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Nonequilibrium photoinduced electron transfer

Minhaeng Cho and Robert J. Silbey
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 15 November 1994; accepted 3 April 1995

We consider photoinduced electron transfer, which is intrinsically a three-state system consisting of
electronic ground, electronic excitéelectron donor, and electron acceptor states. It is assumed that
the bath consists of a collection of harmonic oscillators. Using an elementary time-dependent
perturbation theory, it is found that the nonequilibrium Golden rule formula proposed by Coalson
et al.[J. Chem. Physl01, 436 (1994 ] can be rigorously obtained in a certain limit of our results.
Invoking a stationary phase approximation, a simple result analogous to the Marcus expression is
obtained, except for the presence of time-dependent reorganization energy. The multidimensional
nature of the solvation coordinate system is discussed further. Finally a few numerical calculations
are presented. €995 American Institute of Physics.

I. INTRODUCTION vent reorganization energy, in the classi¢aigh tempera-
ture) limit.'® The solvent reorganization energy represents

Ultrafast laser techniqué&s’ developed in the last two the magnitude of the overall coupling strength of the bath
decades enable direct measurement of population changesddgrees of freedom with the electron transfer pair—thus we
either the electron donor or acceptor stit@sn electron  shall use these guantities as measures of coupling strength in
transfer reactions in condensed media. By using a subpicahis paper.
second laser pulse, one can create a population state on the In contrast to this conventional situation, photoinduced
electron donor state, which is in this case coupled to thelectron transfer involves an additional ground state optically
electronic ground state radiatively. There are two populacoupled to the donor state. Unless we ignore the initial re-
ways to detect the population changes in time. One of théaxation process of the optically created wave packet on the
two is to probe the transient absorption intensity of the donodonor surface, we cannot select a single solvation coordinate
state radiatively coupled to another electronic stat€his  in this three-statesystem coupled to multidimensional bath
transient absorption experiment is useful when there is adegrees of freedom. The optical excitation step is governed
electronic state accessible by the optical field. The otheby another solvation coordinate whose fluctuation induces
method is to measure the stimulated or spontaneous emissitnoadening of spectra as well as relaxation of the nonequi-
intensity from the donor state. In contrast to the spontaneougbrium wave packet on the donor surface. One of the com-
emission measurement, the stimulated fluorescence measugsexities is that the two coordinates, one associated with the
ment utilizes an additional pulse to stimulate the emission obptical transition and one with the electron transfer, are not
photon from the acceptor stateThese two methods, tran- necessarily correlated with each other. This actually induces
sient absorption and light emission measurements, are basi-great deal of difficulties since we have to deal with a truly
cally related to the general pump—probe-type experimentnultidimensional solvation coordinate system in this case.
The former differs from the latter by the probing method. In As one can expect, only for times longer than the relaxation
some cases, interpretations of these results are difficult béime on the donor surface, will the electron transfer rate
cause one has to have a full knowledge of the potential sureach its equilibrium value. In this paper we will explore this
faces and intramolecular dynamics of the target moleculanonequilibrium nature of the photoinduced electron transfer
system. in the nonadiabatic regime.

Most of the theoretical studies on electron transfer in  Recently Coalsoret al!® considered a similar problem.
condensed media are based on the assumption that the initlaistead of directly considering the optical process in their
state is a thermal equilibrium state, which is stationary, orformulation, they proposed a nonequilibrium Fermi—Golden
the donor surface. In this conventional situation a single solrule formula for the case when the initial preparation of the
vation coordinate representing the fluctuating bath degrees afonor population is in the nonequilibrium state on the donor
freedom by projecting their fluctuations onto a one-surface. They replaced the initial stationary state with non-
dimensional coordinate is chosen. This solvation coordinatequilibrium (time-dependentstate in the usual Golden rule
is collective in nature since it represents the multidimenformula. In order to test the nonequilibrium Golden rule for-
sional potential energy surfaces constructed by the bath derula, they carried out computer simulation studies with a
grees of freedom. However one of the remarkable outcomespin-boson Hamiltonian used by Gazgall® We present in
of this reduction procedure is that one can use an approxihis paper a rigorous derivation of the nonequilibrium rate
mate picture for the time evolution of the solvation coordi- kernel for the nonequilibrium electron transfer process when
nate, such as generalized Langevin equattwrequivalently  the preparation of the donor population is performed by an
generalized Fokker—Planck equatidfi™’ Furthermore, as ultrafast optical pulse. In some limiting case we show our
Marcus showed a long time ago, the electron transfer rateesults reduce to their so-called nonequilibrium Golden rule
can be fully described by a single quantity, the classical solformula. We further show that a simplified analytic expres-
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596 M. Cho and R. J. Silbey: Photoinduced electron transfer

sion for the ET rate kernel can be obtained by using the
stationary phase approximation. It turns out that the dimen-
sionality of the solvation coordinate system plays a crucial IA> A>
role in understanding the nonequilibrium nature of the photo- 2 5
induced ET. We present some simple numerical evaluations
of our formal results to help understanding the resultant
equations.

We organize this paper as follows. In Sec. Il, we sketch A5 &
the entire picture of the nonequilibrium ET process qualita-
tively. We next formulate the time-dependent nonequilibrium
ET rate kernel by using elementary time-dependent perturba-
tion the(_)ry' The nonequilibrium gt_anerallgatmn Of_the MarCUSFIG. 1. Two cases of potential surfaces in one-dimensional solvation coor-
expression for ET rate constant is obtained by invoking thejinate system(a) and(b) correspond ta=0 and, respectivelya detailed
stationary phase approximation_ In Sec. IV, we present nudiscussion on the dimensionality parameter is given in Sec) 1 Anitially

merical results for a few cases. We finally summarize 0u|Ihe stationary nuclear wave packet is in a thermal equilibrium state on the
. ground potential surface. 2. At=0 nonequilibrium wave packet is created

results in Sec. V. on the donor surface by a resonant optical pulse. 3. Relaxation of the non-

equilibrium wave packet completes for times longer than the relaxation

II. QUALITATIVE PICTURE time.

D>, ID:

(@) (b)

