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We propose a model for the low-temperature excitations in glasses, which have been the object of recent 
investigations by means of nonlinear optical techniques. The experimental evidence strongly suggests the 
presence in these amorphous materials of configurational two-level systems, which are coupled via the phonon 
field to the chromophore whose optical response is being probed. A microscopic description for the relevant 
interactions is developed and the connections between the exact dynamics within this description and the stochastic 
sudden-jump model are drawn by means of a path integral method. 

1 .  Introduction 
The low-temperatureacoustic and thermal properties ofcrystals 

and glasses are very different. In glasses, acoustic experiments 
in which saturation is measured, and the anomalous temperature 
dependence of quantities like the heat capacity (quasilinear at 
low Z‘) and thermal conductivity (roughIy quadratic), suggest 
the presence of localized two-level systemlike excitations in these 
disordered material~l-~ that are not present in ordered solids. 
This model of a glass consisting of a random array of two-level 
systems (TLS’s) is now well supported by both experiments (such 
as single particle optical measurementsM, the presence of spectral 
diffusion as detected by nonlinear optical techniques,’ etc.), and 
by numerical  simulation^.^.^ In general, it is believed that these 
two-level systems are configurational in nature: a particle or, 
more likely, a group of particles can tunnel between two local 
minima of the multidimensional potential energy surface. These 
two minima are separated by a potential barrier, which is typically 
much higher than the temperatures at which the experiments are 
conducted (usually around 1 K). The two-level systems are 
characterized by two parameters: E, the energy difference 
between the two configurations, assuming that they are separated 
by an infinite barrier, and A, the tunneling amplitude, which is 
proportional in the WKB approximation to e-A, where X is the 
overlap of the two wavefunctions, each localized in one of the 
wells (see Figure 1). 

The study of the spectrumlo of optical probes placed in these 
sorts of materials has revealed the presence of spectral 
diffusion.11-13 This phenomenon permits the experimental study 
of the relaxation and dynamics of the TLS’s mentioned above. 
In the particular case of an optical impurity surrounded by a 
glassy medium, the spectral diffusion is related to fluctuations 
of the absorption frequency due to rearrangements in the 
environment. At low temperatures, these rearrangements seem 
to correspond to the relaxation of the glass T L S ’ S . ~ J ~ J ~  

The quantity of interest in the interpretation of these nonlinear 
optical experiments is 

N 

in photon echo experiments1”1* or its Fourier transform in hole- 
burning.” The term ~&Awj(7)  is the fluctuating part of the 
chromophore’s frequency due to the interactions with the 
perturbers in the glass. s(7) is a piecewise constant function 
taking the values 0, f 1. Its particular form is determined by the 
type of experiment we are performing.16 

*Abstract published in Aduancc ACS Abstracts, June 15, 1994. 
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Q 
Fiplve 1. Double-well potential given by the section of the multidimen- 
sional potential energysurfaccoftheglass along thecolkcctiveooordination 
Q.8 At low temperature it is only necessary to take into account the lower 
two states, characterized by wavefunctions localized in each of the wells. 
This two-level system is characterized by two parameters: the energy 
splitting (E) and the tunneling matrix element (A). 

The angular brackets (( (...))) in the expression for A[s(T)]  
stand for the averages that have to be performed in order to make 
a direct connection to the experimental measurements: First, we 
have to carry out an average over the ensemble of perturbers. By 
the ergodic hypothesis, we can evaluate it by performing instead 
an average over the dynamics taking place in the chromophore’s 
environment (in this case, the time evolution of the two-level 
systems). Second, we must carry out a configurational average 
over the positions of the TLS’s. Finally, we have to evaluate the 
average over the parameters characterizing the perturbers, in 
this case, over theenergy splitting (E), and the tunneling amplitude 
(A) of the TLS’s. 

