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Abstract

We describe a theoretical framework capable of calculating optimal control fields for systems with arbitrary linear and
quadratic potentials governing the nuclear degrees of freedom. Application of this method to various test cases demonstrates

Ž .that quadratic coupling between the nuclear and electronic degrees of freedom can lead to large changes relative to models
with only linear coupling. q 1998 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

It is a long-standing goal of physical chemists to be able to influence chemistry by the application of
w x w xspecially designed radiation fields. Recent work, both experimental 1–7 and theoretical 8–12 , has demon-

strated that it is indeed possible to drive molecules toward a desired goal with laser fields. Introductions to the
w xcurrent state of progress in the field can be found in the recent reviews by Wilson and co-workers 6 and Zare

w x16 and the references therein. Without indulging in an extensive review ourselves, we comment that it would
probably be unrealistic to describe the recent successes of quantum control as more than modest achievements.

ŽExperimentally, it has been difficult to achieve control for all but the simplest systems small gas phase
.molecules and although theoretical models may be a bit more advanced, they too are limited in scope because

of the inherent difficulty in modeling many dimensional quantum mechanical systems. It seems clear that, for
quantum control to develop into a practical science, advances will have to be made both experimentally and
theoretically.

There are two possible approximate approaches one can take in attempting to model quantum systems with
many degrees of freedom. In the first approach, a realistic Hamiltonian for the system of interest is employed
and the dynamics are calculated by some approximate scheme. In the context of quantum control, a number of

w xsuch approximate propagation schemes have been employed including: Gaussian wave packet 13,14 , time-de-
w x w x w xpendent Hartree 15 , nearly classical 11 and stochastic bath 12 methods. In the second approach, an

Ž .approximate Hamiltonian is adopted for which the dynamics may be solved exactly i.e. quadratic potentials .
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w xThis approach has recently been pursued by Cao et al. 17 to study the problem of quantum control for a single
degree of freedom coupled to a Gaussian bath. This Letter will extend the work of Cao et al. to cover the case of

w xcompletely arbitrary linear and quadratic potentials via the matrix method of Balian and Brezin 2 . The
formalism is quite general and has the potential to be applied to a variety of interesting control problems
including the control of large molecules and control of systems in condensed phases. In the present work we
consider several test cases in order to demonstrate the validity of the method. Possible extensions of these
preliminary results will be discussed.

The organization of this article will be as follows. Section 2 will outline the theoretical framework for our
model of quantum control. Section 3 will detail and comment upon results we have obtained by applying this
model to some simple test cases. In Section 4 we will conclude with a discussion elaborating upon the
possibilities for extension of this work.

2. Weak field control in the limit of harmonic and linear potentials

w xAs in previous studies 11,12 , we adopt the following simplified model to study the problem of quantum
control. The system we desire to influence is described by a Hamiltonian

< :² < < :² <H sH g g q H qv e e 1Ž .Ž .s g e eg

< : < :comprised of two electronic states g and e and a number of nuclear degrees of freedom whose dynamics are
governed by the adiabatic Hamiltonians H and H depending upon the electronic state of the system. v , theg e eg

energy separation between the lowest nuclear eigenstate for the excited and ground electronic states, is taken to
be much larger than any of the frequencies associated with nuclear motion. Coupling to the radiation field is
achieved through a dipolar interaction of the form

H sym´ t . 2Ž . Ž .ˆint

< :² < < :² <For simplicity, the field is treated classically and the dipole operator is taken to be msm g e q e g ,Ž .ˆ
with m a constant, so that the dipole moment is independent of the configuration of the nuclear degrees of

Ž .freedom Condon approximation . We choose to write the field

´ t 'E t eyi v eg t qE) t ei v eg t 3Ž . Ž . Ž . Ž .

in order to explicitly separate the high frequency, eyi v eg t ‘carrier’, component of the field from the remainingŽ .
Ž .slowly varying portion, E t , which will contain the information pertinent to control. Within the rotating wave

Ž . w xapproximation RWA 18 , the system’s dynamics are dictated by the Hamiltonian

< :² < < :² < < :² < < :² < )H t s g g H q e e H ym g e E t q e g E t 4Ž . Ž . Ž . Ž .Ž .g e

Ž .when a field is present and it is our goal to find the field, E t , which best promotes the achievement of some
configuration of the system at a set time, t .f

w xFollowing the lead of previous efforts 12,11 , we define our control goal as the maximal realization of some
target operator, denoted A, at the time t . Mathematically, this translates to maximizing the expectation valuef

