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Minhaeng Cho and Robert J. Silbey
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 15 November 1994; accepted 3 April 1995!

We consider photoinduced electron transfer, which is intrinsically a three-state system consistin
electronic ground, electronic excited~electron donor!, and electron acceptor states. It is assumed tha
the bath consists of a collection of harmonic oscillators. Using an elementary time-depend
perturbation theory, it is found that the nonequilibrium Golden rule formula proposed by Coals
et al. @J. Chem. Phys.101, 436 ~1994!# can be rigorously obtained in a certain limit of our results.
Invoking a stationary phase approximation, a simple result analogous to the Marcus expressio
obtained, except for the presence of time-dependent reorganization energy. The multidimens
nature of the solvation coordinate system is discussed further. Finally a few numerical calculat
are presented. ©1995 American Institute of Physics.
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I. INTRODUCTION

Ultrafast laser techniques1–3 developed in the last two
decades enable direct measurement of population change
either the electron donor or acceptor states4–9 in electron
transfer reactions in condensed media. By using a subp
second laser pulse, one can create a population state on
electron donor state, which is in this case coupled to
electronic ground state radiatively. There are two popu
ways to detect the population changes in time. One of
two is to probe the transient absorption intensity of the don
state radiatively coupled to another electronic state.10 This
transient absorption experiment is useful when there is
electronic state accessible by the optical field. The ot
method is to measure the stimulated or spontaneous emis
intensity from the donor state. In contrast to the spontane
emission measurement, the stimulated fluorescence mea
ment utilizes an additional pulse to stimulate the emission
photon from the acceptor state.11 These two methods, tran
sient absorption and light emission measurements, are b
cally related to the general pump–probe-type experime
The former differs from the latter by the probing method.
some cases, interpretations of these results are difficult
cause one has to have a full knowledge of the potential s
faces and intramolecular dynamics of the target molecu
system.

Most of the theoretical studies on electron transfer
condensed media are based on the assumption that the in
state is a thermal equilibrium state, which is stationary,
the donor surface. In this conventional situation a single s
vation coordinate representing the fluctuating bath degree
freedom by projecting their fluctuations onto a on
dimensional coordinate is chosen. This solvation coordin
is collective in nature since it represents the multidime
sional potential energy surfaces constructed by the bath
grees of freedom. However one of the remarkable outcom
of this reduction procedure is that one can use an appro
mate picture for the time evolution of the solvation coord
nate, such as generalized Langevin equation~or equivalently
generalized Fokker–Planck equation!.12–17 Furthermore, as
Marcus showed a long time ago, the electron transfer r
can be fully described by a single quantity, the classical s
J. Chem. Phys. 103 (2), 8 July 1995 0021-9606/95/103(2)/59
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vent reorganization energy, in the classical~high tempera-
ture! limit.18 The solvent reorganization energy represen
the magnitude of the overall coupling strength of the bat
degrees of freedom with the electron transfer pair—thus w
shall use these quantities as measures of coupling strength
this paper.

In contrast to this conventional situation, photoinduce
electron transfer involves an additional ground state optical
coupled to the donor state. Unless we ignore the initial re
laxation process of the optically created wave packet on t
donor surface, we cannot select a single solvation coordina
in this three-statesystem coupled to multidimensional bath
degrees of freedom. The optical excitation step is govern
by another solvation coordinate whose fluctuation induce
broadening of spectra as well as relaxation of the nonequ
librium wave packet on the donor surface. One of the com
plexities is that the two coordinates, one associated with t
optical transition and one with the electron transfer, are n
necessarily correlated with each other. This actually induc
a great deal of difficulties since we have to deal with a trul
multidimensional solvation coordinate system in this cas
As one can expect, only for times longer than the relaxatio
time on the donor surface, will the electron transfer rat
reach its equilibrium value. In this paper we will explore this
nonequilibrium nature of the photoinduced electron transf
in the nonadiabatic regime.

Recently Coalsonet al.19 considered a similar problem.
Instead of directly considering the optical process in the
formulation, they proposed a nonequilibrium Fermi–Golde
rule formula for the case when the initial preparation of th
donor population is in the nonequilibrium state on the dono
surface. They replaced the initial stationary state with non
equilibrium ~time-dependent! state in the usual Golden rule
formula. In order to test the nonequilibrium Golden rule for
mula, they carried out computer simulation studies with
spin-boson Hamiltonian used by Garget al.16 We present in
this paper a rigorous derivation of the nonequilibrium rat
kernel for the nonequilibrium electron transfer process whe
the preparation of the donor population is performed by a
ultrafast optical pulse. In some limiting case we show ou
results reduce to their so-called nonequilibrium Golden ru
formula. We further show that a simplified analytic expres
5955/12/$6.00 © 1995 American Institute of Physics
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596 M. Cho and R. J. Silbey: Photoinduced electron transfer
sion for the ET rate kernel can be obtained by using t
stationary phase approximation. It turns out that the dim
sionality of the solvation coordinate system plays a cruc
role in understanding the nonequilibrium nature of the pho
induced ET. We present some simple numerical evaluati
of our formal results to help understanding the resulta
equations.

We organize this paper as follows. In Sec. II, we sket
the entire picture of the nonequilibrium ET process quali
tively. We next formulate the time-dependent nonequilibriu
ET rate kernel by using elementary time-dependent pertur
tion theory. The nonequilibrium generalization of the Marc
expression for ET rate constant is obtained by invoking t
stationary phase approximation. In Sec. IV, we present
merical results for a few cases. We finally summarize o
results in Sec. V.

II. QUALITATIVE PICTURE

A three-state system consisting of an electronic grou
state, an electronic excited state which acts as an elec
donor state, and an electron acceptor state is considered.ug&,
uD&, and uA& are the ground, donor, and acceptor states,
spectively. It is assumed that the ground stateug& is radia-
tively coupled to the donor stateuD& which is the electronic
excited state. Furthermore, the donor stateuD& is coupled to
the acceptor stateuA& by a nonzero electron exchange matr
element,D. Before we present a theoretical description of t
nonequilibrium electron transfer in condensed media,
will briefly sketch the entire picture.