Assuming that these averages are independent of each other, 
that that perturbers are distributed at random and uniformly 
throughout the glass, and that the dynamics of different two- 
level systems are uncorrelated, A [ s ( ~ ) ]  is given by 

where Aw(7) now stands for the fluctuation of the chromophore’s 
frequency due to a perturber located at position i. The remaining 
averages (denoted by ( )) are the history average and the average 
over the TLS parameters (A and E). 

The o b j d v e  of this paper is to show how the history average 
can be performed by assuming a realistic microscopic model for 
the low-temperature excitations in the glass where the chro- 
mophore is embedded. Previous attempts to model the environ- 
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ment dynamics assume simply that the chromophore absorption 
frequency is shifted in a stochastic fashion. In particular, the 
sudden-jump model is presumed to be the proper description for 
this case: The actual dynamics of the two-level system are replaced 
by a two-statestochastic process, whereAwp(7) =a(?) h(r), where 
a(?) gives the strength of the TLS-chromophore interaction and 
h(7) is a random-telegraph variable taking the values f 1. The 
physical picture is that the TLS is jumping between its two 
configurations (in a semiclassical sense; the transitions actually 
occur through tunneling, but thedescription can be made in terms 
of classical jump rates). In one of the configurations of the TLS 
the chromophore's frequency takes the value wo + a(?), and in 
the other one, wo - a(?). 

Weshall show that, provided that thedynamicsofthe perturbers 
are uncorrelated, a stochastic sudden-jump model of the sort 
described above can be derived rigorously from a microscopic 
Hamiltonian, which includes the chromophore, the acoustic 
phonons, and the configurational two-level systems. 

The paper is organized as follows: In section 2, we review 
some results obtained by means of the sudden-jump model. We 
shall recast the history average in terms of a summation over 
paths, each of which is a given a different weight according to 
the properties of the stochastic process. This approach will prove 
useful for the comparison with the microscopic model. In section 
3, we propose a microscopic Hamiltonian, a generalization of the 
spin-boson model, in which two spins are coupled to the boson 
field. Our objective is to describe the dynamics of the low- 
temperature excitations of glasses (acoustic phonons and two- 
level systems) and how they affect the chromophore's absorption. 
The physical picture is the following: The chromophore (one of 
the pseudospins) and the TLS (the other pseudospin) are both 
coupled to the same set of phonons, which act as a boson field. 
This field mediates an elastic dipole-dipole interaction between 
the chromophore and the two-level system, which is responsible 
for the fluctuations of the chromophore's frequency that are the 
origin of the spectral diffusion observed in the optical experiments 
mentioned above. Section 4 contains a summary of the results 
obtained in this investigation. 

2. Stochastic Sudden-Jump Model 

quantities like 
In this section, we calculate the stochastic history average of 

(exp(-iJordr Awi(7)))  (1) 

assuming that Aq(t) = a( i )  h(r) is the fluctuating part of the 
chromophore's frequency due to a perturber located at position 
? (with the chromophore at the origin). The angular brackets 
(( ...)) denote the stochastic average. In the sudden-jump model 
h(7) behaves like a random telegraph signal, taking over a discrete 
set of values (in this case f 1, since only TLS's are thought to be 
relevant). The upward and downward rates (V2 and Wl, 
respectively) are unequal, and they satisfy a detailed balance 
relation: W2/ W1= e-9Eat a temperature T = 1 /(IC&) (see Figure 
2). 

The probability weight for a path such as the one indicated in 
Figure 2 id9 

For the sake of concreteness, we shall calculate the average in 
eq 1 for a free-induction decay (FID) experiment ( ~ ( 7 )  = 1 for 
all 7) .  There are four possible different types of paths that 
contribute to the free-induction decay signal (see Figure 3). We 

h(r' I 

0 

Figure 2. Sudden-jump model: The stochasticvariable h(r) can take the 
values *1. The proctss is characterized by upward (Wz) and downward 
(W1) jump rates that satisfy a detailed balance relation W2/Wl = e-8e 
at a temperature T = l/(K&). In the stochastic model, E is simply an 
arbitrary parameter defining the temperature scale. The microscopic 
model proposed identifies it with the energy splitting of the perturbing 
TU. 

