeneous linewidth that is larger than the “true” homogeneous linewidth obtained, for instance, 
by a two-pulse photon echo (2PE) experiment. These two different results can be explained by arguing that the 
2PE experiment is a one time scale experiment (namely, the time scale given by the delay between the two 
pulses, which is of the order of nanoseconds, the order the inverse of the linewidth measured), whereas both HB 
and 3PE experiments possess a second time scale (the delay between the burning and the reading pulse - from 
microseconds to hours - in HB, and the delay between the second and the third pulses - from nanoseconds to 
seconds - in the 3PE experiment). The effective linewidth measured in the latter experiments has contributions 
from dynamical processes occurring in the surrounding media during this second time scale. These processes 
induce fluctuations in the frequency of the chromophore and lead to dephasing [ 7 1. 

It is now widely believed that the fluctuations of the media can be described in terms of the dynamics of a 
random array of TLSs, which are coupled to the chromophore via the phonon field. 

In this Letter, we shall investigate a model where the frequency of chromophore contains a fluctuating part 
made up of contributions from each TLS, assuming that the distribution of TLSs is uniform throughout the glass 
and that they interact with the chromophore via multipolar forces. Instead of examining the exact dynamics of 
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the TLSs, a sudden-jump stochastic process is assumed for the interaction term. We then obtain expressions for 
the observable quantities measured in HB, 2PE and 3PE experiments and proceed to analyze the results of these 
experiments. 

2. Non-linear optical experiments: hole-burning and three-pulse photon echoes 

In a first approach, we can assume that the chromophore embedded in a glass can be described by a simple 
Hamiltonian which contains stochastic terms, 

(1) 

where Q - I_ I g) (g I - I e) (e I , and I g) , I e ) are the ground and excited states of the chromophore, respectively; 
w,, is the static absorption frequency in absence of interactions with the surrounding glass. The second term of 
the above equation reflects the effects of the time evolution of the environment on the absorption frequency of 
the optical impurity (that is, it contains the fluctuation of the chromophore’s frequency due to the coupling to 
N perturbers ) . 

The relevant quantity to calculate for the discussion of the non-linear optical experiments is the following 
correlation function [&lo] : 

(2) 

where the choice of s( t ) is 

s(t)=1 , o<t<z, 

s(t)=O, r<t<T,+r, 

s(t)=-1, T,,,+z<t<T,+22, 

for a 3PE experiment. 
In terms of this quantity, the amplitude for the 3PE signal is 

&d7, T,> =~(L)G& Tw) ew( --yeTI , 

where A( Tw) contains the effect of the population relaxation to the ground state, and ye is the homogeneous 
linewidth in the absence of media fluctuations of the type described above. 

The hole-burning signal (see Fig. 2 for a graphical description of the experiment) is proportional to 

f 02 

LB a% s doA I drexp(i&) exp(-yy,r) C3&r; 0)) 
r-TB 0 

where 6 is the detuning from the burning frequency. Physically, one can think of the HB experiment as the 
Fourier transform of a collection of 3PE experiments, where the delay between the second and third pulses range 
from t - T, to t. 

We note that, experimentally, the dependence of C3,, (r, f3) on 8 is rather weak (usually logarithmic), so that 
we can approximate the above expression (especially if t xa TB) by 
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Fig. 1. Photon-echo experiments. 
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Fig. 2. Hole-burning experiment. 
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where FB = Eg TB is the burning fluence and T,,, = t - Tm Hence, the small fluence limit of the hole-burning spec- 
trum is approximately the Fourier transform of the 3PE signal. 
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3. Results in the sudden-jump model 

In summary, the relevant quantity to evaluate in HB and 3PE experiments is C,,( r, r,,,) (Eq. (2) ) where 
the double angular brackets stand for a series of averages that define the measurable quantity: first, we have to 
calculate the average over an ensemble of chromophores. By making use of the ergodic hypothesis, this can be 
evaluated as a temporal average over the history of the environment fluctuations. The second one is an average 
over all the different environments in which the optical impurity can be found. This second average can be 
separated into an average over the positions of the TLSs, which we shall call configurational average, and an 
average over the TLS parameters. 