It is assumed that the system is initially in the groun
state in thermal equilibrium with the bath. Therefore, th
initial state is stationary and can be defined by the statist
distribution in the phase space. The bath is modeled b
collection of the harmonic oscillators, which are coupled
each state linearly. The potential energy surface of the e
tronically excited donor state is likely to be displaced fro
the potential energy surface of the ground state. Otherw
one may not expect any broadening of spectra induced by
bath degrees of freedom, since the Franck–Condon over
of harmonic modes with small displacements are small
short laser pulse to create a population on the donor poten
energy surface is introduced. It is assumed that the pu
duration time is short enough to ignore both electron trans
process fromuD& to uA& and propagation of the nuclear wav
packet on the donor surface during the pulse duration tim
This condition can be met by using a femtosecond la
pulse when the time scales of the electron transfer and
vent modes are order of subpicosecond to picosecond. If
solvation time scale is comparable to the pulse duration tim
one must relax these assumptions. In that case, we may h
to consider the propagation effect of the nonequilibriu
wave packet on the donor surface during the pulse dura
time. We shall consider this case in another paper. The c
ated wave packet on the donor potential energy surface te
toward a new thermal equilibrium state since the equilibriu
positions of the nuclear degrees of freedom on the do
potential surface are different from those on the ground p
tential surface. In the mean time, the wave packet on theuD&
state keeps leaking into the acceptor state by the nonz
J. Chem. Phys., Vol. 10
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electron exchange matrix element. The most effective cha
nel in this electron transfer process is that the wave packet
uD& state reaches the curve crossing point between the p
tential surfaces of the donor and acceptor states. This is b
cause in this region of the phase space, the two states
isoenergetic and the Franck–Condon overlaps are maxim
We will refer to this curve crossing region between the dono
and acceptor surfaces as the exit channel. In the case of
underdamped wave packet, which means that the mean
sition of the wave packet undergoes an oscillating motion o
the harmonic potential surface of theuD& state, one may
expect that the donor state wave packet gets close to
curve crossing point periodically. This is the case when th
electron transfer process is strongly coupled to a few unde
damped vibrational modes.20 On the other hand, if the elec-
tron transfer system is coupled to a large number of degre
of freedom, even though each of them could be unde
damped, the superposition of these oscillating features mak
the time evolution of the average position of the wave pack
overdamped. In any case, regardless of the position of t
donor state wave packet, there is nonzero probability b
tween the donor wave packet and the exit channel. Here t
probability is time-dependent because of the nonstationar
of the initial wave packet. Furthermore, its magnitude is de
pendent on the potential energy surfaces as well as tempe
ture. Obviously the electron transfer rate is proportional t
the magnitude of the overlap between the nuclear wa
packet and the exit channel in the phase space.

Consider the time immediately after a wave packet
created on the donor state. For the sake of simplicity let
consider a one-dimensional coordinate system, where o
solvation coordinate can describe both optical broadenin
relaxation of the nonequilibrium wave packet, and electro
transfer. If the center of the nonequilibrium wave packet i
located far away from the exit channel@see Fig. 1~a!#, we
expect to see a small electron transfer rate, and vice versa
this situation, the time-dependent electron transfer rate i
creases in time until the wave packet reaches its therm
equilibrium on the donor potential surface. On the othe

FIG. 1. Two cases of potential surfaces in one-dimensional solvation coo
dinate system.~a! and~b! correspond tou50 andp, respectively~a detailed
discussion on the dimensionality parameter is given in Sec. III F!. 1. Initially
the stationary nuclear wave packet is in a thermal equilibrium state on t
ground potential surface. 2. Att50 nonequilibrium wave packet is created
on the donor surface by a resonant optical pulse. 3. Relaxation of the no
equilibrium wave packet completes for times longer than the relaxatio
time.
3, No. 2, 8 July 1995
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597M. Cho and R. J. Silbey: Photoinduced electron transfer
hand, if the initial wave packet is created close to the e
channel@see Fig. 1~b!#, closer than the minimum of the do
nor potential surface, we expect the electron transfer r
decreases in time until the wave packet reaches its ther
equilibrium state. As an example of a two-dimensional ca
in Fig. 2, we draw contour plots of three harmonic wel
associated with three states. The created nonequilibr
wave packet is shown by thicker ellipsoids. This tw
dimensional wave packet relaxes toward the minimum of
donor surface as drawn by the dashed arrow. During t
relaxation, there is nonzero leakage of the donor populat
via electron transfer mechanism. We can, therefore, exp

FIG. 2. Model contour plots of three two-dimensional potential surfac
The q1 coordinate is chosen to represent the collective nuclear degree
freedom associated with the electron transfer betweenuD& and uA&—note
that it is parallel with the line connecting two minima ofuD& anduA&, which
is shown by a dashed line. The initial nonequilibrium wave packet~shown
by thicker ellipsoids! is created on the donor surface at the origin of (q1 ,q2)
coordinate system and relaxes toward the minimum of the donor surfac
shown by a thick dashed arrow.
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that after the relaxation time, the electron transfer rate shoul
not depend on time because we are looking at a two-leve
electron transfer process where the initial state is in a therm
equilibrium state on the donor state. In Sec. III, we shal
formulate this picture to serve as a reasonable model for th
realistic electron transfer induced by the optical excitation.

III. FORMULATION

We first consider the total Hamiltonian of the composite
system,

H5H01V~ t !1J, ~1!

where

H05ug&hg^gu1uD&hD^Du1uA&hA^Au,

V~ t !5mE~ t !cosvtuD&^gu1m*E* ~ t !cosvtug&^Du,
~2!

J5DuA&^Du1D* uD&^Au.

Here, for example,hg represents the nuclear Hamitonian of
the ground state. The ground stateug& is radiatively coupled
to the donor stateuD& by the coupling potentialV(t). The
central frequency of the optical field isv, and the time pro-
file is determined byE(t). m is the dipole matrix element,
which could be dependent on coordinates of the nuclear de
grees of freedom. We will keep this coordinate dependenc
of the dipole matrix element until the last stage of our deri-
vation. The donor and acceptor states are coupled byJ,
where the coupling strength is determined byD.

We assume that the bath consists of harmonic oscillator
coupled to each level linearly,

s.
of

as
H05F 0 0 0

0 eDg 0

0 0 eAg
G1

1

2 (
a F pa

21va
2xa

2 0 0

0 pa
21va

2~xa2da /va
2 !2 0

0 0 pa
21va

2~xa2aa /va
2 !2

G . ~3!
n
p

d

i

i

The energy of the isolated ground state is assumed to
zero.eDg andeAg are the energy gaps between the donor a
ground states and the acceptor and ground states, re
tively. When we consider the harmonic oscillators on t
ground state as a reference, the harmonic modes couple
the donor and acceptor states are displaced byda and aa ,
respectively.