A three-state system consisting of an electronic ground
state, an electronic excited state which acts as an electron
donor state, and an electron acceptor state is consideged. electron exchange matrix element. The most effective chan-
|D), and|A) are the ground, donor, and acceptor states, renel in this electron transfer process is that the wave packet on
spectively. It is assumed that the ground stafeis radia- |D) state reaches the curve crossing point between the po-
tively coupled to the donor staj®) which is the electronic tential surfaces of the donor and acceptor states. This is be-
excited state. Furthermore, the donor st@# is coupled to  cause in this region of the phase space, the two states are
the acceptor staté\) by a nonzero electron exchange matrix isoenergetic and the Franck—Condon overlaps are maxima.
elementA. Before we present a theoretical description of theWe will refer to this curve crossing region between the donor
nonequilibrium electron transfer in condensed media, weand acceptor surfaces as the exit channel. In the case of an
will briefly sketch the entire picture. underdamped wave packet, which means that the mean po-

It is assumed that the system is initially in the groundsition of the wave packet undergoes an oscillating motion on
state in thermal equilibrium with the bath. Therefore, thethe harmonic potential surface of th®) state, one may
initial state is stationary and can be defined by the statisticatxpect that the donor state wave packet gets close to the
distribution in the phase space. The bath is modeled by aurve crossing point periodically. This is the case when the
collection of the harmonic oscillators, which are coupled toelectron transfer process is strongly coupled to a few under-
each state linearly. The potential energy surface of the ele@amped vibrational modé&8.0n the other hand, if the elec-
tronically excited donor state is likely to be displaced fromtron transfer system is coupled to a large number of degrees
the potential energy surface of the ground state. Otherwisef freedom, even though each of them could be under-
one may not expect any broadening of spectra induced by thgamped, the superposition of these oscillating features makes
bath degrees of freedom, since the Franck—Condon overlapke time evolution of the average position of the wave packet
of harmonic modes with small displacements are small. foverdamped. In any case, regardless of the position of the
short laser pulse to create a population on the donor potentialonor state wave packet, there is nonzero probability be-
energy surface is introduced. It is assumed that the pulseveen the donor wave packet and the exit channel. Here the
duration time is short enough to ignore both electron transfeprobability is time-dependent because of the nonstationarity
process fron|D) to |A) and propagation of the nuclear wave of the initial wave packet. Furthermore, its magnitude is de-
packet on the donor surface during the pulse duration timependent on the potential energy surfaces as well as tempera-
This condition can be met by using a femtosecond laseture. Obviously the electron transfer rate is proportional to
pulse when the time scales of the electron transfer and sothe magnitude of the overlap between the nuclear wave
vent modes are order of subpicosecond to picosecond. If theacket and the exit channel in the phase space.
solvation time scale is comparable to the pulse duration time, Consider the time immediately after a wave packet is
one must relax these assumptions. In that case, we may hageeated on the donor state. For the sake of simplicity let us
to consider the propagation effect of the nonequilibriumconsider a one-dimensional coordinate system, where one
wave packet on the donor surface during the pulse duratiosolvation coordinate can describe both optical broadening,
time. We shall consider this case in another paper. The creelaxation of the nonequilibrium wave packet, and electron
ated wave packet on the donor potential energy surface tendsinsfer. If the center of the nonequilibrium wave packet is
toward a new thermal equilibrium state since the equilibriumlocated far away from the exit channgee Fig. 18)], we
positions of the nuclear degrees of freedom on the donoexpect to see a small electron transfer rate, and vice versa. In
potential surface are different from those on the ground pothis situation, the time-dependent electron transfer rate in-
tential surface. In the mean time, the wave packet ojihe creases in time until the wave packet reaches its thermal
state keeps leaking into the acceptor state by the nonzeexquilibrium on the donor potential surface. On the other
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that after the relaxation time, the electron transfer rate should
not depend on time because we are looking at a two-level
electron transfer process where the initial state is in a thermal
equilibrium state on the donor state. In Sec. Ill, we shall
formulate this picture to serve as a reasonable model for the
realistic electron transfer induced by the optical excitation.

lll. FORMULATION

We first consider the total Hamiltonian of the composite
system,
FIG. 2. Model contour plots of three two-dimensional potential surfaces. H=Hy+V(t)+J, )
The g, coordinate is chosen to represent the collective nuclear degrees of
freedom associated with the electron transfer betw@nand |A)—note where
that it is parallel with the line connecting two minima|&f) and|A), which
is shown by a dashed line. The initial nonequilibrium wave pa¢&ieown Ho= |g>hg<g| +|D)hp({D|+|A)ha(A],
by thicker ellipsoidgis created on the donor surface at the originapf,@.,)
coordinate system and relaxes toward the minimum of the donor surface as  V(t) = uE(t)cos wt|D){g|+ u* E* (t)cos wt|g)(D]|,
shown by a thick dashed arrow.

J=A|AX(D|+A*|D)(A.

hand, if the initial wave packet is created close to the exitHere, for exampleh, represents the nuclear Hamitonian of
channel[see Fig. )], closer than the minimum of the do- the ground state. The ground stégg is radiatively coupled
nor potential surface, we expect the electron transfer ratéo the donor stat¢D) by the coupling potentiaV/(t). The
decreases in time until the wave packet reaches its thermakntral frequency of the optical field is, and the time pro-
equilibrium state. As an example of a two-dimensional casefile is determined byE(t). u is the dipole matrix element,

in Fig. 2, we draw contour plots of three harmonic wells which could be dependent on coordinates of the nuclear de-
associated with three states. The created nonequilibriurgrees of freedom. We will keep this coordinate dependence
wave packet is shown by thicker ellipsoids. This two- of the dipole matrix element until the last stage of our deri-
dimensional wave packet relaxes toward the minimum of thevation. The donor and acceptor states are coupled],by
donor surface as drawn by the dashed arrow. During thisvhere the coupling strength is determined Ay

relaxation, there is nonzero leakage of the donor population We assume that the bath consists of harmonic oscillators
via electron transfer mechanism. We can, therefore, expecoupled to each level linearly,

0 0 O pa+ wiXs, 0
1
Ho=| 0 epg O +§2 0 P2+ w3(X,—d,/w3)? 0 , 3
0 0 e i 0 0 P2+ w2(X,— a8, w2)?