shall assume that the probability of starting at the state +1 (-1) 
is proportional to W2 (VI); Le. the initial state is an equilibrium 
one. The average is then given by 

1 

2R 
(exp(iaJordr h(7))) = -[W 2 b  -W1r e "'I + 

m E WlnW,"~dt2n~orad  dt,,...c dtl x 
n= 1 

wln+l w,"ldt,,c'"+ldt, ...l dfl e-"" x 
n-0 

eU"f~. . . e -UrrkeUar~~e-Wlr~e-Wz(r t r~)  9.. e - W l ( r ~ ~ - r k ) e - W z ( r - r ~ l )  I +  
W,(complex conjugate + interchange 1 - 211 

The following definitions shall be useful: 

Wl + w2 
2 R =  

w1- w2 w- = - 2 

(p)2 = a2 - R2 f 2iaW- 

e = a + iw- 

Consider the first term, corresponding to path 1 in Figure 3: 

The functionj,,(x) is a spherical Bessel function of nth order.20 
For the second type of path 

(11) = 
OD 

e-'Y''e-farx wln+l W,"ldt2n+l . , + c d t ,  e2t@rl..,e-2@h e 2mM1 

n-0 
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Figure 3. Paths contributing to the average required for the free-induction decay experiments in the stochastic sudden-jump model. 

Adding up the contributions from all four paths, we obtain 

(exp( ia1dr  h(7) ) )  = 

which is the final expression for the FID experiment. 
In order to facilitate thecomparison with themicroscopic model, 

we shall calculate a simpler average in which the h(7) is restricted 
to have the value + 1 at the beginning of the interval in question: 
h(0) = +l. Thiscorresponds tocomputingonly thecontributions 
from the first and second paths of Figure 3: 

e(o ( exp( i a1dr  h ~ ) ) ~ ( ~ ) ~ + ~  

The Laplace transform of this quantity is given by 

s + ia + W, + W, 
6(s) = (3) 

sz + a’ + W,(S - ia) + W,(S + ia) 

3. Microscopic Madel for TIS Dynamics 

In this section, we shall provide for the theoretical description 
thatjustifies theuseof thestochasticsudden-jumpmodel to model 
the dynamics of TLS’s in glasses. Our starting point is a 
microscopic Hamiltonian in terms of the degrees of freedom of 
the chromophore, one TLS and a bath of harmonic oscillators, 

which represent the phonons. This Hamiltonian contains linear 
coupling of the glass TLS’s with the phonons and between the 
chromophore and the phonons. The TLS-chromophore direct 
coupling is obtained by elimination of the chromophore-phonon 
interaction by means of a polaron transformation. In this fashion, 
the effective elastic dipole interaction between the chromophore 
and each of the TLS’s is derived from a microscopic model in 
such a way that its physical origin is explicitly displayed: The 
phonon (deformation) field is the mediator of the intera~tion.~,~IJ2 
Assuming that the dynamics of the TLS’s are not correlated, it 
shall be sufficient to deal with pairwise interactions one at a time. 
The Hamiltonian for one two-level system interacting with the 
chromophore is 

where it has been assumed that the tunneling matrix element is 
not modulated by the phonon coordinate. The chromophore 
Hamiltonian has been truncated to that of a pseudospin with S 
= I/,, assuming that the experiments are carried near resonance 
with the optical transition of frequency WO. The 0 subindex refers 
to the chromophore, and the 1 subindex to the TLS with 
asymmetry E and tunneling splitting A (in a localized basis; see 
Figure 1). Hb = Zpw$.‘bq represents the Hamiltonian for the 
harmonic lattice, wit q being a set of quantum numbers 
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(analogous to those for polarization and wave vector in crystals) 
characterizing the normal modes. The following definitions should 
be useful for clarifying the notation: 

where g (e) is the ground (excited) state of the chromophore, and 

~ z i  = It)(tI-Il)(lI; = It)( l I  + IS)(tl (5b) 

where t (4) is the upper (lower) state of the TLS. The polaron 
transformation mentioned above is given by 