A. Definitions of spectral densities

The nuclear Hamiltonians, Eq.~3!, contains linear cou-
pling terms representing energy fluctuations induced by b
degrees of freedom. Since we only consider linear terms w
respect to the bath harmonic coordinates, our model Ha
tonian includes neither any phonon-induced excitation tra
fer effects nor molecular vibrational relaxation. However,
believe it is still useful enough to understand the role of
bath degrees of freedom in the electron transfer proc
when the initial wave packet created by the optical field is
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a nonequilibrium situation. The magnitude of the coupling
strength of bath degrees of freedom is determined by the
displacements of harmonic modes, for example,da/(2va

2).
These coupling strengths are in turn related to the time scale
of the relaxation rate as well as energetics of potential energy
surfaces. We find that it is useful to define spectral densities
representing the coupling strengths of harmonic modes as

rDg~v!5(
a

da
2

2va
3 d~v2va!,

rAg~v!5(
a

aa
2

2va
3 d~v2va!, ~4!

rAD~v!5(
a

~aa2da!2

2va
3 d~v2va!.

The first spectral density,rDg(v), is fully responsible to the
broadening effect of the optical spectra. The last one,
3, No. 2, 8 July 1995
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598 M. Cho and R. J. Silbey: Photoinduced electron transfer
rAD(v), is associated with theequilibriumET process. Be-
cause we are considering a nonequilibrium situation, i
necessary to include all three spectral densities as we
show in the following sections. Note that in gener
rAD(v)ÞrAg(v)2rDg(v). This unequality gives us a hin
that multidimensionality will play a role in the ET of th
three-state system.Our goal is eventually to describe th
nonequilibrium ET rate in terms of the three spectral den
ties.

B. Perturbational approach to evaluation of time-
dependent populations

In order to obtain perturbation results on the nonequi
rium ET rate, we shall consider the case of nonadiabatic li
and elementary time-dependent perturbation theory will
used. Throughout this paper, we will retain only terms p
portional toumu2 and all the higher-order terms with respect
the electronic dipole interaction will be ignored.

To calculate the transition amplitudes we next consi
the time-evolution operator

U~ t,t0!5exp1H 2 i E
t0

t

dt H~t!J
5e2 iH0~ t2t0! exp1H 2 i E

t0

t

dt@Ṽ~t!1 J̃~t!#J
5e2 iH0~ t2t0!u~ t,t0!, ~5!

where the Heisenberg operatorsṼ(t) andJ̃(t) in the interac-
tion picture with respect to the zeroth-order Hamiltonian

Ṽ~ t !5eihg~ t2t0!m e2 ihD~ t2t0!E~ t !cosvtuD&^gu

1eihD~ t2t0!m* e2 ihg~ t2t0!E* ~ t !cosvtug&^Du,
~6!

J̃5eihA~ t2t0!D e2 ihD~ t2t0!uA&^Du

1eihD~ t2t0!D* e2 ihA~ t2t0!uD&^Au.

Hereu(t,t0) in Eq. ~5! is obviously defined as above. We ca
expand this evolution operator in the interaction picture a

u~ t,t0!5exp1H 2 i E
t0

t

dt@Ṽ~t!1 J̃~t!#J
512 i E

t0

t

dt@Ṽ~t!1 J̃~t!#

2E
t0

t

dtE
t0

t

dt8@Ṽ~t!Ṽ~t8!1Ṽ~t!J̃~t8!

1 J̃~t!Ṽ~t8!1 J̃~t!J̃~t8!#1••• . ~7!
J. Chem. Phys., Vol. 10
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By using the time-evolution operator we can now calculat
the transition probability in time. First consider the popula
tion at the donor state,

PD~ t !5^c0u^guexp2H i E
t0

t

dt H~t!J uD&^Du

3exp1H 2 i E
t0

t

dt H~t!J ug&uc0&

5^c0u^guu1~ t,t0!uD&^Duu~ t,t0!ug&uc0&, ~8!

where uc0& denotes the initial nuclear wave function on the
ground state in the thermal equilibrium. Thus the matrix el
ement of uc0& shown above is identical to trace over the
thermal bath degrees of freedom. Inserting Eq.~7! into Eq.
~8! we find the time-dependent population at the donor sta
is, perturbatively, given by

PD~ t !5
1

2
ReE

t0

t

dtE
t0

t

dt8 E* ~t!E~t8!

3^c0ueihgtm* e2 ihD~t2t8!m e2 ihgt8uc0&e
iv~t2t8!

1PD~m2D2,t !1O~m2D4!. ~9!

Here we invoked therotating wave approximation, which
assumes that terms oscillating with frequencies o
6(vDg1v) are ignored because integrals over those highl
oscillating function is negligibly small. The lowest order
contribution to the population of the donor state is obviously
induced by the optical excitation. The next higher order term
one should consider is proportional tom2D2, and its magni-
tude is exactly identical to the lowest order term for the
population of the acceptorPA(t) with opposite sign@see Eq.
~13!#. This is because the whole population is conserved
Because the acceptor is not radiatively coupled to the groun
state, the lowest order term contributing toPA(t) is also
proportional tom2D2. Here we should mention that we have
not considered spontaneous loss of donor population via r
diative or nonradiative channels except for the electron tran
fer process. In other words, we assume that the lifetime o
the donor state induced by other channel is sufficiently lon
compared to that induced by the electron transfer.

Changing the integration variable in Eq.~9! to
t15t2t8, we can rewrite the population of the donor state
as

PD~ t !5 1
2 ReE

2`

t

dtE
0

`

dt1 E* ~t!E~t2t1!

3^c0ueihgt1m* e2 ihDt1muc0&e
ivt1

1PD~m2D2,t !1O~m2D4!, ~10!

wheret052`. If we further assume that the pulse duration
time is sufficiently short enough to ignore any nuclear dy
namics, i.e., we assume thatE(t)5E0d(t) whereE0 is a
product of the pulse amplitude and its duration, then th
population of the donor state is simply given by

PD~ t !5 1
2uE0u2umu2u~ t !1PD~m2D2,t !1O~m2D4!, ~11!

whereu(t) is a step function.
3, No. 2, 8 July 1995
 license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Next consider the population of the acceptor state by
calculating the transition amplitude,

PA~ t !5^c0u^guexp2H i E
t0

t

dt H~t!J uA&

3^Auexp1H 2 i E
t0

t

dt H~t!J ug&uc0&. ~12!

Likewise, inserting the time-evolution operator into the
above equation, the lowest order term is given by

PA~ t !52 ReE
t0

t

dtE
t0

t

dt8E
t0

t

dTE
t0

T

dT8 E* ~t8!E~T8!

3cosvt8 cosvT8F~t,t8,T,T8!1O~m2D4!,

~13!

where

F~t,t8,T,T8![^c0ueihgt8m* eihD~t2t8!D e2 ihA~t2T!

3D e2 ihD~T2T8!m e2 ihgT8uc0&.

It is useful to rewrite Eq.~13! by using the following iden-
tities:

E
t0

t

dt85E
t0

T8
dt81E

T8

T

dt81E
T

t

dt8,

E
t0

T

dT8E
T8

T

dt85E
t0

T

dt8E
t0

t8
dT8,

and

E
T

t

dt8E
t0

t

dT5E
t0

t

dt8E
t0

t8
dT.