The energy of the isolated ground state is assumed to be nonequilibrium situation. The magnitude of the coupling
zero.epgy ande, are the energy gaps between the donor andtrength of bath degrees of freedom is determined by the
ground states and the acceptor and ground states, respetisplacements of harmonic modes, for examplg(2w2).
tively. When we consider the harmonic oscillators on theThese coupling strengths are in turn related to the time scale
ground state as a reference, the harmonic modes coupled &b the relaxation rate as well as energetics of potential energy
the donor and acceptor states are displaced pgnda,, surfaces. We find that it is useful to define spectral densities
respectively. representing the coupling strengths of harmonic modes as

2
pog(@) =2 53 (0= wa),

a

A. Definitions of spectral densities

The nuclear Hamiltonians, E@3), contains linear cou-

pling terms representing energy fluctuations induced by bath 2

degrees of freedom. Since we only consider linear terms with  p, (w)=2>, —5 d(w—w,), (4
respect to the bath harmonic coordinates, our model Hamil- « 20,

tonian includes neither any phonon-induced excitation trans- (a,—d,)2

fer effects nor molecular vibrational relaxation. However, we pap(w)= 2 % S(w—w,).

believe it is still useful enough to understand the role of the “ @a

bath degrees of freedom in the electron transfer processhe first spectral densitypq(w), is fully responsible to the
when the initial wave packet created by the optical field is inbroadening effect of the optical spectra. The last one,
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pap(w), is associated with thequilibrium ET process. Be- By using the time-evolution operator we can now calculate
cause we are considering a nonequilibrium situation, it ighe transition probability in time. First consider the popula-
necessary to include all three spectral densities as we wition at the donor state,

show in the following sections. Note that in general .

pap(®) # pag(®) — ppg(®). This unequality gives us a hint PD(t)=<¢ol<g|exp_{ if dr H(T)} |IDY(D|

that multidimensionality will play a role in the ET of the to

three-state systenOur goal is eventually to describe the

t
nonequilibrium ET rate in terms of the three spectral densi- Xexp+( —if dr H(T)} |9)| o)
ties to
=(Wol(glu™ (t,10)|D)(D|u(t,to)[g)| o), )
where|y;) denotes the initial nuclear wave function on the
ground state in the thermal equilibrium. Thus the matrix el-
B. Perturbational approach to evaluation of time- ement of [) shown above is identical to trace over the
dependent populations thermal bath degrees of freedom. Inserting Ef}.into Eq.

b_(8) we find the time-dependent population at the donor state

In order to obtain perturbation results on the nonequili . .
js: perturbatively, given by

rium ET rate, we shall consider the case of nonadiabatic limi
and elementary time-dependent perturbation theory will be 1 t T
j dr| d7’ E*(7)E(7")

t

used. Throughout this paper, we will retain only terms pro-Po(t) =75 Re t
0 0

portional to|u|? and all the higher-order terms with respect to

the electronic dipole interggtion will .be ignored. . X (o|eNomu* e 1ho(7=7) e =ihg”| yoyelo(r=7)
To calculate the transition amplitudes we next consider - -
the time-evolution operator +Pp(uA%t) +O(uA%). 9

Here we invoked theotating wave approximatignwhich
t assumes that terms oscillating with frequencies of
U(t,to)zexp+‘ —if dr H(T)] * (wpgt w) are ignored because integrals over those highly
fo oscillating function is negligibly small. The lowest order

_ t . - contribution to the population of the donor state is obviously

=g Mo(t7t) exp# —iJ drV( 7')+J(T)]) induced by the optical excitation. The next higher order term
fo one should consider is proportional 5A?, and its magni-

=g Ho(t=tly(t,t,), (5) tude is exactly identical to the lowest order term for the

population of the acceptd?,(t) with opposite sigisee Eq.

) ~ I ) (13)]. This is because the whole population is conserved.
where the Heisenberg operatafet) andJ(t) in the interac-  Because the acceptor is not radiatively coupled to the ground
tion picture with respect to the zeroth-order Hamiltonian arestate the lowest order term contributing By (t) is also

proportional tou?A% Here we should mention that we have
ey — aihg(t—to) . a—ihp(t—to) not considered spontaneous loss of donor population via ra-
V(t)=eldtioy e" Ml E(t)cos wt| D)(g] diative or nonradiative channels except for the electron trans-
+elho(t=to) ; e—ihg<t—to)E*(t)COSwt|g><D|, fer process. In other words, we assume that the lifetime of
(6) the donor state induced by other channel is sufficiently long
L . compared to that induced by the electron transfer.
J=eMat"t)A g~ iNo(t=t)| A\(D| Changing the integration variable in Eq9) to
4ot A% g iMai-10)DY(A[. ;[als: 7— 7', we can rewrite the population of the donor state
t o
Hereu(t,t,) in Eq.(5) is obviously defined as above. We can ~ Pp(t)=3 Ref de dt; E*(1)E(7—1y)
expand this evolution operator in the interaction picture as o 0

X(tholeNo'1u* e Moty yg)el

t 272 24
u(t,to)zexm[—if dr[\~/(7)+3(r)]] T Po(r" AN+ O(TAT), (10
to wherety= —o. If we further assume that the pulse duration
v . time is sufficiently short enough to ignore any nuclear dy-
=1—if drV(7)+JI(7)] namics, i.e., we assume thB(t)=E;5(t) whereE, is a
fo product of the pulse amplitude and its duration, then the
population of the donor state is simply given by

Po(t)=3|Eol?|u|?6(t) + Pp(u?A%,t) + O(u2A%), (11)
+3(7)\~/(r’)+3(7)3(r’)]+~- . (7) where 4(t) is a step function.

—ftdeTdr'[f/(T)f/(r')+\7(T)3(T')
to to
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Next consider the population of the acceptor state by F(rr,T T,)E<¢O|eihgf'lu* elhp(7=7)A @ iha(7=T)
calculating the transition amplitude,
XA e—ihD(T—T')M e—ihgT'wO)_

t
PA(t)=<¢o|(g|exp_{i£ dr H(T)]|A>
0

It is useful to rewrite Eq(13) by using the following iden-

tities:
t
“(alexn =i [ artiololi. a2 L
0 dr’' = dr’ + dT'+J dr’,
Likewise, inserting the time-evolution operator into the to to T T
above equation, the lowest order term is given by T - - o
JdT' dT,:f dr' | dT’,
t T T T tg T tg to
Pa(t)=2 ReJ drf dT'J dT| dT' E*(#)E(T')
to to to to and
X coswt’ coswT'F(r,7",T,T')+0(u’A%), T T r S
o7 COSeT'F{n7 T.T)+0(u"A") de’Jdefdr’f dT.
(13 T to tg to
where Then Eq.(13) can be written as

t T T T!
Pa(t)=2 Ref drf de dT’f dr’ E*(7')E(T")coswt’ coswT'F(7,7 ,T,T')
to to to to
t T T 7’
+2 ReJ de de dr' | dT" E*(7")E(T')coswr’ coswT'F(7,7',T,T')
to to to to

t T 7 T
+2 Ref drf dr'f dT| dT E*(7)E(T')coswr’ coswT F(7,7 ,T,T')+O(u’A%). (14
to to to to