A t 'Tr Ar t 5Ž .� 4Ž . Ž .f f

Ž .with respect to all possible control fields E t . For concreteness, we mention that the operator A will eventually
be taken to be a gaussian wave packet on the excited electronic manifold in our analysis although, to this point,
there is no need to restrict A to any form. In the limit of weak applied fields, it is well known how to calculate
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Ž . Ž . w xthe field, E t , which maximizes the expectation, A t 11,12 . When A is purely excited in electronicf

character, the optimal field will satisfy the integral equation

t f
lE t s dt M t ,t E t 6Ž . Ž . Ž . Ž .H

0

with

M t ,t sm2 Tr A eyi HeŽ t fyt 2 . eyi Hg t2r 0 ei Hg t1 ei HeŽ t fyt 1. . 7Ž . Ž . Ž .� 41 2 e

The subscript, ‘e’ has been appended to A to remind us that the target is on the excited state surface. For
calculational purposes, it is more convenient to think in terms of a discretized time representation which allows

Ž .Eq. 6 to be recast as an eigenvalue equation

lE sD M E 8Ž .i i j j

with

E 'E tŽ .i i

M 'M t ,t 9Ž . Ž .i j i j

D' t y tiq1 i

and it is to be understood that the timepoints, t , are equally spaced. Within this picture, the eigenvalue, l, isi

given by:

A tŽ .f
ls 10Ž .

t f 2< <d t E tŽ .H
0

so that we know which eigenvector corresponds to the globally optimal field. The eigenvector corresponding to
Ž .the largest eigenvalue, l, of M maximizes the value of A t and represents the optimal field.i j f

Ž . Ž . Ž .Eqs. 7 , 8 and 10 summarize the results for weak field control with a target operator on the excited state
Ž . Ž Ž ..surface. To compute the optimal E t one has only to evaluate the response function M Eq. 7 at a number of

Ž Ž ..points corresponding to the chosen time discretization and diagonalize the resulting matrix, M Eq. 9 . Thei j
Ž .field most capable of producing the desired target will be in the discretized limit the eigenvector of Mi j

Ž Ž ..corresponding to the largest eigenvalue l Eq. 8 . Furthermore, we define the yield of this field to be the
Ž . Ž .eigenvalue, l, which is related to A t by Eq. 10 . This yield is assumed to be an adequate measure of thee f

Ž .achievement of our goal target .
We stress that to this point no assumptions have been made as to the forms of H and H and that theg e

w xpreceding discussion has really just been a review of well-known weak field control theory 12,11 . Although
Ž .the matrix formulation of Eq. 8 represents a considerable simplification over theories of control in the strong

w x Ž .field limit 12 , it remains a non-trivial matter to compute the optimal E t . The difficulty arises in the
computation of the matrix M . For systems with many degrees of freedom and complicated potential surfaces,i j

Žexact computation of the elements of M becomes an impossibility and approximate propagation schemes seei j
.Section 1 for a few possibilities need to be implemented. We circumvent this difficulty by taking our potentials

to be linear and quadratic functions of our coordinate degrees of freedom. Given a system with N degrees of
freedom we are free to write the Hamiltonian in terms of the creation and annihilation operators

1 m v 1i i
a s q q i pˆ ˆ(i i i(' ž /" m v "2 i i

11Ž .
1 m v 1i i†a s q y i pˆ ˆ(i i i(' ž /" m v "2 i i
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with i ranging from 1 to N. Our restriction to linear and quadratic potentials then translates to allowing only
Hamiltonians with terms up to second order in the operators a and a†.i j

Consider the vector of operators

a' a , PPP , a , a† , PPP , a† . 12Ž .Ž .1 N 1 N

For Hamiltonians of the form which we are discussing it is possible to write

1Hs aSaqltaqc 13Ž .2

˜Ž .where S is a symmetric Hermiticity requires SsS 2 N=2 N matrix, l is a 2 N dimensional vector, c is a
constant and the 2 N=2 N matrix t is given by

0 1
ts . 14Ž .ž /y1 0

The matrix method of Balian and Brezin makes it possible to compute

� A B C 4Tr e e e PPP , 15Ž .
Ž . w xwhere A, B,C, . . . are all operators of the form Eq. 13 23,24 . Without proof, we provide here a general