Then Eq.~13! can be written as

599M. Cho and R. J. Silbey: Photoinduced electron transfer
PA~ t !52 ReE
t0

t

dtE
t0

t

dTE
t0

T

dT8E
t0

T8
dt8 E* ~t8!E~T8!cosvt8 cosvT8F~t,t8,T,T8!

12 ReE
t0

t

dtE
t0

t

dTE
t0

T

dt8E
t0

t8
dT8 E* ~t8!E~T8!cosvt8 cosvT8F~t,t8,T,T8!

12 ReE
t0

t

dtE
t0

t

dt8E
t0

t8
dTE

t0

T

dT8 E* ~t8!E~T8!cosvt8 cosvT8F~t,t8,T,T8!1O~m2D4!. ~14!
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In comparison to Eq.~13!, there are time orderings of inte
gration variables in Eq.~14!. For example, the first and sec
ond terms contain two consecutive interactions with the e
ternal field to create a diagonal density matrix element on
donor state, and the remaining second-order perturbation
the electron exchange matrix elements create population
the acceptor state. On the other hand, the third term inclu
a different time ordering. The actions of external field pe
turbation and electron exchange perturbation are alte
Therefore,as long as the pulse duration time is sufficient
short compared to the time scale of the electron transfer ra
we can safely ignore the contribution from the third term
Eq. (14). It is worth mentioning that the latter contributio
has a complete analog in the nonlinear four-wave mixi
spectroscopies known as the coherent artifact.21 This phe-
nomenon is usually induced when the two laser pulses ov
J. Chem. Phys., Vol. 103
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lap in time so that there are mixed time ordering of the field
system interactions in the four-wave mixing spectroscopy22

In terms of four-wave mixing spectroscopic language, w
use an external laser pulse to pump the population of
ground state up to the donor state, and then probe the po
lation of the donor state by the second-order interaction w
the electron exchange perturbation. This is therefore m
closely related to the spontaneous fluorescence measure
where the probing step involves actions of the vacuum fie
operator which are not controlled by experimentalist. Lik
wise, one has no control on the action of electron exchan
perturbation in our ET problem either.

We now change the integration variables in Eq.~14! as
t1[T82t8 and t2[t2T in the first term andt1[t82T8
and t2[t2T in the second term, respectively, and also l
t052`. Equation~14! can be rewritten as
PA~ t !5
1

2
ReE

2`

t

dtE
0

`

dt2E
2`

t2t2
dT8E

0

`

dt1 E* ~T82t1!E~T8!e2 ivt1F~t,t85T82t1 ,T5t2t2 ,T8!

1
1

2
ReE

2`

t

dtE
0

`

dt2E
2`

t2t2
dt8E

0

`

dt1 E* ~t8!E~t82t1!e
ivt1F~t,t8,T5t2t2 ,T85t82t1!1O~m2D4!. ~15!
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600 M. Cho and R. J. Silbey: Photoinduced electron transfer
It should be noted that the two time periods,t1 and t2 , are
associated with the time evolutions of the off-diagonal d
sity matrix elements which are likely to be highly oscillatin
with frequencies determined by the energy differences
tween states. Therefore it is natural to evaluate the integ
over these highly oscillating periods by using the station
phase approximation. As mentioned before, it is assum
that the time profile of the external field is effectively a de
function,E(t)5E0d(t). With this approximation, we find

PA~ t !5uE0u2 ReE
0

t

dtE
0

t

dt2^c0um* eihDtD e2 ihAt2

3D eihDt2e2 ihDtmuc0&1O~m2D4!. ~16!

As a result of the ultrafast optical pulse, the same wa
packet,muc0&, is created on the donor state at time zero. Th
it propagates on the donor surface for timet. Defining the
nonequilibrium wave packets asuc(t)& [ e2 ihDtmuc0&, we
find the generalized Fermi–Golden rule expression includ
the nonequilibrium effect. This problem has recently be
discussed by Coalsonet al.,19 based on the approximation
of ~i! ignoring nuclear dynamics during the pulse durati
time and~ii ! ignoring the contribution from the mixed time
ordering term that is the third in Eq.~14!. Here we have
presented a rigorous basis for the nonequilibrium photo
duced electron transfer reaction.

C. Populations and cumulant approximation

We next calculate time-dependent population of the
nor state. The donor population created by the optical e
tation was calculated by considering the second-order t
with respect to the dipole matrix element@see Eq.~11!#. As
mentioned before, the next higher order term contributing
PD(t), which is proportional tom2D2, is identical to the
population of the acceptor state to this order except for
opposite sign, i.e.,PD(m

2D2,t)52PA(m
2D2,t). Therefore

the time-dependent population of the donor state is appr
mately given by PD(t)5PD(m

2,t)2PA(m
2D2,t)

1O(m2D4). Using these results, Eqs.~11! and~16!, we find
that the population of the donor state can be approxima
written by exponentiating the expression to find

PD~ t !> 1
2uE0u2umu2 expH 2E

0

t

dt kf~t!J , ~17!

where the forward rate kernel representing the transition
per unit time from donor to acceptor is

kf~t!5
2

umu2
ReE

0

t

dt2^c~t!uD e2 ihAt2D eihDt2uc~t!&.

~18!

It is possible to derive this equation more formally than
have done here, using the partial-ordering procedure~POP!23

and truncating at the second-order cumulant. This lead
the identical expression forPD(t). Here we assume that th
exothermicity of the electron transfer from donor to accep
is large enough to ignore the backward transition rate. Ho
ever as shown by the authors recently,24 it is a straightfor-
ward exercise to include the contribution from the backw
J. Chem. Phys., Vol. 10
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transfer process. Furthermore, the exponentiation approxim
tion we introduced is exact when we consider a second-or
cumulant approximation to the solution of the linear stocha
tic differential equation.24 However we will not pursue this
in this paper since here we only focus on the simple case
very large exothermic reaction to make the whole picture
simple as possible.

We now invoke theclassical Condon approximation that
the dipole operator and the electron exchange operator,m
and D, respectively, do not depend on the nuclear coord
nates. The forward transfer rate kernel, Eq.~18!, is then

kf~t!52 ReD2E
0

t

dt2^c
0~t!ue2 ihAt2eihDt2uc0~t!&,

~19!

where we defineuc0(t)& [ e2 ihDtuc0&. If we replace the
upper bound of the integration overt2 with `, we recover
Coalsonet al.’s result, termed the nonequilibrium Golden
rule formula@Eq. ~2-12! in Ref. 19#. We see that our deriva-
tion is useful in extending beyond the short-pulse approx
mation. Rewriting the nuclear Hamiltonians,hD andhA , in
the interaction representation with respect tohg we can re-
write the forward transfer rate kernel as

kf~t!52 ReD2E
0

t

dt2K exp2H i E
0

t

ds UDg~s!J
3exp1H 2 i E

t2t2

t

ds UAg~s!J
3exp1H 2 i E

0

t2t2
ds UDg~s!J L

3exp$2 i eADt22 ilAD
g t2%, ~20!

where the zero-centered difference potential is defined, in
interaction picture,

Umn~s!5eihgs~hm2hn2^hm2hn&!e2 ihgs

for m,n5g,D,A.