In comparison to Eq(13), there are time orderings of inte- lap in time so that there are mixed time ordering of the field—
gration variables in Eq14). For example, the first and sec- system interactions in the four-wave mixing spectroscépy.
ond terms contain two consecutive interactions with the exin terms of four-wave mixing spectroscopic language, we
ternal field to create a diagonal density matrix element on theise an external laser pulse to pump the population of the
donor state, and the remaining second-order perturbations lground state up to the donor state, and then probe the popu-
the electron exchange matrix elements create population dation of the donor state by the second-order interaction with
the acceptor state. On the other hand, the third term includabe electron exchange perturbation. This is therefore more
a different time ordering. The actions of external field per-closely related to the spontaneous fluorescence measurement
turbation and electron exchange perturbation are alteredvhere the probing step involves actions of the vacuum field
Therefore,as long as the pulse duration time is sufficiently operator which are not controlled by experimentalist. Like-
short compared to the time scale of the electron transfer ratewise, one has no control on the action of electron exchange
we can safely ignore the contribution from the third term in perturbation in our ET problem either.

Eq. (14) It is worth mentioning that the latter contribution We now change the integration variables in Et¥) as

has a complete analog in the nonlinear four-wave mixing;=T'— 7' andt,=7—T in the first term and,=7"—T’
spectroscopies known as the coherent artfthdthis phe- andt,=7—T in the second term, respectively, and also let
nomenon is usually induced when the two laser pulses ovetty= —. Equation(14) can be rewritten as

1 t o0 T—t o0 .
PA(t): E Ref_ deO dtzf_ 2dT,JO dtl E*(T,_tl)E(T,)e_lwtlF(T,T,:T,_tl,T:T_tz,T,)
1 t ] Tty © .
+3 Ref drf dtzf dr’f dt, E*(7)E(r' —t))e'“uF (7,7, T=7—1t,,T'=7" —t;) + O(u?A%. (15
— 0 — oo 0

J. Chem. Phys., Vol. 103, No. 2, 8 July 1995
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600 M. Cho and R. J. Silbey: Photoinduced electron transfer

It should be noted that the two time periodig,andt,, are  transfer process. Furthermore, the exponentiation approxima-
associated with the time evolutions of the off-diagonal den+tion we introduced is exact when we consider a second-order
sity matrix elements which are likely to be highly oscillating cumulant approximation to the solution of the linear stochas-
with frequencies determined by the energy differences betic differential equatiorf* However we will not pursue this
tween states. Therefore it is natural to evaluate the integrais this paper since here we only focus on the simple case of
over these highly oscillating periods by using the stationarywery large exothermic reaction to make the whole picture as
phase approximation. As mentioned before, it is assumedimple as possible.

that the time profile of the external field is effectively a delta ~ We now invoke thelassical Condon approximation that
function, E(t) = E,4&(t). With this approximation, we find the dipole operator and the electron exchange operator,

and A, respectively, do not depend on the nuclear coordi-

t T
Pa(t)=|Eo|? Ref de dty(io| u* €MD7A e 1Ntz nates The forward transfer rate kernel, E4.8), is then
0 0
XA eMotze 07| yg) + O(u?A). (16) ki(7)=2 ReA? J dty(y°(7)|e”Ma'zeM02 yO( 7)),
0
As a result of the ultrafast optical pulse, the same wave (29

packet,u| i), is created on the donor state at time zero. Then .0 o —ihnr
it propagates on the donor surface for timeDefining the where we defing (.T» =€ >l g)- .If we replace the
nonequilibrium wave packets &8(7)) = e "o7u| o), we upper bound of the integration ovés with %, We recover
find the generalized Fermi—Golden rule expression includin cl)alfsonetl aliES rezsulltz, _terg?dlthev\?oneqtmlbtnum dGo.Iden
the nonequilibrium effect. This problem has recently bee ule formu al _q.( ) )".q ef. 19. We see that our deriva- .
discussed by Coalsoet al,'® based on the approximations 1°" IS useful in extending beyond the short-pulse approxi-
of (i) ignoring nuclear dynamics during the pulse duration[ﬂat'.o?' Ret\'/vrltlng the nl:cigar Hilkr]nlltonlarﬁ@ andhy, in
time and(ii) ignoring the contribution from the mixed time- € Interaction representation with respechtowe can re-

ordering term that is the third in Eq14). Here we have write the forward transfer rate kernel as

presented a rigorous basis for the nonequilibrium photoin- T (T
duced electron transfer reaction. ki(m)=2 ReAZJO dt2< exp{ i fo ds UDg(S)]
C. Populations and cumulant approximation ><exp+( —if ds UAg(S)}

T—tz

We next calculate time-dependent population of the do-
nor state. The donor population created by the optical exci- Xexp+[ . fﬁtzds Us (s)]>
tation was calculated by considering the second-order term g
with respect to the dipole matrix elemdisee Eq.(11)]. As . ,
mentioned before, the next higher order term contributing to xexp{—ieapta~INRpta}, (20)
Po(t), which is proportional tou®A? is identical to the \yhere the zero-centered difference potential is defined, in the
population of the acceptor state to this order except for thgyteraction picture,
opposite sign, i.e.Pp(u?A?,t)=—PA(u2A?1t). Therefore ' .
the time-dependent population of the donor state is approxi- Upmq(S)=€"e(hy,—h,—(h,—h,))e e
mately given by Pp(t)=Pp(uit)— Pa(nA? 1)
+0(u2A%. Using these results, Eq&l1) and(16), we find
that the population of the donor state can be approximatelyere the angular bracket represents a thermal average over

for m,n=g,D,A.