Ž .formula for the multiplication of two exponentiated operators of the form Eq. 13 into a single such operator
and a formula for taking the trace of a single operator of the same form. Given this machinery, it is clear that

Ž .extension to Eq. 15 will follow immediately. Multiplication is accomplished via the following product law:

1 1 1a S aql t a a S aql t a a Saqlt aqna a b b2 2 2e e s e 16Ž .

where

et S s et Sa et Sb

t S yt Sa bt S e y1 t S 1ye
ls l q la bt S yt St S t Se y1 1yea b

sinh t S yt S sinh t S yt Sa a b b1 1 17Ž .
ns l t l q l t la a b b2 22 2

t S t SŽ . Ž .a b

t S t Sa bsinh t Syt S e y1 e y1
1 1y lt lq l t la b2 22 t S t St SŽ . a b

w x w xwhich is justified in the paper by Balian and Brezin 23 . The formula for the trace, given by Friesner et al. 24 ,
is

y1r21 1 y1 Na Saqlt a lt S t l t S2 2� 4Tr e se y1 det e y1 . 18Ž . Ž . Ž .

The formulas of the preceding paragraph will prove useful in the computation of M if, in addition to thei j
Ž . Ž .Hamiltonians H and H being of the form 13 , the zero time density matrix, r 0 , and the target operator, Ag e e

Ž .are expressible as exponentiated quadratic operators. We will always take r 0 to be the thermally equilibrated
density matrix for the system in the ground electronic state

eyb Hg

r 0 sr s 19Ž . Ž .eq yb Hg� 4Tr e
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w xwhich clearly adheres to the required form. To make contact with previous work 12,11,17 , we will take our
w xtarget operator, A , to be a gaussian wave packet in the Wigner Representation 22e

2 21 qyq pypŽ . Ž .c c
A q , p s exp y y . 20Ž . Ž .e 2W 2W2p W W( q pp q

It is possible to associate with such a wave packet the operator

2 2g "v pyp mvŽ .ˆA c A 2
A s2 sinh exp yg q qyq 21Ž .Ž .ˆe cž / ž /2 2m 2

where g and v may be thought of as the inverse temperature and frequency associated with a fictitiousA
w xoscillator whose equilibrium density matrix serves as our target for control 26 . The values of these fictitious

parameters depend upon the widths of the wavepacket in the following manner:

Wp
v sA 2(W mq

22Ž .
22m W "q y1gs tanh .)(" W 4W W� 0p p q

For convenience, the mass of the fictitious oscillator is taken to be the same as that of the real oscillator in the
Ž .problem. Examination of Eq. 21 confirms that our target adheres to the required form as well.

Ž Ž ..In looking at M Eq. 7 we realize that it is nothing more than a trace over many exponentiated operators of
Ž .the form 13 and thus the Balian and Brezin techniques give us a simple method for its calculation. Given M,

the calculation of E requires only the comparatively simple diagonalization of a matrix. Further comments on
the implementation of this formalism as well as several examples will be provided in the following sections.

3. Results and discussion

The results of the preceding section lay a general framework for the calculation of optimal control fields,
within the limitations previously discussed. In order to demonstrate the utility of our formulation we will
examine several test cases. We begin in Section 3.1 by examining the case of a single harmonic mode coupled
to the electronic transition. Section 3.2 will consider the effects of coupling other modes to this primary mode as
a model for dissipative dynamics.

3.1. Control with a single harmonic mode

A single mode of frequency v in the ground electronic state and frequency v in the excited state will serveg e

as our paradigm for weak field control. In addition to the frequency shift upon excitation, the minima of the
Ž .excited state potential will also be shifted relative to the ground state by an amount d see Fig. 1 . For our

Ž Ž ..target, we take the gaussian wave packet corresponding to the harmonic oscillator density matrix Eq. 21
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Fig. 1. A qualitative sketch of quantum control for our simple model. The two harmonic potentials are shifted by d relative to each other
and in general have different frequencies in the ground and excited state. The energy, E , is the difference in frequencies between theeg

lowest vibrational eigenstate in each of the two electronic states.

centered at q s2 d and p s0with the inverse ‘temperature’ g and frequency v . The Hamiltonians, H andc c A g

H , and the pseudo-Hamiltonian, H , given bye A

p2 mv 2ˆ g 2H s q q̂g 2m 2
2 2p mvˆ e 2 23Ž .H s q qydŽ .ˆe 2m 2
2 2p mvˆ A 2H s q qy2 d ,Ž .ˆA 2m 2