Applying this unitary transformation, the Hamiltonian becomes 

U 
Cc;(b,  + b: )~ , ,  + -U u (6) 

2 * z1 4 

where a has the radial and angular dependence of a dipoledipole 
interaction.22 This is finally a good starting point for our applying 
approximate methods to calculate the pertinent time-correlation 
functions. Note that the last term has the basic ingredients of 
the system we want to study: the chromophore frequency 
fluctuates according to the dynamics of a perturber, which is 
relaxing to equilibrium. 

Take, for instance, the free-induction decay experiment: in 
the absence of an external field, given the low temperatures at 
which these experiments are performed (0.1-10 K), the chro- 
mophore should be in its ground state (p(0-) = h) (A). We can 
now apply an optical 17/2 pulse at the right frequency in order 
to transfer population into coherence (p(O+) = le)(d + h) (el = 
ud, after the pulse). Obviously, if the chromophore were isolated 
(e.g., in thegas phase), thecoherencewouldoscillateat a frequency 
00 (neglecting collisions and electronic dephasing). In the glass 
matrix, the fluctuations due to the coupled perturbers lead to a 
signal which is decaying in time. The formal solution to the time 
evolution in terms of the global density matrix is 

p ( t )  = e-'"'p(o)eikr; p ( 0 )  = p2mux0 

where initially both the bath and the TLS are in their equilibrium 
states. 

The amplitude of the free-induction decay signal is proportional 
to 

(M,) = Tr,,,,((~e-'*fp(0)e'kfle) + (ele-'"p(O)e'*'lg)) 

= e-W ( eWe-iHd ) + eiwd ( e'Hde-iH~ ) 

where the angular brackets stand for a thermal average over both 
the bath and the TLS (Le. (...) E Trb,TU(...P&.&, 

Here, the outer angular brackets denote a thermal average over 
the bath only. Furthermore, for simplicity, we have assumed 
that E >> a and E >> A so that the equilibrium density matrix 
for the TLS is given by 

Using the spectral representation on the bath Hamiltonian Hb = 
C,,Edn) (nl, and with the bath partition function z b ,  we can show 
that the term 

contains two portions, the first of which we shall proceed to analyze 
in detail. By expanding in the interaction representation e W  
with respect to Hog = H8 + (A/2)ux1 and eJHJ with respect to 
Hk = He + (A/2)uX1, we find 

with 

Defining 

we have eq 8 given in Chart 1. 

definitions: 
In the last expression of Chart 1, we have used the following 

Let us examine the second term in (M,) in detail: p(<t) = e'HdveJHd 
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exp(iE(s2] - swl + ... - s1 + 0, - 8, + ... - e,)) exp(iu(s, - s2k1 + ... - sI + t - e, + e2 - ... + ea)) 

The derivation of the last equality [see Appendix for details] 
takes advantage of the Gaussian nature of the bath23 to evaluate 
the thermal average by cumulant expansion. The quantities q+, 
q- are defined in Figure 4. Physically, we can think of them as 
indices running over the TLS states: 

for dZk+l < T < d2k 

'+(') = t1 (TLS in state Ii)), for d,, < T < dzk-l 
1 (TLS in state It)), 

1 (TLS in state It)), for s ~ ~ + ~  < T < S2k 

'-(') t i  (TLS in state 14 )), for sZk < T < szk-l 

When both indices coincide (v+ = q-), we have a sojourn, which 
corresponds to diagonal elements of the reduced density matrix 
for the TLS. For this case €(T)  = 0 and X ( T )  = f l .  In the case 
in which the indices q+(r) and T-(T) do not coincide, the interval 
is called a blip, and it is characterized by ( ( T )  = f l  and X ( T )  