written by exponentiating the expression to find the nuclear degrees of freedom in the equilibrigmound
t state. exp(exp_) denotes positivgnegative time-ordered
Po(t)=3Eo|?| u|? exp{ —J dr kf(r)], (17 exponential.e5p is the energy difference between the iso-
0 lated acceptor and donor stategp= €y~ €pq - Because of
where the forward rate kernel representing the transition ratthe system—bath interaction, from E§) the solvation ener-
per unit time from donor to acceptor is gies of the donor and acceptor states ko ppgy(w)w and
5 B J dw pA_g(w_)w, respecpvel_y. In Eq(20), the corresponding
Ke(7)= mE Refo dtp(g(7)|A e hatzA ehotz|y( 7). reorganization energy is given by
(18)

)\?—\D:<hA_hD>_€AD:f dw[pag(w)—ppg(w)]w.
It is possible to derive this equation more formally than we 21)
have done here, using the partial-ordering proce¢R@P?3
and truncating at the second-order cumulant. This leads th should be noted that the reorganization endjfference
the identical expression fdPp(t). Here we assume that the in the solvation energies of the donor and acceptor gtates
exothermicity of the electron transfer from donor to accepton\$p, is evaluated over the Hamiltonian of the ground state
is large enough to ignore the backward transition rate. Howinstead of that of the donor state—the supersayif A%p
ever as shown by the authors recefflyt is a straightfor- means that the thermal average is carried out over the Hamil-
ward exercise to include the contribution from the backwardonian of the ground state. We may expect that the reorgani-
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zation energy approaches to that evaluated over the donexponent in the integrand with respectttoto find the sta-
Hamiltonian as the nonequilibrium population created on theionary phase poirf* The integral, Eq(23), then reduces to
donor state by the optical excitation reaches its equilibrium

state on the o_Ionor potentlal surf_ace_. It now t_urn_s out to be ke(7)=2 ReAzf dt,

useful to rewrite various reorganization energies in terms of 0

spectral densities defined in Edd), «expl 1(U2 >t2 Lennt M- Q7))
— 2\VYap/lo7 ILéapT Aap— L\ T) [y,

Ang=f dw ppg(w)w, )\%QZJ do pag(w)w, (25

where the time-dependent reorganization en€dgy) is de-

g (22 fined in terms of three spectral densities,

)\RDIJ do pap(@)w, and AN3p=A3;—\}
Once again we emphasize that there are two different reorQ(T)zf dw{pag(@)— pan(®@) — pog(®)tw(1—COSwT).
ganization energies\5p, and\{p, associated with the elec- 9 9
tron transfer pair. Of the two, the former appears in the con- (26)
ventional electron transfer process since it is evaluated ovefhe mean square fluctuation amplitudéZ ) is given by
the equilibrium distribution of the donor nuclear degrees of
freedom. 2\ 2
We next evaluate the nonlinear correlation function <UAD>_f de pap(w)coth Buw/2)w™ @7

given in Eq.(20) by using the cumulant expansion method vl o _ _ )
and truncating higher order terms than the second. The for/(Uap) is @ characteristic quantity representing the magni-

ward transfer rate kernel is then tude of the bath fluctuation energy. As shown in the defini-
tion, Eq.(27), \/<UA2 o) is strongly dependent on temperature.
ke(7)=2 ReAZJ dt, expl—i eapta—iAdpta— eap(ts) When the temperature is much larger tha_m any hgrmon_lc 0s-
0 cillator energy, the mean square fluctuation amplitude is di-

recty related to the reorganization energy as

+1 IMLepg(7) + @an(7) — eag(7) ]} (U2.)=2KsTAL,. This limit is usually referred to the clas-
Xexpl—i IM[ @pg(T—t2) + @ap(T—1t2) sical or high temperature limit in the literatute.
When the mean square root fluctuation amplitude of the
—eag( Tt 1 (23 coupled bath degrees of freedokf{ UA2 o) is much larger
where than the time scale a(7), we can approximately replace
: . the integration limit withe instead of7 in Eq. (25). In this
om(t)= deTfo A7 (Upr( ) Upr(7)) case, we find
+A9p— 2
o ()= s exp| oot hao N o9
=—|)\mnt+f do pmn(w)coth Bw/2) (Uao) 2(Uip)

This result is exceptionally simple. Note that E®8) is
X (1—cos wt)+if dw py@)sinwt, (24)  Precisely of the same form with the Marcus’ expression for
an equilibrium electron transfer rate except that the reorga-
wherel =g whenmn=Dg or Ag, andl =D whenmn=AD. nization energy is replaced with-dependent on&, so we
Note that we need to consider all three spectral densities tghall refer this result asonequilibrium generalization of the
completely describe the forward transfer rate kernel, wherealarcus ET rate constaniVe also emphasize that E(28)
the equilibrium electron transfer rate is determined by ancludes the complicated multidimensional nature of the sol-
single spectral densityj,p(w). As can be seen in E¢23),  Vation coordinate system via time-dependent functi(t)
the imaginary parts of the double integration of correlationwhich is in turn determined by the three spectral densities.
functions changes the phase of the integrand in(E§. As  Thus we believe that we have accomplished our goal of ex-
the initial wave packet on the donor state propagates towarBressing the nonequilibrium ET rate kernel in terms of spec-
an equilibrium position(potential minimum on the donor tral densities.

state, the reorganization energy associated with the electron If we relax the delta-function approximation to an opti-
transfer changes in time cal pulse envelope, we expect to see the time-dependent

change of the Gaussian width in E@8). This is analogous

to the time-dependent change of the time-resolved fluores-

cence width in liquid. We will discuss this case elsewhere.
We next investigate some limiting cases of Eg8) to
Although Eq.(23) can be easily calculated numerically, give some insights and to check its consistency with other

we will invoke the stationary phase approximation to theknown results. Consider the case wheis very small(but

integral given in Eq(23). Since during the time period ¢  larger than the inverse Qf(UiD>) so thatQ(7) is negligibly

in the integrand of Eq(23), the whole integrand is highly small. In this case, the initial wave packet involved in the

oscillating, it is suitable to take short-time expansion of theelectron transfer process does not have enough time to sig-