Ž Ž ..conveniently serve to express the response function, M Eq. 7 as

� yg HA yi Ž t fyt 2 .He yw byiŽ t1yt 2 .x Hg iŽ t fyt 1.He4M t ,t sN Tr e e e eŽ .1 2
24Ž .2Ns4m sinh b "v r2 sinh g "v r2 .Ž .Ž .g A

Ž Ž ..To make explicit contact with the notation of the previous section, we note that the Hamiltonians Eq. 23
may be written in the form

1Hs a Saqltaqn 25Ž .2

Ž †. †where a' a,a with a and a taken to be the creation and annihilation operators for the ground state
Hamiltonian such that

1†H s a aq "v . 26Ž .Ž .g g2
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The relevant matrices, vectors and constants are:

0 "vg
S s ;l s 0,0 ; n s0Ž .g g g"v 0ž /g

" "
2 2 2 2v yv "v q v yvŽ . Ž .e g g e g2v 2vg g

S se " "
2 2 2 2

"v q v yv v yvŽ . Ž .� 0g e g e g2v 2vg g

2 2
"m mv de2l s v d y1,1 ; n sŽ . 27Ž .e e e(2v 2g

" "
2 2 2 2v yv "v q v yvŽ . Ž .A g g A g2v 2vg g

S sA " "
2 2 2 2

"v q v yv v yvŽ . Ž .� 0g A g A g2v 2vg g

"m
2 2 2l s v d y2,2 ; n s2mv dŽ .A A A A(2vg

Ž . Ž Ž .as may be verified by the rewriting of Eq. 23 in terms of creation and annihilation operators Eq. 11 with
.v sv . Although it would be possible to proceed analytically, since our matrices are of dimension two, thei g

resulting formulae will be complicated and not particularly insightful as can be seen for the linearly displaced
w xoscillator model studied by Yan et al. 12 . Instead, we opt for numerical calculation of M via repeated

Ž . Ž .application of Eq. 16 followed by use of formula 18 to evaluate the trace. The only inconvenience of our
Ž .formalism stems from the square root in Eq. 18 . As it is unclear which branch to select for given t and t , we1 2

are forced to analytically continue our results from the point t s t s0 in the manner described by Friesner et1 2
w xal. 24 .

w xWe have verified 26 that in the limit of v sv the method just described gives results identical to thoseg e
w xpreviously obtained 11 . In addition, however, our method allows for the computation of optimal fields when

v /v . To demonstrate the importance of quadratic coupling we consider a model with a relatively simpleg e
Žcoordinate system consisting of: ms1, bs1, ds5, t s5, ms1 and gs6.91 g value corresponds tof

Ž .W sW s0.501 in Eq. 20 and a density operator corresponding to better than 99.9% ground state occupationp q
.— for all practical purposes this value of g gives rise to a minimum uncertainty target . The values taken for

the ground, excited and target frequencies will be varied between 0.8 and 1.2. Table 1 lists the yields for several

Table 1
Ž Ž ..Yields Eq. 10 for various combinations of harmonic frequencies

v v v Yieldg e A

1.0 1.0 1.0 0.3243
1.0 1.0 0.8 0.3045
1.0 1.0 1.2 0.3391
1.0 0.8 1.0 0.5041
1.0 1.2 1.0 0.2257
0.8 1.0 1.0 0.2711
1.2 1.0 1.0 0.3708
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different v , v and v combinations. All other parameters are the same as previously discussed. The time, t ,g e A f

is short enough to insure that our optimal field profile consists of a single pulse so that we need not be
w xconcerned with coherence effects as discussed by Yan et al. 12 . We observe three clear trends within the table.

1. Increase of v while keeping the other frequencies fixed corresponds to a gain in yield.A

2. Increase of v while keeping the other frequencies fixed corresponds to a loss of yield.e

3. Increase of v while keeping the other frequencies fixed corresponds to a gain in yield.g

We interpret these findings as follows. Since we have taken our dipole moment to be constant and we have a
limited choice of excitation frequencies to choose from due to the constant level spacing within the harmonic
oscillator model, the profile of excited population will be more or less determined by the Franck–Condon
overlap factors between the ground and excited state oscillator levels. We argue that the easiest way to control
the population on the excited surface under these conditions will be in modulation of amplitude of the applied
field over time. The best control of shape of the excited wave packet will be given by a ground state with the

Ž .most spatially constrained initial population v high , so as to give the narrowest profile upon initial excitation,g
Ž .and an excited state with the lowest slope at qs0 v low , so that the excited population evolves away frome

the vertical transition site slowly thus giving the field more time to adjust. The weak yield dependence upon vA

suggests that although it may not be possible to create a wave packet in perfect agreement with the goal, it will
be possible to create a packet with appreciable probability at qs2 d at the target time. A narrow target will lead
to higher yield even if the fit is reasonably poor because of the high overlap right at qs2 d whereas a broad
target would require quite a good fit to get a correspondingly good yield.