The configurational average is easily evaluated in the thermodynamic limit (N-+ 03 ) , for the case of low den- 
sity [ 8 1, and for a uniform distribution of the TLSs in the glass (which, presumably, are the actual conditions 
in these experiments) 

((-p( -i j dr’S(r’) 1 AOj(r ) 
0 

j_“, ’ )))=exp(p I dr[(exp( -i 1 Aw(r’)s(r’) dY))-l]}. 
0 

(3) 

In the previous expression, Ao( 7) is the frequency fluctuation due to a two-level system situated at a position r 

(with the chromophore at the origin), and p is the density of TLSs. The remaining brackets stand for the history 
average and for the average over the TLS parameters. 

The history average of (exp [ -i J& dr’ A?Lo( 7’)s( 7’) ] ) will be evaluated assuming that the fluctuating part of 
the optical frequency takes the form: Ao (t ) = ah (t ) , where a measures the interaction of the chromophore and 
the TLS in question (it depends on the distance and orientation relative to the chromophore and on intrinsic 
parameters of the TLS, such as the energy splitting E and the tunneling matrix element A) and h ( t ) is a random 
telegraph function taking values - 1 and + 1 with the following properties: the probability of being in the state 
- 1 at time t and in the state + 1 at t+dt is given by W( + 1, t+dt I- 1, t) = W, dt. Similarly, the probability of 
being in the state + 1 at time t and in the state - 1 at t + dt is given by W( - 1, t+ dt 1 + 1, t) = W, dt. We have 
allowed for different upward and downward rates in order to account for detailed balance at every temperature, 

W,/ W, =emBE, at a temperature T= l//q,/? . 

This is called the sudden-jump model and can be derived from a microscopic description. The following defi- 
nitions shall be useful: 

R=t(W,+W,) 3 W_=i(W,-W,), (Y’)2=a2-R2+2iaW_, t?=a+iW_ . 

It is possible to derive within this stochastic model a series of “weights” of the form P$( t) for the path where 
i is the initial state, f is the final state (i, f= + 1) and k is the sign of s( 7’) in the interval of length t that we are 
considering (e.g. P;+(t) is the value of (exp[i J& dr’ Aw( 7’) ] ) for a path which is restricted to have 
h (0 ) = h ( t ) = + 1; s ( 7’) = - 1 for 0 < 7’ < t ) . The importance of these weights is that the history average relevant 
to a series of optical experiments such as free-induction decay, two- and three-pulse echoes, can be expressed in 
terms of them. For this reason, we shall now tabulate these quantities: 
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P$+(t)=e-R’ cos(Y+t)+(ia-W-) ( sin( Y+t) 
y+ 

> 
, 

P?_(t)=emR’ cos(Y+t)-(ia-W_) 
( 

sin( Y’t) 
y+ 

> 
, 

P~_(t)=e-R’WI 
sin( Y+t) sin( Y+t) 

y+ , PT+(t)=emR’ W, y+ , 

sinY-t) 
P;+(t)=eeR’ cos(Y-t)-(ia+W-)y_ 

( > 
, 

sin( Y-t) 
P:_(t)=emR’ cos(Y-t)+(ia+ W_) y_ 

( > 
, 

~;_(t)=~-Rt W, sinKmt), pI+(t)--e-R’ WzSinKmt), 

PO,+(t)= -& (W,+ W, emzRf), PO_(f)=&(W,+W2e-2R’), 

WI PO,_(t)= 2R (l-e-2R’), PO_+(t)= 2 (1-e-2R’). 

Thus, for the 3PE experiment, 
I 

( u 
exp i d7’ A04 z')s(T') 

0 
)> ( 

= Zp:+(r)+ 5P’+(r) PO++(Tw)[P;+(7)+P7-(7)1 
3PE > 

+ 

( 
5jP:_(r)+~P+_(r) PO__(Tw)[P~+(7)+P~_(7)1 

> 

+ 
( 

$P:+(r)+ ZPT+(r) 
> 

Po+-(T,)[P~+(7)+PI_(7)1 

+ 
( 

ZP:-(7)+ ~P~_(7))pO+(T,)[P;+(7)+P;_(7)1~ 

Evaluating this last expression, we obtain 

(exp[i(/ dtAo(t)- “r dtAw(r))]) =l-{F,(r)+[l-exp(-2RTW)]F2(7)}, 

0 7 

where 

F,(t) = $ WI w2 e-2Rr 
sin( Y+7) sin( Y-7) 

y+ 
Y- ’ 

and F,(r)=4R j d7’ F2(z’) . 