= 0. This corresponds to the off-diagonal elements of the reduced 
density matrix. We can now make a graphical representation of 
the paths in terms of blips and sojourns (see Figure 5 ) .  The 
tenns in the integrand of the last expression in eq 8 can be regarded 
as interactions between blips and ~ o j o u r n s . ~ ~ . ~ ~  

Hence by relabeling the path as seen in Figure 5 ,  replacing the 
sums over i and j by a sum over the newly defined index n, and 
finally carrying out a summation over all possible values of {() 
and (x), with the restriction X ( t )  = x(0) = +1, ( ( t )  = [(0) = 0 
(indicated by the r on top of the summation symbol), we can 
rewrite eq 8 as follows: 

(I) = $(-l)"( :)2nk l d t 2 n J ~ d r ~ 1 . . . c d r l  x 
Ixraar 

Following a similar derivation, the second term in eq 7 is 

A 2n I' 

(11) = -g(-I)'( -) ~ ~ d t Z n ~ d t 2 n - l . . . ~ d f l  x 
n= 1 IxIdCl 

= -1. The final result is, in abbreviated form, 

e(t) = ( ( tleiHdeiHJlt ) ) = (I) + (11) 
The summations will now be evaluated in the limit of noninter- 
acting blips. The rules for completing the evaluation of 9(t) are 
as follows: 

1. Write down all possible paths from 0 to t ,  which are made 
up of blips and sojourns, starting with a sojourn for which x = 
+1 and ending in a sojourn, without any restriction on x, since 
we are summing (I) and (11). It can be shown that paths ending 
in a blip give negligible contributions to the FID signal in the 
noninteracting blip approximation, and therefore we shall neglect 
them. 

2. The overall sign for the path is + if x(0) = X ( t )  and - if 
x(0 )  f X O ) .  

3. For each transition from blip to sojourn, a factor i(A/2) 
is included. 

4. The blip and sojourn self-interactions and the interactions 
of the blip with the previous sojourn in the path are computed 
according to the rules given in Figure 6. 

5 .  Carry out the summation over all paths. 
A detailed discussion of how these rules are derived is given 

in ref 25. We compute 9(r) within the noninteracting blip 
approximation 
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x 

t 

+ o + o - o +  + 0 - o +  T 

+ 1  

E t  s i  

Figure 4. Definition of the quantities q+, q- (see also relationships given 
in text), with k = 0, 1 ,  ..., i and @a+1 = SU+I = 0; 00 = SO = 0. 

1 02, % , % 2  % 1  01 02 8, [ 

t I  0 I - l o l + l o l - l o  I " 1 0 1  + ! 0 1 + / 0 1  

s- ia s+ ia 

s + ia + ?+(SI + 7-(s) 
sz + a' + I ; (s)(s  - ia) + 7-(s)(s + ia) 

withyi(s) = JidT e-"*(T). 
Comparison between the expression obtained from the mi- 

croscopic dynamics in the noninteracting blip approximation [eq 
91 and the one derived from the stochastic sudden-jump model 
[eq 31 suggests that they are equivalent after short transients (s - 0) provided that we identify 

= (9 )  

which corresponds to the path-integral limit in which the blips 
have negligible length. This approximation is valid whenever the 
relaxation time for the bath (which determines the duration of 
non-Markovian  transient^^^) is much smaller than the relaxation 
time of the system (of the order of W ) .  It is worth noting once 
again that the sojourns represent contributions from intervals 
spent in the diagonal part of the density matrix, whereas the blips 
correspond to time spent in the off-diagonal elements. Hence it 
seems natural, given the semiclassical nature of the sudden-jump 
process, that the correspondence between these two models 

+ 

- 
j exp( -Ql ( tq - t l c , ) - i  Q 1 ( t 9 - t o 1 ) + i E ( t ~ - t V I ) -  i a ( t s - t o l ) )  

+ :  

to2 tlcl 17l 

Figure 6. Rules for the evaluation of the path-integral expression in the 
noninteracting blip approximation: The only interactions that are 
evaluated in this limit are the ones between a blip and the previous sojourn. 
The final expression is obtained by multiplying all such interactions for 
the path in question. 