3.2. Multiple modes and dissipatiÕe effects

The true strength in our harmonic treatment lies in the ease of treating a number of quantum mechanical
degrees of freedom exactly. In principle this ability could be exploited to examine quantum control on rather
large gas phase molecules — a possibility we will not consider here. Instead, we demonstrate this ability by

w xexamining and generalizing a model recently discussed by Cao et al. 17 . The system we consider is basically
the same as that detailed in the preceding section, but with the addition of several oscillators coupled to the
primary coordinate. The coupling of the primary coordinate to other modes serves as a model for dissipation
Ž .assuming we examine times short enough to avoid Poincare recurrences due to the finite size of our bath and
is of interest as a means to mimic intermolecular interactions in condensed phases.

The Hamiltonians in the ground and excited state for our dissipative system are taken as:
22 2 2 2Np mv p m v cˆ ˆg i i i i2H s q q q q q y qˆ ˆ ˆÝg i 2ž /2m 2 2m 2 m vi i iis1

28Ž .
22 2 2 2Np mv p m v cˆ ˆe i i i i2H s q qyd q q q y qŽ .ˆ ˆ ˆÝe i 2ž /2m 2 2m 2 m vi i iis1

where q and p are the position operators for the primary coordinate whereas the q s and p s are the operators˜ ˜ ˜ ˜i i

for the bath modes with the associated frequencies, v , and masses, m . The coupling constants, c , allow fori i i

linear coupling between the coordinates of the primary oscillator and the bath. To be fully general we could also
allow for the possibility of differing bath frequencies and coupling constants depending upon the electronic state
of the system, but in this preliminary study we restrict our Hamiltonian to this simpler form. Calculation of the

Žoptimal field proceeds formally identically to the treatment of the last section. Spatial constraints and common
.sense preclude us from attempting to display the matrices S , etc., for a multiple mode model, butg

Ž .generalization of the steps leading up to Eq. 27 should be transparent.
Before proceeding with calculations we must specify the full set of masses, frequencies and coupling

constants for the bath. Although we restrict our set of bath modes to be some finite number for calculational
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purposes, the presence of these modes serves as a model for an infinite bath. It is known, both from classical
w x w xstudies 19 and quantum mechanical path integral methods 20,25 , that the effect of a harmonic bath upon a

system it is linearly coupled to may be completely specified if the spectral density, defined by
N 2

p ci
J v s d vyv , 29Ž . Ž . Ž .Ý i2 m vi iis1

w xis known. This suggests a convenient scheme for picking the set of bath constants 21 . A functional form for
Ž .J v is selected as is a finite set of modes with equally spaced frequencies. The coupling constants are then

Ž .constrained by Eq. 29 to be given by

2
2c s mv J v Dv 30Ž . Ž .i i i

p

where we have taken the masses, m , to be equal to the mass of the primary coordinate, for convenience, andi
Ž .Dv represents the discretized frequency increment. Mathematically, the functional form of J v is unrestricted,

w xbut for physical problems a suitable form must be chosen. To make contact with the work of Cao et al. 17 we
Ž .will consider two different forms for J v :

Ž .1. J v sh v; we will refer to this form ohmic friction.0
Ž . 2 22. J v sDh vrv qD ; we will refer to this form as non-ohmic friction.0

w xThe dissipative model we will study first is similar to the model studied by Cao et al. 17 , and our interest in
it is purely in proving the validity of our treatment. We take the parameters of the primary coordinate to be

Ž Ž .. Ž .Fig. 2. Plots of the yield Eq. 10 vs. friction strength, h , for a single harmonic mode coupled to a ‘bath’ of harmonic modes see text .0

The functional forms for the spectral density for each of the two types of friction are described in Section 3.2.
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Ž Ž .. Ž .Fig. 3. Three plots of yield Eq. 10 vs. non-ohmic friction strength. The convergence of the three plots suggests that dissipation has a
more severe effect on the oscillators with longer periods of vibration.