0 

Hence, 

(4) 

(5) 

(6) 

(7) 
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We remark that for Tw = 0 we obtain the two-pulse echo experiment results. For a >> R the expression for F2 
simplifies to F2 (z) = sech2 ( ½ fiE) sin2(az), which is the result quoted by Bai and Fayer [ 3]. 

Let us carry out the average of F2(z) over the position of the TLS, 

F : ( z ) =  f d r F2 (z ) .  
glass 

The only quantity that depends on r in the integrand is a, which measures the strength of the TLS-chromophore 
interaction. Assuming that this interaction is multipolar 

a = A ( O , O ) / r  ~ , 

the average is 

:2(r)= 4n R - -  e-X 2wr(½+w) i dx' (x')-WI_w(X') lF2[½+w; ½, 1; ~2(x-x ' )2 ] ,  
o 

(8) 

with the definitions 

IAla/ '= f d£2 IA(O,O)I 3/" , w = ½ ( 1 - 3 / n )  , x = 2 R z ,  and ~=tanh(½flE) . 

The generalized hypergeometric function is defined by its Taylor series, 

1F2 [a; b, c; z] = 
(a). z n 

,=o ( b ) , ( c ) ,  n! " 

Eq. (8) is an extension of Huber's results [ 10 ] to 3PE and low-temperature experiments. It is straightforward 
to check that the high-temperature limit ( ~  0) of F1 (z) coincides with Huber's result for 2PE experiments. 

The experimental evidence is that in glasses, the interaction between the TLSs and the chromophore is me- 
diated by phonons. Once the phonon field is eliminated, this interaction can be shown to be of the dipole-dipole 
type. For this case (n = 3 ) the expression for the configurational average is given by 

- W i W ~  _ 
P2(z)=  ~ A - - -RT-  e x a dX' Io(x ' )Io(  ~ ( x - x ' )  ) . (9) 

o 

This result for dipolar interactions was already derived by Hu and Walker [ 11 ] by performing the history and 
configurational averages in the opposite order from our derivation. 

The only remaining average is over the parameters of the two-level systems. In particular, assuming that the 
TLSs relax via phonon emission, a process that seems to be confirmed by recent experimental data [ 12 ] the 
relaxation rate has the following functional dependence [ 9,13 ]: 

R = c f ( E )  exp( - 2A2) coth(½fiE), (10) 

where c is a constant, f ( E )  is a function of the asymmetry, whose particular form depends on the spectral 
strength of the perturbation (it could also contain some residual dependence on the tunneling matrix element 
A) and the last factor comes from detailed balance. The most important term is the exponential dependence on 
A2 = 2-2rain, where ;t is the overlap between two wavefunctions localized on either side of the double-well po- 
tential corresponding to the TLS in question (note that the tunneling matrix element is Aoce-X). In order to 
carry out the averages over E and 2, we shall assum e a constant density function p (E, 2 ) = const, for 2 ~n ~< 2 ~< 2 
and 0 ~< E~< Em~. This is the standard model used to explain the low-temperature acoustic and optical properties 
of glasses. It has been confirmed, at least partially, by numerical simulations (see Heuer and Silbey [ 14] ). In 
most cases the experimental temperatures are low, so that flEmax << 1 and the width of the distribution in 2 is 
fairly large A 2 m ~  5--20. The {E, 2} average can be transformed into a {E, R} average, 
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EIIIU 

j dJ dnp(E,il) . ..= 4 dERrn~“‘~...) 
0 lmin 0 Rmin(E) 

where 

R=R,,(E) exp(-2M), Rnin(E)=&ax.(E) ew( -2 AL,) y R,,(E)=cf(E) coth( &?E) . 

We can rewrite the expressions for E, (T), p2 ( T) (x= 2Rr, K is a constant), 

F2,Cr>= & [sech(W) l’G(t, xl , G(t, xl = 1 dx’ Zo(x’)Zo(t(x-x’> ) , 
0 

and evaluate the average of the 2PE portion over the TLS parameters in the standard model, 
ElllU 

<FI(~))E,R=~K j a[ sech(16)~zRJ~~(~,x)=~~~~~ [sech(jj.?E)]22RrT$F(F.x). 