Here the angular bracket represents a thermal average o
the nuclear degrees of freedom in the equilibriumground
state. exp1~exp2! denotes positive~negative! time-ordered
exponential.eAD is the energy difference between the iso
lated acceptor and donor states,eAD5eAg2eDg . Because of
the system–bath interaction, from Eq.~3! the solvation ener-
gies of the donor and acceptor states are* dv rDg(v)v and
* dv rAg(v)v, respectively. In Eq.~20!, the corresponding
reorganization energy is given by

lAD
g 5^hA2hD&2eAD5E dv@rAg~v!2rDg~v!#v.

~21!

It should be noted that the reorganization energy~difference
in the solvation energies of the donor and acceptor state!,
lAD
g , is evaluated over the Hamiltonian of the ground sta

instead of that of the donor state—the superscriptg of lAD
g

means that the thermal average is carried out over the Ham
tonian of the ground state. We may expect that the reorga
3, No. 2, 8 July 1995
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601M. Cho and R. J. Silbey: Photoinduced electron transfer
zation energy approaches to that evaluated over the d
Hamiltonian as the nonequilibrium population created on
donor state by the optical excitation reaches its equilibri
state on the donor potential surface. It now turns out to
useful to rewrite various reorganization energies in terms
spectral densities defined in Eqs.~4!,

lDg
g 5E dv rDg~v!v, lAg

g 5E dv rAg~v!v,

lAD
D 5E dv rAD~v!v, and lAD

g 5lAg
g 2lDg

g . ~22!

Once again we emphasize that there are two different r
ganization energies,lAD

D andlAD
g , associated with the elec

tron transfer pair. Of the two, the former appears in the c
ventional electron transfer process since it is evaluated o
the equilibrium distribution of the donor nuclear degrees
freedom.

We next evaluate the nonlinear correlation functi
given in Eq.~20! by using the cumulant expansion meth
and truncating higher order terms than the second. The
ward transfer rate kernel is then

kf~t!52 ReD2E
0

t

dt2 exp$2 i eADt22 ilAD
g t22wAD~ t2!

1 i Im@wDg~t!1wAD~t!2wAg~t!#%

3exp$2 i Im@wDg~t2t2!1wAD~t2t2!

2wAg~t2t2!#%, ~23!

where

wmn~ t !5E
0

t

dtE
0

t

dt8^Umn~t!Umn~t8!&

52 ilmn
l t1E dv rmn~v!coth~bv/2!

3~12cosvt !1 i E dv rmn~v!sin vt, ~24!

wherel5g whenmn5Dg or Ag, andl5D whenmn5AD.
Note that we need to consider all three spectral densitie
completely describe the forward transfer rate kernel, wher
the equilibrium electron transfer rate is determined by
single spectral density,rAD(v). As can be seen in Eq.~23!,
the imaginary parts of the double integration of correlat
functions changes the phase of the integrand in Eq.~23!. As
the initial wave packet on the donor state propagates tow
an equilibrium position~potential minimum! on the donor
state, the reorganization energy associated with the elec
transfer changes in timet.

D. Stationary phase approximation (Laplace method)

Although Eq.~23! can be easily calculated numericall
we will invoke the stationary phase approximation to t
integral given in Eq.~23!. Since during the time period oft2
in the integrand of Eq.~23!, the whole integrand is highly
oscillating, it is suitable to take short-time expansion of t
J. Chem. Phys., Vol. 10
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exponent in the integrand with respect tot2 to find the sta-
tionary phase point.24 The integral, Eq.~23!, then reduces to

kf~t!52 ReD2E
0

t

dt2

3exp$2 1
2 ^UAD

2 &t2
22 i @eAD1lAD

g 2Q~t!#t2%,

~25!

where the time-dependent reorganization energyQ(t) is de-
fined in terms of three spectral densities,

Q~t!5E dv$rAg~v!2rAD~v!2rDg~v!%v~12cosvt!.

~26!

The mean square fluctuation amplitude^UAD
2 & is given by

^UAD
2 &5E dv rAD~v!coth~bv/2!v2. ~27!

A^UAD
2 & is a characteristic quantity representing the mag

tude of the bath fluctuation energy. As shown in the defi
tion, Eq.~27!, A^UAD

2 & is strongly dependent on temperatur
When the temperature is much larger than any harmonic
cillator energy, the mean square fluctuation amplitude is
rectly related to the reorganization energy a
^UAD

2 &>2kBTlAD
D . This limit is usually referred to the clas

sical or high temperature limit in the literature.12

When the mean square root fluctuation amplitude of t
coupled bath degrees of freedomA^UAD

2 & is much larger
than the time scale ofQ(t), we can approximately replace
the integration limit with` instead oft in Eq. ~25!. In this
case, we find

kf~t!5A 2p

^UAD
2 &

expH 2
@eAD1lAD

g 2Q~t!#2

2^UAD
2 & J . ~28!

This result is exceptionally simple. Note that Eq.~28! is
precisely of the same form with the Marcus’ expression f
an equilibrium electron transfer rate except that the reor
nization energy is replaced witht-dependent one,26 so we
shall refer this result asnonequilibrium generalization of the
Marcus ET rate constant. We also emphasize that Eq.~28!
includes the complicated multidimensional nature of the s
vation coordinate system via time-dependent functionQ(t)
which is in turn determined by the three spectral densiti
Thus we believe that we have accomplished our goal of
pressing the nonequilibrium ET rate kernel in terms of spe
tral densities.

If we relax the delta-function approximation to an opt
cal pulse envelope, we expect to see the time-depend
change of the Gaussian width in Eq.~28!. This is analogous
to the time-dependent change of the time-resolved fluor
cence width in liquid. We will discuss this case elsewhere

We next investigate some limiting cases of Eq.~28! to
give some insights and to check its consistency with oth
known results. Consider the case whent is very small~but
larger than the inverse ofA^UAD

2 &! so thatQ(t) is negligibly
small. In this case, the initial wave packet involved in th
electron transfer process does not have enough time to
3, No. 2, 8 July 1995
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602 M. Cho and R. J. Silbey: Photoinduced electron transfer
nificantly propagate on the donor surface, hence the co
sponding reorganization energy should be equal tolAD

g —this
is the solvation energy difference when the nuclear confi
ration of the bath coordinates is identical to that of the eq
librium distribution on the potential surface of the grou
state. As we allow the wave packet propagate on the do
potential energy surface for timet, the reorganization energ
changes in time bylAD

g 2Q(t). Finally for a long timet,
Q(t) approaches to an asymptotic value:

lim
t→`

Q~t!5lAD
g 2lAD

D .