identical to those of the preceding section with v sv sv s1 and t s5. The target is taken to be the sameg e A f

minimum uncertainty wavepacket centered at qs2 d. The bath is modeled by 11 modes with frequencies
Ž .evenly spaced between 0.5 and 1.5 and coupling constants dictated by Eq. 30 . This narrow range of

frequencies is expected to be acceptable as the primary coordinate will only couple effectively to those modes
Ž .nearly in resonance with it. The value of h will be varied and in the case of our non-ohmic form case 2 D0

will be set equal to 1. The bath is assumed to be in equilibrium with the primary oscillator so that bs1 will be
used in the initial density matrix.

Ž Ž ..In Fig. 2 the yield Eq. 10 is plotted against the friction strength, h for the case of ohmic and non-ohmic0
Ž .friction cases 1 and 2 above . In both cases, increasing the friction is seen to significantly reduce the yield and

the decrease in yield is seen to be most severe for the ohmic case. This loss of yield reflects the loss of energy
from the primary mode to the bath. Such a loss of energy makes it impossible for the wavepacket to get all the
way to 2 d and hence the overlap with the target suffers accordingly. The relative severity of the loss of yield for

Ž .the ohmic case is attributable to the fact that Eq. 30 dictates coupling constants for the modes near frequency 1
w xto be larger than those in the non-ohmic case. Our plot is in agreement with the treatment of Cao et al. 17 .

What is surprising is that we are able to achieve this agreement with only 11 bath modes whereas the analytical
technique of Cao takes an infinite number of modes into consideration. The generality of our method allows for

Ž .extension of the model beyond the analytically solvable v sv s1 case and in Fig. 3 we present results forg e

varied excited state frequencies in the case of non-ohmic dissipation. Note that as the excited state frequency is
decreased that the loss of yield, induced by increasing the friction constant, goes up. This effect may be
attributed to the longer vibrational period associated with smaller frequencies which means a longer exposure to
dissipation on the way to the target.
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4. Conclusion

w xWe have demonstrated that the method of Balian and Brezin 23 is easily applied to the problem of quantum
control and that it exhibits advantages over methods previously implemented. In particular, the method allows
for exact solutions to control problems with arbitrary quadratic and linear potentials for the adiabatic surfaces.
Previously implemented exact methods were capable of describing only linear coupling between the ground and
excited electronic states. Inspection of Table 1 demonstrates that the even the simplest manifestation of
quadratic coupling can lead to large effects in yield and should not be ignored. Furthermore, Fig. 3 demonstrates
the importance of quadratic coupling in the presence of dissipation. We concede that none of the test cases
discussed in this work would be impossible to solve by other methods, but we believe that the extension of the
present work to more complicated systems is immediate and has the potential to look at problems which would
otherwise be difficult to consider. The application which immediately comes to mind is that of a many atom
molecule with changes in frequency of all harmonic modes on making the ground to excited electronic
transition. It would also be possible to consider a system with several primary modes coupled to a bath. Such a
model would be useful in assessing the feasibility of control for a complicated molecule in a condensed phase.

It is true that a harmonic model misses a large part of the richness associated with a general anharmonic
potential, but current theoretical and computational limitations defeat any hope of exactly solving a many
dimensional anharmonic quantum mechanical time dependent problem. Perhaps it would be possible to
incorporate the methods described here for a number of degrees of freedom while allowing other degrees of
freedom to move on anharmonic surfaces. Such a hybrid approach has been discussed previously by Cao et al.
w x21 in a more limited context. We also note that the Balian and Brezin method is completely portable to the

Ž .case of control on the ground state surface i.e. a pump–dump experiment , but since such an experiment
Ž .requires two photons and hence higher orders of perturbation theory, the matrix formulation of Eq. 8 breaks

down. The additional computational expense of iteratively solving for the optimal field for such a pump–dump
type experiment represents an appreciable hurdle and we have chosen not to pursue such a lofty goal at this
point. Finally, we mention that although the models we have considered are relatively crude, they appear to
demonstrate the same qualitative features associated with more complex treatments. It seems clear, for instance,
that control of molecular dynamics makes sense only to the extent that you choose a sensible target. It will never
be possible to fully realize a target which corresponds to conserving energy for the excited wave packet when
dissipation is present. Perhaps, through detailed study and understanding of such simple models, it will become
possible to realistically assess the potential of quantum control as a means to influence chemistry.
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