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On the relaxation of a two-level system: Beyond the weak-coupling
approximation

David R. Reichman and Robert J. Silbey
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 24 August 1995; accepted 5 October 1995

The model of two nondegenerate quantum levels coupled linearly and off-diagonally to a bath of
guantum mechanical harmonic oscillators studied previously by Laird, Budimir, and Skinner is
re-examined. Interpretations are made for both the fourth order population relaxation and dephasing
processes. Some of the methods used are applied to the standard spin-boson problem. The question
of experimental detection of predicted phenomena is discussed. An approximate method, based on
a canonical transformation of the original Hamiltonian is proposed to study the problet@96®
American Institute of Physic§S0021-96066)50402-7

I. INTRODUCTION Master equatiod.The “up” and “down” rate constants are

areas of chemistry and physics for over 30 yéafluch of absorption and emission of phonons of frequengy i.e.,
condensed phase spectroscopy can be reduced to the study,gijes of the bath in resonance with the two-level system

two nondegeznerate levels interacting with a bath of int_jepen(—l-LS). Coupling diagonal in the system states leads to phase
dent modes:” When second order perturbation theory in the ejaxation via the modulation of the energy levels of the

system-—bath f:oupling is used, equations of motions for thgystem by the bath.Coupling that is off-diagonal in the
reduced density matrix elementBloch equationsmay be gy qtem states lead to both changes in population, and to loss

inadh3:5
obtained, of phase coherence, since the relative phase between system
ool t) = — Kygooo(t) + Koro14(1), (1)  states must changé an averaged sensehen the popula-
. tions relax. A simple derivation shows the relation, at second
011(t) =K10000(t) —Ko1014(1), (2 ordert®®8
o1(t) = —[i(wo+Aw)+ 1T ]oyt), () 1 1 N 1 ©
oo(t) =[i(wo+ Aw) = LTalooy(t), @ Tz T

wherea;;(t) are the matrix elements of the reduced densityVhere 1 is the rate of total dephasing of the systenf,,1/

matrix (the density matrix of the “system’ k;o andky, are IS the rate of population relaxation, andri/is the “pure”

the “up” and “down” rate constants, respectively, is the dephasing rate, caused by adiabatic fluctuations that modu-

natural frequency of the two level systempw is the fre- late the system frequency. Such fluctuations tend to destroy

quency shift of the system induced by the bath, afi, 3¢  the phase coherence, thus rendering a positive pure dephas-

the decay rate of the off-diagonal element of the reducednd rate. this leads to the standard relation,

density mat_rix element. The diagonal element_s of the re- UT,=1/2T,. (6)

duced density matrix are referred to as populations, as they

measure the probability for the system to be measured in th€his relation has been of great use in the analysis of spec-

system states, which are labeléf®) and |1)). The off-  troscopic experiments, although it is rigorously valid only to

diagonal terms are often called coherences, as they aresacond order in perturbation theory.

measure of the phase coherence between system states. This Recently, there have been studies that transcend second

set of equations is valid for times such that the initial, non-order perturbation theory. Budimir and Skinner performed a

exponential behavior has decayed, and the remaining ageurth order perturbation theory calculation to determine the

proach to equilibrium is exponential. relaxation properties of a TLS linearly coupled, both diago-
For a wide range of problems, the Bloch equations pronally and off-diagonally, to a Gaussian stochastic Bathey

vide an exceptionally good description of the dynamics ofshowed that at fourth order, the relatit®) is not valid, and

two levels coupled to a dissipative bath. This is especiallyfor some parameters, TL/<1/2T,. Simulations on the same

true in the field of nuclear magnetic resonance, where thenodel were performed by Sevian and SkinferThey

equations were introducéd. When the standard second or- showed that even for systems that violate the inequéity

der approach is adopted, Eq4)—(4) and the parameters the initial non-Markovian behavior is often short compared

involved have simple, physical interpretatidifsFor ex-  to the asymptotic, exponential relaxation. Reinedteal., for

ample, the equations that govern the time evolution of the different model of bath fluctuations, also showed that the

populations have the “gain—loss” form typical of the Pauli breakdown of the inequalit6) is possible'! Laird, Budimir,