D. Stationary phase approximation (Laplace method)
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nificantly propagate on the donor surface, hence the correchooseU 5p(t) as the primary coordinatel; . Now there are
sponding reorganization energy should be equafig—this  two remaining variablesipg(t) and U,g(t), but from the

is the solvation energy difference when the nuclear configudefinition U ,4(t) =Uap(t) +Upg(t), only one is indepen-
ration of the bath coordinates is identical to that of the equident. Therefore, we can choose eithg,(t) or Upg(t) as
librium distribution on the potential surface of the groundthe other coordinate. We taképy(t), since this variable is
state. As we allow the wave packet propagate on the donddirectly responsible for the spectroscopic broadening effects.
potential energy surface for time the reorganization energy Although there are two representative coordinatégy(t)
changes in time b\%p—Q(7). Finally for a long timer, andUp,(t), these two are not orthogonal to each other. Thus
Q(7) approaches to an asymptotic value: we use Schmidt orthogonalization method to obtain two or-

lim Q(r)=A%5— A2 . thogonal coordinates. We consider

e d1=Uap(t),
In this long time limit, the relevant reorganization energy —u U (29
reduces to\%p, which is the solvation energy difference 92=Upg(t) + yUnp(1).

evaluated over the equilibrium distribution of the bath de-Here we should determingsatisfying(q,q,)=0. By insert-

grees of freedom on the donor surface not the potential sujng Uag(t)=Unp(t)+Upg(t) and using the fact that

face of the ground state. This can be understood simply: quUADUDg>: %(<U,2Ag>_<U%\D>_<U%g>)v we find

such a long timer, the wavepacket created on the donor

surface reaches thermal equilibrium on the donor surface so ~ (Up) +(Ujg)—(UZy)

that there is a constant rate of leaking of the donor popula- 7~ 2<U,2AD>

tion into the acceptor surface by the second-order electron

transfer mechanism. Thus we have shown that the generalhis quantity is fully determined by the mean square fluc-

ized result, Eq(28), reaches the known equilibrium value tuation amplitudes. In order to obtain E(B0), we try to

(Marcus expressignafter the relaxation time on the donor Make g;(t) and g,(t") orthogonal to each other at equal

surface. time, t=t’. Here the approximation we introduce is that
Finally it should be noted that as temperature decrease$l1(t)d(t"))=0 for all t andt’, which we shall refer as

the stationary phase approximation used in this section be2rthogonalization approximation. In terms of the two or-

comes invalid, since the short-time approximation by athogonal coordinates we can rewrite the three difference po-

Gaussiar[see Eq.(25)] is not reliable. In case of the low tentials as Uxg=(1-y)q;+0dz, Upg=—7yd;+0d,, and

temperature regime, we should use E2f) to calculate the Uap=0s. Inserting these into Eq23) and using the or-

nonequilibrium ET rate kernel instead of E(8), even thogonal property of the two coordinates and gy, the

though Eq.(23) contains an undesirable additional integra- time-dependent rate kernel can be recast in the form

tion.

(30)

ki(7)=2 ReAzf dt, exp{—ieapta—iApta— @apl(t2)
E. Further simplification: Two orthogonal solvation °
coordinates +2iy IM[@ap(7) — @ap( 7= t2) 1}, (31)

Our results, Eqs(17) with (28), are valid regardless of By introducing the orthogonality approximation discussed
the shapes and magnitudes of the three spectral densities. dBove the resulting formula becomes dependent on one cor-
other words, those results can be applied to multidimensiongkation function,gp(t). Furthermore by applying the sta-

tral densities. We cannot, in general, obtain two orthogonajtegration limit with infinity, we find that the nonequilib-
solvation coordinates to fully describe the three-state systemiym rate kernel becomes
since there is no simple way to include the complicated cross
correlation effect. However it will still be useful to extract [ 2w [eant MNp+27YQan(7)]?
two orthogonal coordinates to simplify the whole picture. ke(7) = <UiD> exp — 2<Uf\D> '
Particularly, when we assume that the functional forms of the
o : (32

three spectral densities are the same, we may find two or-
thogonal solvation coordinates representing multidimenWhere
sional bath fluctuations. This is because the potential energy
surfaces associated with the three states can be described by QAD(T):f do pap(w)w(l—CcoswT). (33
two-dimensional harmonic wells with same curvatures. We
explain the procedure of finding two orthogonal coordinatesAs can be seen in E¢32), the factory plays a critical role in
below. determining the magnitude of the nonequilibrium rate kernel.

When we used interaction representations of the donoAs we will show in the following section, this factor is a
and acceptor nuclear Hamiltonians in Eg0), we consid-  sensitive function of the dimensionality of the solvation co-
ered three time-dependent difference  potentialsprdinates.

Upg(t),Uap(t), andU »4(t), which are all collective coordi- As briefly discussed in the Introduction, since we have to
nates. Among the three variablas,(t) is directly related deal with three states, we have found that the multidimen-
to the electron transfer betwedB) and|A), so we will  sional solvation coordinate system can be reduced to a two-
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dimensional one by using the Schmidt orthogonalization
method. We next show the importance of the dimensionality

of the solvation coordinate system.

F. Dimensionality of solvation coordinate system

Although we showed that the two orthogonal coordi-

nates can be extracted from the general multidimensional
coordinate system, we have not discussed the possible impli-

cation of the two dimensionality of the solvation coordinate

system. One of the questions arising immediately is that how

large the fluctuation amplitudes of the two solvation coordi-

603

ID;

1A> 1A>

nates we chose are. Particularly, these quantities are impor-

tant in determining the probability of finding nuclear con-
figuration maximizing the Franck—Condon overlap for ET.

As we shall show later it is useful to introduce a dimen-
sional parameter, defined by

<Uig>:<UiD>+<U2Dg>_2 V(Uap){Upy) cosd. (39

This relationship among the mean square fluctuation ampli

(@) (b)

FIG. 3. Two cases of potential surfaces in the one-dimensional solvation
coordinate system(@) and (b) correspond t&¥=0 andr, respectively. See
figure caption of Fig. 1 for the stepwise explanation.

tudes can be viewed as a triangle with three sides othe solvation coordinate associated with ET so that there is

V(Uzg), V(Uap). and(U3,). The angle between the two

sides,\(U5,) and\(U2p), is the dimensionality parameter
6. The width of theq, distribution is determined by the
square root of mean square fluctuation amplitudeJgf,
that is to say,(q?)=(U%p). The mean square fluctuation
amplitude ofq, is written, in terms of the dimensionality
parametery, by

V(a3)=(U3)|sin 6. (35)

Although only \/(UZDQ) appears in Eq(35), the square root
of the mean square fluctuation amplitudegefis determined
by all three quantitiesy/(U3,), V(Uap). and\(Uzy).