occurs when the blips have vanishing width (Le. in the limit in 
which a portion of the path corresponding to the off-diagonal 
elements of the reduced density matrix becomes negligible). Take 
for example the collection of quantum paths made up of n blips 
and ( n  + 1) sojourns ( n  = 0 ,  1, 2, ..., -), for which blips have 
( = f l  and all sojourns have x = 1. In the limit of zero width 
for the blips, the summation of all contributions coming from 
these paths corresponds to the contribution of the stochastic path 
starting and ending at state +1 without any jumps: 

ela'' X 
n= 1 

where we have made use of the definition t = th+l and of the 
identity given by eq 10. A similar correspondence between 
stochastic paths and a series of quantum paths can be drawn in 
every instance. 

Perturbation Theory. The previous results can alternatively 
be derived from perturbation theory. Note that this is yet another 
example of the equivalence of path integral and perturbative results 
pointed out by Aslangul et al.2' 

We shall take as our starting point the following Hamiltonian: 

rl 

The project is to write down a perturbation theory in terms of the 
tunneling matrix element A, instead of the more usual perturbative 
expansion on the coupling of the TLS to the bath. In order to 
accomplish this, we eliminate the term Cqci(b, + bf4)uzl by 
another polaron transformation: 
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where Vis nonlinear and contains operators of both the bath and 
the TLS. The energy-level scheme is indicated in Figure 7. 

By making use of the interaction representation (&t) = 
exp{iHtt)O) with respect to 

and the notation p ( t )  for the density matrix for the whole system 
and a(?) for the density matrix for the TLS and the chromophore, 
we can write in the limit of weak coupling 

a(,) = -JotdT T?b{'b(ir(t) V(T)pbG(t) + p&) V (T )  @)] + 
JdT T ? b ( V ( f ) P b G ( t )  V ( T )  + t ( ' T ) P b G ( t )  @)] 

This set of equations is valid only in the weak-coupling limit and 
when there is a clear separation of the relaxation time scales of 
the bath and the TLS-chromophore. We have further assumed 
that ( V) is negligible. Note that the partial ordering prescription 
(POP)2*.29 has been used. 

Taking matrix elements in the basis we have specified for the 
TLkhromophore subsystem and extending the limits of the 
integrals to infinity 

U42(t) = -i(oo - a ) ~ ~ ~ ( t )  - 

u ~ ~ ( ~ ) K ~ T  (eiE*'( v ~ ~ )  + v,, v:)<~> ) I  + 
u ~ ~ ( ~ ) J ~ ~ ~ T  {eiE#'( vl2C;)(7)) + eJEIT( f l : ) ( T ) ~ ~ ~ ) j  

UJl(r) = -i(uo + a ) ~ ~ ~ ( r )  - 
u a l ( t ) K d r  (e-'E*'( @:)(T)V~~) + etEr'(Vl2e'?(~))] + 

~ r ~ ~ ( t ) K d ~  (e4ErT(V21@~)(~)) + elE*'( ~ ; ) ( T ) V ~ ~ ) )  

If we assume that the spectral strength of the bath pertubation 
is smoothly varying and that E >> a, we can replace E8,e by E in 
the equations above. Therefore, in a rotating frame (WO = 0): 

&42(t) = iau42(t) - KdTf-(T) u42( f )  + JomdTf+(T) u31(t) 

;3l(t) = -ia@31(t) - JomdTf+(T) u 3 1 ( t )  + KdTf-(T) 

In Laplace space, the solutions are: 

- @42(0)(s + ia +7+(0)) + u3](0)7+(0) 

u31(0)(s - ia +7-(0)) + u42(0)7-(0) 

u42(s) = 
s2 + a2 + ~-(o)(s + ia) + ~+(O)(S - ia) 

- 
= 

s2 + a' + ~-(o)(s + ia) + T+(o)(s - ia) 

The quantity e(?) that we evaluated for the sudden-jump model 
corresponds in this context to e(r) = ~ 4 2 ( t )  + ual(r), with the 
initial conditions 440)  = 1, q1(0) = 0. 