In this long time limit, the relevant reorganization ener
reduces tolAD

D , which is the solvation energy differenc
evaluated over the equilibrium distribution of the bath d
grees of freedom on the donor surface not the potential
face of the ground state. This can be understood simply:
such a long timet, the wavepacket created on the don
surface reaches thermal equilibrium on the donor surfac
that there is a constant rate of leaking of the donor pop
tion into the acceptor surface by the second-order elec
transfer mechanism. Thus we have shown that the gen
ized result, Eq.~28!, reaches the known equilibrium valu
~Marcus expression! after the relaxation time on the dono
surface.

Finally it should be noted that as temperature decrea
the stationary phase approximation used in this section
comes invalid, since the short-time approximation by
Gaussian@see Eq.~25!# is not reliable. In case of the low
temperature regime, we should use Eq.~23! to calculate the
nonequilibrium ET rate kernel instead of Eq.~28!, even
though Eq.~23! contains an undesirable additional integr
tion.

E. Further simplification: Two orthogonal solvation
coordinates

Our results, Eqs.~17! with ~28!, are valid regardless o
the shapes and magnitudes of the three spectral densitie
other words, those results can be applied to multidimensio
situations by inserting appropriate forms for the three sp
tral densities. We cannot, in general, obtain two orthogo
solvation coordinates to fully describe the three-state syst
since there is no simple way to include the complicated cr
correlation effect. However it will still be useful to extrac
two orthogonal coordinates to simplify the whole pictur
Particularly, when we assume that the functional forms of
three spectral densities are the same, we may find two
thogonal solvation coordinates representing multidim
sional bath fluctuations. This is because the potential en
surfaces associated with the three states can be describ
two-dimensional harmonic wells with same curvatures.
explain the procedure of finding two orthogonal coordina
below.

When we used interaction representations of the do
and acceptor nuclear Hamiltonians in Eq.~20!, we consid-
ered three time-dependent difference potentia
UDg(t),UAD(t), andUAg(t), which are all collective coordi-
nates. Among the three variables,UAD(t) is directly related
to the electron transfer betweenuD& and uA&, so we will
J. Chem. Phys., Vol. 10
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chooseUAD(t) as the primary coordinate,q1 . Now there are
two remaining variables,UDg(t) andUAg(t), but from the
definition UAg(t)5UAD(t)1UDg(t), only one is indepen-
dent. Therefore, we can choose eitherUDg(t) or UAg(t) as
the other coordinate. We takeUDg(t), since this variable is
directly responsible for the spectroscopic broadening effect
Although there are two representative coordinates,UAD(t)
andUDg(t), these two are not orthogonal to each other. Thu
we use Schmidt orthogonalization method to obtain two or
thogonal coordinates. We consider

q1[UAD~ t !,
~29!

q2[UDg~ t !1gUAD~ t !.

Here we should determineg satisfying^q1q2&50. By insert-
ing UAg(t)5UAD(t)1UDg(t) and using the fact that
^UADUDg&5 1

2(^UAg
2 &2^UAD

2 &2^UDg
2 &), we find

g5
^UAD

2 &1^UDg
2 &2^UAg

2 &

2^UAD
2 &

. ~30!

This quantity is fully determined by the mean square fluc
tuation amplitudes. In order to obtain Eq.~30!, we try to
make q1(t) and q2(t8) orthogonal to each other at equal
time, t5t8. Here the approximation we introduce is that
^q1(t)q2(t8)&>0 for all t and t8, which we shall refer as
orthogonalization approximation. In terms of the two or-
thogonal coordinates we can rewrite the three difference p
tentials as UAg5(12g)q11q2 , UDg52gq11q2 , and
UAD5q1 . Inserting these into Eq.~23! and using the or-
thogonal property of the two coordinatesq1 and q2 , the
time-dependent rate kernel can be recast in the form

kf~t!52 ReD2E
0

t

dt2 exp$2 i eADt22 ilAD
g t22wAD~ t2!

12ig Im@wAD~t!2wAD~t2t2!#%. ~31!

By introducing the orthogonality approximation discussed
above the resulting formula becomes dependent on one c
relation function,wAD(t). Furthermore by applying the sta-
tionary phase approximation to the integral and replacing th
integration limit with infinity, we find that the nonequilib-
rium rate kernel becomes

kf~t!5A 2p

^UAD
2 &

expH 2
@eAD1lAD

g 12gQAD~t!#2

2^UAD
2 & J ,

~32!

where

QAD~t!5E dv rAD~v!v~12cosvt!. ~33!

As can be seen in Eq.~32!, the factorg plays a critical role in
determining the magnitude of the nonequilibrium rate kerne
As we will show in the following section, this factor is a
sensitive function of the dimensionality of the solvation co-
ordinates.

As briefly discussed in the Introduction, since we have t
deal with three states, we have found that the multidimen
sional solvation coordinate system can be reduced to a tw
3, No. 2, 8 July 1995
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603M. Cho and R. J. Silbey: Photoinduced electron transfer
dimensional one by using the Schmidt orthogonalizat
method. We next show the importance of the dimensiona
of the solvation coordinate system.

F. Dimensionality of solvation coordinate system

Although we showed that the two orthogonal coor
nates can be extracted from the general multidimensio
coordinate system, we have not discussed the possible im
cation of the two dimensionality of the solvation coordina
system. One of the questions arising immediately is that h
large the fluctuation amplitudes of the two solvation coor
nates we chose are. Particularly, these quantities are im
tant in determining the probability of finding nuclear co
figuration maximizing the Franck–Condon overlap for ET

As we shall show later it is useful to introduce a dime
sional parameter,u, defined by

^UAg
2 &5^UAD

2 &1^UDg
2 &22A^UAD

2 &^UDg
2 & cosu. ~34!

This relationship among the mean square fluctuation am
tudes can be viewed as a triangle with three sides
A^UAg

2 &, A^UAD
2 &, andA^UDg

2 &. The angle between the tw
sides,A^UDg

2 & andA^UAD
2 &, is the dimensionality paramete

u. The width of theq1 distribution is determined by the
square root of mean square fluctuation amplitude ofUAD ,
that is to say,̂ q1

2&5^UAD
2 &. The mean square fluctuatio

amplitude ofq2 is written, in terms of the dimensionalit
parameteru, by

A^q2
2&5A^UDg

2 &usin uu. ~35!