In case wheny=0 or equivalentlyd=/2, (q3) is solely
determined beZDg), therefore the two fluctuating coordi-
nates,Upy(t) and Uxp(t), are orthogonal to each other.
Consequently, fluctuations dfipg(t), which is associated

no effect of fluctuations ot 4(t) on ET rate kernel. On the
other hand, whe®=0 or 7, there are maximum influences
of nonequilibrium preparation on the ET process.

IV. NUMERICAL CALCULATIONS

In this section we present numerical calculations of the
time-dependent populations and rate kernel for various situ-
ations. In order to calculate these quantities we need to de-
fine the spectral densities. The spectral densities are assumed
to be the following form:

(36)

7's associated with each spectral density are determined by
the classical reorganization energies we use. For the sake of
simplicity we will consider the classicghigh temperatune

limit only where the mean square fluctuation amplitude is

p(w)=nw® exp(— wlw,).

with optical broadening effect and relaxation of the nonequiproportional to the classical reorganization energy by
librium wave packet on the donor surface, do not affect thgU3,)=2 2 ksT for example. Therefore, from Eq34),

electron transfer rate associated with fluctuations gf(t).

there is a relationship among the three classical reorganiza-

That is, nonequilibrium preparation of the nuclear wavetion energies,

packet on the donor surface does not affect to the ET rate at g _\D g g
all. On the other hand, whefiis equal to 0 orr, the solva- Mag=MaptADg=2VAapApg COS 0. (37)

tion coordinate system is in one-dimensional situation, that igve will consider that the two among the three reorganization
to say, we need only one solvation coordinate in order tqnergies are given and the remaining one is determined by

describe both the optical excitation and the electron transfe
In this one-dimensional limit, the fluctuation amplitude along
theq, axis is zero, as can be seen in E8f), so that we can

the relationship given above.
We first calculate the time-dependent rate kernel, Eq.
(28) with spectral densities of the same form defined in Eq.

justify that a one-dimensional solvation coordinate can fully(36) with w,=10 cm*. The electron exchange matrix ele-
describe both Optical transition and electron transfer. The dlfment is assumed to be 30 éﬂn throughout the numerical

ference between the two cas@s;0 and #=, is the align-

calculations. Two reorganization energia$,, and \3p are

ment of the potential energy surfaces in the one-dimensionalooo and 200 cr, respectively. The remaining reorganiza-

solvation coordinate systefsee Fig. 1

As can be seen in Eq35), the mean square fluctuation
amplitude ofq, is determined by a projection of the mean
square fluctuation amplitude &fp4(t). This can be reinter-
preted by noting that the projection QﬁU% ) onto the pri-
mary coordinateg; , is determined by/(Ug)|cos . There-
fore, wheng=/2, there is no projection of thep4(t) onto

tion energy,\3,, should be calculated from E¢37) when
we specify the dimensionalit{y) of the system. The energy
gap (eap) between the isolated acceptor and donof 500
cm L. Sinceep+ M55 <0, potential surfaces of the electron
transfer pair are in the so-called inverted regifeee Fig. 3.
We now present the time-dependent rate kernel,(&8), in
Fig. 4(@). The dashed curve corresponds to the casé=d
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wave packet becomes closer to the exit channel. After it
reaches the center of the exit channel, the distance between

1.2 AN (a) the center of the nonequilibrium wave packet and the exit

§ 17 T channel increases so that the rate kernel decreases toward a

— 0.8 limiting value [see dotted curves in Fig(&]. As the third

o example, we consider the case @ n/2. We cannot draw

\50'4"_, three potential surfaces as Fig. 3, because the two dimension-
ality of potential surfaces are importaméfer to Fig. 2, even

though Fig. 2 is not precisely the relevant an&s we men-
tioned before, ifg==/2, the two solvation coordinates asso-
ciated with optical transitionas well as relaxation of the
nonequilibrium wave packgtand electron transfer are or-
thogonal so that there is no effect of nonequilibrium prepa-
ration of the donor population on the electron transfer rate.
Therefore, the rate kernel, in this case, is a constant and
identical to the equilibrium valugsolid curve in Fig. 4a)].

With the time-dependent rate kernels calculated above
[shown in Fig. 4a)], we calculate the donor populations in
time. We normalize the initial donor population to be unity.
The solid curve in Fig. &) is corresponding to the case of
6=m/2. Since the ET rate kernel is constant, the donor popu-
lation is a simple exponential function with respect to time.
If we assume that the relaxation of the nonequilibrium wave-
packet can be ignored, we expect that the donor population
decays as the solid curve. The dashed curve is corresponding
T . r r Y to the case ob=0. Because the magnitude of the rate kernel
0 L 2 3 4 5 is small compared to the equilibrium value as shown by the