0 R*in 0 2Rminr 

(11) 

We remark that the term [ sech ( jj3E) 1' provides an upper cutoff for E so that the only TLSs that contribute in 
a significant way to the spectral diffusion are those with PEG 2. 

Assuming that the delay between the two pulses in the 2PE experiment (the first two in the 3PE) is such that 
R,= 1 /r is well within the interval [ Rmin( E), R,,(E) ] for most contributing TLSs, we can extend both limits 
of the integral in Eq. ( 11)) and obtain the result: 

E- 

(FI(~))E,R=K~ 
O”dx 

j dE[sech(lPE)l”Sr;iF(Cx). (12) 

0 0 

The convergence is not problematic as F(<, x) -x2 when x+0 and F(<, x) %x”~ when x+oc), which implies 
that the two-pulse echo decay is exponential. This argument was first presented by Maynard et al. [ 15 ] and is 
supported by experiments: the usual time scale of the 2PE experiment (from a few hundred picoseconds to 
microseconds) seems to be well within the range of relaxation times for the glass TLSs. The deviations from 
exponential decay are very small in most cases (see however Macfarlane et al. [ 16 ] where very non-exponential 
decay is found in complex crystals. However we note that in this case the averaging procedure might be different). 

The fact that the 3PE signal presents a simple exponential decay is more complex. There are three pieces to 

consider in the echo amplitude: 

~~PE~~~P(-~[(~,(~))E,R+(~~(~))E,R-(~~P(-~R~~)~~(~))E,RI). (13) 

The first term is the same as in the 2PE. For the second one, the linear dependence in T can be derived in a 
similar fashion as for the first one, except that the extension of the lower integration limit to zero presents special 
difficulties, 

EIIIUX 2Rmu(E)r 

<F~(~))E,R=KT 
s 

cL?Z [sech( 4/3E)]' 
s $Xx). 

0 2Rmin(E)r 

Again the asymptotic behavior as x+a is G( & x) NX ‘I2 However as x+0, G(C;, x) =x only. This yields an . 
extra term, 
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The factor 8(E) is small enough at all accessible energies so that G( C, x) can be expanded about x=0. This extra 
term is then proportional to T In r and will be very difficult to distinguish from the term linear in 7 in actual 
experiments. 

The contribution of the last portion of the exponent in the 3PE amplitude is linear in 7 for entirely different 
reasons: as a general rule T, xa r, which implies that in (exp( -RT,) F2( T) )E,R the main contributions will 
come from R < 1 /T,. This means that x= r/T, e 1 allowing us to expand G( <, x) about x= 0, 

Em hm.xW) 

(exp(-2RT,)Ij2(~))E.RX 1 @ [sech(fPE) I2 s $ WC x1 ew(-2RT,) 
0 Rmin(E) 

Emu kmx(E) 

z:t 1 a [sech(UW12 j $exp(-2RT,) , 
0 Ruti. 

which is indeed linear in T. Furthermore, this is the only part dependent on T,. 

(14) 

4. Conclusions 

Using the stochastic sudden-jump model, we have discussed the phenomenon of spectral diffusion in glasses, 
where TLSs induce fluctuations in the frequency of the chromophore whose optical response is being probed. 
Experiments, such as free-induction decay, and two- and three-pulse echoes require the history average of a 
quantity like 

f 

dr’S(r’) Aw(7’) 

within the sudden-jump model. ~(7’) has a different form in the various experiments: its value is 0 for the 
interval that the chromophore’s population is relaxing and f 1 when its coherence is evolving. These averages 
can be readily calculated by using the series of “weights” tabulated in Eq. (4). 

In this Letter, we have extended the sudden-jump model results obtained by Huber for 2PE at high tempeti- 
ture (relative to the TLS splitting), to the more general case of 3PE and arbitrary temperatures. In the limit of 
dipolar interactions we recover the familiar results given by Hu and Walker [ 111. The exponential decay of the 
three-pulse echo signal (at least for T, w z) is seen to require a uniform distribution of two-level systems cou- 
pled to the chromophore via dipolar interaction, as well as exponentially decaying two-pulse echoes. The partic- 
ular form for the distribution of relaxation rates for Rze 1 does not have an effect on the exponential character 
of this decay. 
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