Although onlyA^UDg
2 & appears in Eq.~35!, the square root

of the mean square fluctuation amplitude ofq2 is determined
by all three quantities,A^UDg

2 &, A^UAD
2 &, andA^UAg

2 &.
In case wheng50 or equivalentlyu5p/2, ^q2

2& is solely
determined bŷ UDg

2 &, therefore the two fluctuating coord
nates,UDg(t) and UAD(t), are orthogonal to each othe
Consequently, fluctuations ofUDg(t), which is associated
with optical broadening effect and relaxation of the noneq
librium wave packet on the donor surface, do not affect
electron transfer rate associated with fluctuations ofUAD(t).
That is, nonequilibrium preparation of the nuclear wa
packet on the donor surface does not affect to the ET rat
all. On the other hand, whenu is equal to 0 orp, the solva-
tion coordinate system is in one-dimensional situation, tha
to say, we need only one solvation coordinate in order
describe both the optical excitation and the electron trans
In this one-dimensional limit, the fluctuation amplitude alo
theq2 axis is zero, as can be seen in Eq.~35!, so that we can
justify that a one-dimensional solvation coordinate can fu
describe both optical transition and electron transfer. The
ference between the two cases,u50 andu5p, is the align-
ment of the potential energy surfaces in the one-dimensio
solvation coordinate system~see Fig. 1!.

As can be seen in Eq.~35!, the mean square fluctuatio
amplitude ofq2 is determined by a projection of the mea
square fluctuation amplitude ofUDg(t). This can be reinter-
preted by noting that the projection ofA^UDg

2 & onto the pri-
mary coordinate,q1 , is determined byA^UDg

2 &ucosuu. There-
fore, whenu5p/2, there is no projection of theUDg(t) onto
J. Chem. Phys., Vol. 10
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the solvation coordinate associated with ET so that there
no effect of fluctuations ofUDg(t) on ET rate kernel. On the
other hand, whenu50 or p, there are maximum influences
of nonequilibrium preparation on the ET process.

IV. NUMERICAL CALCULATIONS

In this section we present numerical calculations of th
time-dependent populations and rate kernel for various situ
ations. In order to calculate these quantities we need to d
fine the spectral densities. The spectral densities are assum
to be the following form:

r~v!5hv3 exp~2v/vc!. ~36!

h’s associated with each spectral density are determined
the classical reorganization energies we use. For the sake
simplicity we will consider the classical~high temperature!
limit only where the mean square fluctuation amplitude is
proportional to the classical reorganization energy b
^UAD

2 &52lAD
D kBT for example. Therefore, from Eq.~34!,

there is a relationship among the three classical reorganiz
tion energies,

lAg
g 5lAD

D 1lDg
g 22AlAD

D lDg
g cosu. ~37!

We will consider that the two among the three reorganizatio
energies are given and the remaining one is determined
the relationship given above.

We first calculate the time-dependent rate kernel, Eq
~28! with spectral densities of the same form defined in Eq
~36! with vc510 cm21. The electron exchange matrix ele-
ment is assumed to be 30 cm21, throughout the numerical
calculations. Two reorganization energies,lDg

g andlAD
D are

1000 and 200 cm21, respectively. The remaining reorganiza-
tion energy,lAg

g , should be calculated from Eq.~37! when
we specify the dimensionality~u! of the system. The energy
gap (eAD) between the isolated acceptor and donor is2500
cm21. SinceeAD1lAD

D ,0, potential surfaces of the electron
transfer pair are in the so-called inverted regime~see Fig. 3!.
We now present the time-dependent rate kernel, Eq.~28!, in
Fig. 4~a!. The dashed curve corresponds to the case ofu50

FIG. 3. Two cases of potential surfaces in the one-dimensional solvatio
coordinate system.~a! and ~b! correspond tou50 andp, respectively. See
figure caption of Fig. 1 for the stepwise explanation.
3, No. 2, 8 July 1995
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604 M. Cho and R. J. Silbey: Photoinduced electron transfer
@see Fig. 3~a!#. Since this is a one-dimensional case, we c
draw the three potential surfaces with respect to a sin
coordinate. The nonequilibrium nuclear wave packet crea
on the donor surface tends to relax down to the minimum
the donor surface. The distance between the center of
nonequilibrium wave packet and the exit channel~curve
crossing point between the donor and acceptor surfaces! be-
comes closer as time increases~it should be noted that the
distance we have mentioned here should be considered a
magnitude of the time-dependent reorganization energy,
should not be confused with the real distance!. Therefore we
expect that the time-dependent rate kernel increases in
and reaches its limiting value shown by the plateau in F
4~a!. On the other hand, whenu5p, even though this is also
a one-dimensional case, the position of the minimum of
ground state is different from that foru50 @see Fig. 3~b!#.
Again the center of the nonequilibrium wave packet pro
gates on the donor surface to reach an equilibrium value.
a short time~0,t,0.8 ps!, the center of the nonequilibrium

FIG. 4. ~a! Time-dependent ET rate kernels, Eq.~28!, are calculated for
three cases whenu50 ~dashed curve!, p/2 ~solid curve!, and p ~dotted
curve!. ~b! Donor populations are calculated foru50 ~dashed curve!, p/2
~solid curve!, andp ~dotted curve!. ~c! Semilogarithmic plots of the dono
populations are shown. The spectral densities are given by Eq.~36! with
vc510 cm21. h’s associated with each spectral density are determined
the classical reorganization energies from the definitions in Eq.~22!.
lAD5200 cm21 and lDg51000 cm21. lAg is determined by using the
relationship among the three classical reorganization energies@see Eq.~37!#.
In this case,lAg for u50, p/2, andp are 305.6, 1200, and 2094.4 cm21,
respectively.eAD52500 cm21. T5300 K.
J. Chem. Phys., Vol. 10
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wave packet becomes closer to the exit channel. After
reaches the center of the exit channel, the distance betw
the center of the nonequilibrium wave packet and the e
channel increases so that the rate kernel decreases towa
limiting value @see dotted curves in Fig. 4~a!#. As the third
example, we consider the case ofu5p/2. We cannot draw
three potential surfaces as Fig. 3, because the two dimens
ality of potential surfaces are important~refer to Fig. 2, even
though Fig. 2 is not precisely the relevant one!. As we men-
tioned before, ifu5p/2, the two solvation coordinates asso
ciated with optical transition~as well as relaxation of the
nonequilibrium wave packet! and electron transfer are or-
thogonal so that there is no effect of nonequilibrium prep
ration of the donor population on the electron transfer ra
Therefore, the rate kernel, in this case, is a constant a
identical to the equilibrium value@solid curve in Fig. 4~a!#.