time (ps) dashed curve in Fig.(4), the donor population decreases
very slowly for short timg(0<t<2 p9. As time increases,
FIG. 4. (a) Time-dependent ET rate kernels, EG8), are calculated for ~ the e€xponential decaying pattern is recovered. fotr, the
three cases whed=0 (dashed curve /2 (solid curve, and 7 (dotted  donor populationdotted curve in Fig. éb)] decays faster
cun(e. (b) Donor populations are calculat_ed fe_r:O (_dashed curvg /2 than the equilibrium Cas(@r the case of= 77./2). This can be
(solid curve, and 7 (dotted curve (c) Semilogarithmic plots of the donor . .
populations are shown. The spectral densities are given by(38j.with underStOOd that the associated rate ke_merjted curve In
w.=10 cn'. s associated with each spectral density are determined byFig. 4@] becomes larger than the equilibrium value after
;he flzaggics%rlegrngdagizafici% Oe(;le(:r%[?s )\fror?s ?:tetririfirgcijorgs Lnsir(lli@t-he 500 fs. Finally we present, in Fig(d), semilog_arithmic plots
reAIgtionship among theDtghree classical.rec/;rgganization ene{@gdiq(;?])]. of donor populations to show noneXpor.]en.tlal decayl.ng .pat-
In this casehag for 6=0, m/2, and are 305.6, 1200, and 2094.4 chy (€S when the nuclear wave packet is in nonequilibrium
respectively.e,p=—500 cmt. T=300 K. situation.
In Fig. 5, we present similar numerical results except
that the classical reorganization energieg, and ADp, are
[see Fig. 8)]. Since this is a one-dimensional case, we car00 and 2000 cnt', respectively. Sinceap+ARp>0, this
draw the three potential surfaces with respect to a singleorresponds to the normal reginsee Fig. 1 In Fig. 5a),
coordinate. The nonequilibrium nuclear wave packet createthe time-dependent rate kernels fée0, #/2, and =, are
on the donor surface tends to relax down to the minimum oshown by dashed, solid, and dotted curves, respectively. As
the donor surface. The distance between the center of th@an be seen in the potential surfaces in Figr),lwe can
nonequilibrium wave packet and the exit chanfelirve understand the time dependence of the rate kernelg=f@r
crossing point between the donor and acceptor surfdmes and #. In both cases, the limiting values approach to the
comes closer as time increasg@sshould be noted that the equilibrium value, which is also identical to the rate kernel
distance we have mentioned here should be considered as tfue 6=7/2. Donor populations in time for the three cases are
magnitude of the time-dependent reorganization energy, so #hown in Fig. %b). Also we find strong nonexponential pat-
should not be confused with the real distandéherefore we terns for short timgless than 2 ps Semilogarithmic plots
expect that the time-dependent rate kernel increases in timere shown in Fig. &). Particularly, the decaying pattern
and reaches its limiting value shown by the plateau in Fig[dashed curve in Fig.(B)] of =0 can be viewed as a double
4(a). On the other hand, whefi= 7, even though this is also exponential with both fast and slow ones. We note that this
a one-dimensional case, the position of the minimum of théehavior—initially the donor population decays quickly and
ground state is different from that fai=0 [see Fig. 8)].  then follows a slow exponential decay—has not been seen in
Again the center of the nonequilibrium wave packet propa-Coalsonet al’s computer simulation studies. This is because
gates on the donor surface to reach an equilibrium value. Fdhey did not fully consider multidimensional aspect of the
a short timg0<t< 0.8 p9, the center of the nonequilibrium potential surfaces explicitly. The slow part of the decay is

Log(Pp(1))

0.01 3
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time (ps)

(our long-time exponential decay constamiith respect to
the isolatedfree) energy gaps.

0.47 (a) As shown conclusively in our model calculations, the
803 short-time nonexponential decay of the donor population can
=y be attributed to the nonequilibrium nature of the initial
s preparation of donor population by an ultrafast optical pulse.
2014 T Both patterns, quick decay followed by slow exponential de-

cay as well as slow decay followed by fast exponential de-
T T T T 1 . .
0 2 4 6 8 10 cay, can be found in the photoinduced ET and are dependent

on the multidimensional potential surfaces.

V. SUMMARY

In this paper, we presented a theoretical description of
the photoinduced ET process in condensed media. Assuming
that the bath consists of harmonic oscillators and that those
harmonic modes are linearly coupled to the three states, we
formulated the time-dependent ET rate kernel including non-
equilibrium features of optical preparation of donor popula-
tion. We assumed that the ultrafast laser pulse is short
enough to ignore any electron transfer during the pulse du-
ration time. In this case we can obtain a generalized expres-
sion for the nonadiabatic ET rate kernel that is identical to
that discussed by Coalsat all® We further applied a sta-
tionary phase approximation within the cumulant method.
We finally found a simple and interesting generalization of
FIG. 5. Similar plots are shown except that the two reorganization energieghe Marcus expression of ET rate kernel, where the nonequi-
Map and,p are assumed to be 2000 and 200 &nrespectively. Conse-  librium nature is included via the time-dependent reorgani-
quently, the remaining reorganization energleg, , for 6=0, w2, andware  zation energy. In order to fully understand the nonequilib-
935.1, 2_200,'and 3464.9 cth respectively. All the other par_ameters are the rium nature of the photoinduced ET, we discussed
same with Fig. 4(a) Time-dependent ET rate kernels, using E2p), are - . . .
calculated whend=0 (dashed curve =/2 (solid curve, and = (dotted ~ Multidimensional aspects of the solvation coordinate system.
curve). (b) Donor populations are calculated whes 0 (dashed curve /2 In some limiting case we found that two orthogonal coordi-
(solid curve, and (dotted curvé: (c) Semilogarithmic plots of the donor  nates can be obtained by using the Schmidt orthogonaliza-
populations are shgwn. Dashed, solid and dotted curves corresp@adto tion method.

72, and, respectively. ) . .
We believe that there are many directions to extend our
work. One is to consider a finite pulse duration effect. In this
therefore related to the equilibrium ET rate constant, whereagase we cannot simply ignore the fully coherent contribution,
the fast part of the decay is induced by the relaxation of th&vhere the time ordering is mixed. Furthermore, the propaga-
nonequilibrium wave packet on the donor surface. tion of the initial wave packet on the donor surface during

In this section, although we presented very limited casethe pulse duration time could be important if the relaxation
in the wide parameter space, we found that the resultingme is comparable to the time scale of the pulse duration
decaying patterns of donor populations in time are shown téime. Another generalization is to develop either a fully
be very sensitive with respect to the nonequilibrium natureghase space pictute.g., Wigner distribution functiorwith
of the photoinduced initiation of the ET in condensed mediatwo orthogonal coordinates and two conjugate momenta, or
Since the optical excitation step can be studied by variousoordinate space picture with two coordinates. Then, the ET
linear and nonlinear spectroscopic measurements, one caate kernel should be given by an integral of the distribution
get detailed information on the mean square fluctuation amfunctions over the phase space or over coordinate space. The
pIitude,(U%g), which is in turn related to the classical reor- picture emerging from these procedures show clearly that the
ganization energy\,. More specifically, the classical reor- conditional probability of finding the overlap between the
ganization energy is approximately equal to the twice of thedistribution functions associated with the nonequilibrium
fluorescence Stokes shift. Thus half of the inputs we neewvave packet and with the exit channel is directly propor-
can be obtained via spectroscopic measurements. Still we ational to the time-dependent ET rate kernel we discussed in
suffering from the lack of direct experimental methods tothis paper. Finally, in this paper, we have not specifically
obtain the mean square fluctuation amplitude directly assocstudied the effects of molecular vibrations on the dynamics.
ated with the electron transfer. These parameters can be, Formally, we can proceed in much the same spirit as above
principle, obtained by plotting equilibrium rate constantsto take these effects into account.

0 2 4 6 8 10
time (ps)

Log(Py(t))

time (ps)
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