The final result is 

s + ia + 7+(0) + J-(o> 
6(s) = (12) 

s2 + a2 + ~+(o)(s - ia) + ~-(O)(S + ia) 

confirming the identification between Wl = x ( O )  and W2 =f+(O) 
and the equivalence between the path integral in the dilute-blip 

t 

E*=..! 2 ( q - E , )  
._ - - - -  _ - _ _  1 2 > = l g ; + >  ________.___ 

E, = - (ao+ E ) ._ -.-.-- _ -  I 1 >= I  g; - > . _ _ _  _ _ _ _ _ _  _ _  
2 

Figure 7. Energy level scheme for perturbation theory. The arrows are 
matrix element connections from the perturbation term. 

approximation and the perturbative approach. We also should 
point out that the COP (completeordering prescription)aJ9 would 
yield exactly the same expression as the path integral formalism: 

s + ia + 7+(s) + T-(s) 
G ( S )  = (13) s2 + a2 + y+(s)(s - ia) + ~-(s)(s + ia) 

In the Markovian limit, after short-lived transients, both POP 
and COP give the same results.**J9 

4. conclusions 
In this paper, we have applied path-integral techniques 

developed for the spin-boson model to the study of the dynamics 
generated by a closely related Hamiltonian. This Hamiltonian 
has been proposed as a model for investigating the interactions 
between a chromophore embedded in a glass and the low- 
temperature excitations of the glass itself (TLS's), mediated by 
the phonon field. The connection between the quantum and 
stochastic formulations is obtained explicitly by expressing the 
experimentally observable quantities (which are a probe of the 
fluctuations of the chromophore's frequency due to the evolution 
of the surrounding TLS's) in terms of summations over paths, in 
which each path is given an amplitude derived from the 
Schrainger equation. These paths are made up by segments 
that correspond to the diagonal matrix elements of the reduced 
density matrix for a particular TLS (sojourns) and by segments 
corresponding to the off-diagonal ones (blips). In the limit in 
which the blips have negligible length, compared to the relaxation 
time of the TLS in question, the quantum summation over paths 
is seen to converge to a stochastic summation over paths: Every 
"stochastic" path corresponds to a series of "quantum" paths. 

A perturbation expansion in the tunneling amplitude for the 
TLS (A) proved to yield the same result, which confirms the 
observation made by Aslangul et aI.2' concerning the equivalence 
between the path-integral result and perturbation theory (after 
a polaron transformation) for the simpler spin-boson problem. 

Finally, the equivalence between the quantum and stochastic 
treatments provides a clear identification of the phenomenological 
parameters characterizing the sudden-jump model with the 
microscopic parameters of the TLS's in the glass (at least for 
those satisfying E >> a, E >> A). 
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Appendix 
Previous formulations of the path-integral approach to the 

spin-boson problem have made use of either influence  functional^^^ 
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or Green functions.26 In this appendix, we propose an alternative 21 21 
evaluation of 4 c  (-l)("+m)JosndTJo'mdf B(T,T') = 

n i l  m=n+l 

Finally, using the definitions 

we can rewrite the expression for I as L 1 ( T , f )  = 4iB(T,T') = 2i( [V(T),v(f)]-) 

The thermal average can now be evaluated directly by cumulant 
expansion. Due to the Gaussian nature of the bath?' the 
cumulants of an order higher than 2 vanish, and 

21 n-1 
4 r r ( - 1 ) ( n + m ) c d ~ c d ~ '  B(T,T') + 

n=l ma1 
2j 2i 

n=l m=l 
4rT(-l)("+'")td~Sd*dr/ B ( T , ~ ) )  (14) 

where we have used the following definitions: 

The expression I can be evaluated by making use of a series of 
equalities similar to the following: 

we shall express eq I5 in a compact fashion: 

which is the result desired (see Chang and Chakravarty26). 
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