With the time-dependent rate kernels calculated abo
@shown in Fig. 4~a!#, we calculate the donor populations in
time. We normalize the initial donor population to be unity
The solid curve in Fig. 4~b! is corresponding to the case o
u5p/2. Since the ET rate kernel is constant, the donor pop
lation is a simple exponential function with respect to time
If we assume that the relaxation of the nonequilibrium wav
packet can be ignored, we expect that the donor populat
decays as the solid curve. The dashed curve is correspond
to the case ofu50. Because the magnitude of the rate kern
is small compared to the equilibrium value as shown by t
dashed curve in Fig. 4~a!, the donor population decrease
very slowly for short time~0,t,2 ps!. As time increases,
the exponential decaying pattern is recovered. Foru5p, the
donor population@dotted curve in Fig. 4~b!# decays faster
than the equilibrium case~or the case ofu5p/2!. This can be
understood that the associated rate kernel@dotted curve in
Fig. 4~a!# becomes larger than the equilibrium value afte
500 fs. Finally we present, in Fig. 4~c!, semilogarithmic plots
of donor populations to show nonexponential decaying p
terns when the nuclear wave packet is in nonequilibriu
situation.

In Fig. 5, we present similar numerical results exce
that the classical reorganization energies,lDg

g andlAD
D , are

200 and 2000 cm21, respectively. SinceeAD1lAD
D .0, this

corresponds to the normal regime~see Fig. 1!. In Fig. 5~a!,
the time-dependent rate kernels foru50, p/2, andp, are
shown by dashed, solid, and dotted curves, respectively.
can be seen in the potential surfaces in Fig. 1~a!, we can
understand the time dependence of the rate kernels foru50
and p. In both cases, the limiting values approach to th
equilibrium value, which is also identical to the rate kerne
for u5p/2. Donor populations in time for the three cases a
shown in Fig. 5~b!. Also we find strong nonexponential pat
terns for short time~less than 2 ps!. Semilogarithmic plots
are shown in Fig. 5~c!. Particularly, the decaying pattern
@dashed curve in Fig. 5~c!# of u50 can be viewed as a double
exponential with both fast and slow ones. We note that th
behavior—initially the donor population decays quickly an
then follows a slow exponential decay—has not been seen
Coalsonet al.’s computer simulation studies. This is becaus
they did not fully consider multidimensional aspect of th
potential surfaces explicitly. The slow part of the decay
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605M. Cho and R. J. Silbey: Photoinduced electron transfer
therefore related to the equilibrium ET rate constant, wher
the fast part of the decay is induced by the relaxation of
nonequilibrium wave packet on the donor surface.

In this section, although we presented very limited cas
in the wide parameter space, we found that the result
decaying patterns of donor populations in time are shown
be very sensitive with respect to the nonequilibrium natu
of the photoinduced initiation of the ET in condensed med
Since the optical excitation step can be studied by vario
linear and nonlinear spectroscopic measurements, one
get detailed information on the mean square fluctuation a
plitude, ^UDg

2 &, which is in turn related to the classical reo
ganization energy,lDg

g . More specifically, the classical reor
ganization energy is approximately equal to the twice of t
fluorescence Stokes shift. Thus half of the inputs we ne
can be obtained via spectroscopic measurements. Still we
suffering from the lack of direct experimental methods
obtain the mean square fluctuation amplitude directly asso
ated with the electron transfer. These parameters can be
principle, obtained by plotting equilibrium rate constan

FIG. 5. Similar plots are shown except that the two reorganization ener
lAD andlAD are assumed to be 2000 and 200 cm21, respectively. Conse-
quently, the remaining reorganization energies,lAg , for u50,p/2, andp are
935.1, 2200, and 3464.9 cm21, respectively. All the other parameters are th
same with Fig. 4.~a! Time-dependent ET rate kernels, using Eq.~28!, are
calculated whenu50 ~dashed curve!, p/2 ~solid curve!, and p ~dotted
curve!. ~b! Donor populations are calculated whenu50 ~dashed curve!, p/2
~solid curve!, andp ~dotted curve!. ~c! Semilogarithmic plots of the donor
populations are shown. Dashed, solid and dotted curves correspond tou50,
p/2, andp, respectively.
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~our long-time exponential decay constant! with respect to
the isolated~free! energy gaps.

As shown conclusively in our model calculations, th
short-time nonexponential decay of the donor population c
be attributed to the nonequilibrium nature of the initia
preparation of donor population by an ultrafast optical puls
Both patterns, quick decay followed by slow exponential d
cay as well as slow decay followed by fast exponential d
cay, can be found in the photoinduced ET and are depend
on the multidimensional potential surfaces.

V. SUMMARY

In this paper, we presented a theoretical description
the photoinduced ET process in condensed media. Assum
that the bath consists of harmonic oscillators and that tho
harmonic modes are linearly coupled to the three states,
formulated the time-dependent ET rate kernel including no
equilibrium features of optical preparation of donor popula
tion. We assumed that the ultrafast laser pulse is sh
enough to ignore any electron transfer during the pulse d
ration time. In this case we can obtain a generalized expr
sion for the nonadiabatic ET rate kernel that is identical
that discussed by Coalsonet al.19 We further applied a sta-
tionary phase approximation within the cumulant metho
We finally found a simple and interesting generalization
the Marcus expression of ET rate kernel, where the noneq
librium nature is included via the time-dependent reorgan
zation energy. In order to fully understand the nonequilib
rium nature of the photoinduced ET, we discusse
multidimensional aspects of the solvation coordinate syste
In some limiting case we found that two orthogonal coord
nates can be obtained by using the Schmidt orthogonali
tion method.

We believe that there are many directions to extend o
work. One is to consider a finite pulse duration effect. In th
case we cannot simply ignore the fully coherent contributio
where the time ordering is mixed. Furthermore, the propag
tion of the initial wave packet on the donor surface durin
the pulse duration time could be important if the relaxatio
time is comparable to the time scale of the pulse durati
time. Another generalization is to develop either a full
phase space picture~e.g., Wigner distribution function! with
two orthogonal coordinates and two conjugate momenta,
coordinate space picture with two coordinates. Then, the
rate kernel should be given by an integral of the distributio
functions over the phase space or over coordinate space.
picture emerging from these procedures show clearly that
conditional probability of finding the overlap between th
distribution functions associated with the nonequilibrium
wave packet and with the exit channel is directly propo
tional to the time-dependent ET rate kernel we discussed
this paper. Finally, in this paper, we have not specifical
studied the effects of molecular vibrations on the dynamic
Formally, we can proceed in much the same spirit as abo
to take these effects into account.
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