1506 J. Chem. Phys. 104 (4), 22 January 1996 0021-9606/96/104(4)/1506/13/$6.00 © 1996 American Institute of Physics

Downloaded 27 Oct 2012 to 18.189.115.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



D. R. Reichman and R. J. Silbey: The relaxation of a two-level system 1507

and Skinnechereafter denoted LBSperformed calculations Hris= wo|1)(1], (8)
on a TLS linearly and off-diagonally coupled to a quantum
heat bath of harmonic oscillatot$.Unlike the stochastic

- +
studies, their model is valid at finite temperature. They also Hb_zk (bby+1/2), ©
find that the relaxation properties at fourth order are different
than at second order, although the form of the Bloch equa- H'=A[1){(0[+AT[0)(1], (10)
tions (1)—(4) still hold. By using the results of the study of
LBS, Laird and Skinner showed that for the particular model A= h, (b!+b,). (11)
k

that reproduces the interesting stochastic results in the limit

of infinite tempgrature(?he ‘complex Ohmic.—ITorentzian" The Hamiltonian consists of the TLS with excited state
mode), that tshe inequalitf6) preaks dgwn at finite tempera- energy w,, a free, harmonic bath, and a coupling that is
ture as we_lll. Chang and Skinner refined these Calc_u"'f‘t'(_)n_soff-diagonal in the system states, and linear in the bath nor-
by dlscardl_ng the assumption that the <_jen3|ty MatNX IS N a mode coordinates. The model is confined to coupling
tially fa_ctorlzed, a_md_mclud_ed the short time, non'Marko‘_"anconstants that are either purely real or purely imaginary.
relaxat|or) beha\{lor in their studf?.They fOL_md once again The dynamics for the total density matriésystem
tha}t the inequality(6) can be violated. Laird, Chang, _and +Bath) is contained in the Liouville equation,
Skinner have recently shown that such a breakdown is pos-
sible for a “super-Ohmic” model of the heat bath. ap(t) )

While much work has been done on the calculational T:_'[H'P(t)]- (12)
aspects of this problem, little has been done to put the results
on a physical foundation. The second order results are usefé Redfield-type formalisthis then use to calculate equations
and meaningful in part because physical interpretation can bef motion for the bare reduced density matrix, defined by
found for the processes involved. In the case of a TLS7(t)=Tryp(t). By bare we mean that the states used as a
coupled linearly and off-diagonally to a bath of harmonicPasis in the perturbation theory are pure system states, as
oscillators, we expect the population relaxation rates to deoPposed to “dressed states” that mix system and bath. The
pend on the number of phonons in the bath at a given temihitial conditions are taken to be factorized,
perature that have a frequeney. We expect the absence of (0)=0(0)® p°
pure dephasing since the system-bath coupling lacks the P Peq:
ability to cause fluctuations in the system’s natural fre-wherepgq is the equilibrium density matrix of the bath. After
qguency. No such understanding exists at fourth order. In factransformation to the interaction picture, the equation of mo-
based on our knowledge of second order perturbation theoryion,
many of the fourth order results are surprising. What is the -
physical meaning of T/, at fourth order? Why can it be- o) =R(®)a(t), (13
come negative in some instanceshen system—bath cou- \yhere
pling constants are compleand not in othergreal system—
bath coupling parametefsWhy does the frequency shift of
the TLS not agree with the shift inferred from the renormal-
ized energy splitting? How are the fourth-order population
shifts to be interpreted? We will attempt in this note to inter-WIt
pret the fourth order expressions, and thus answer some of t L
these questions. Along the way, we will touch upon more R<2)(t)=—f dt; Tro[L(H)L(t1)pp], (15
familiar problems in the theory of quantum relaxation, such 0
as the celebrated spin-boson probféT’? and

We will also address the question of experimental mea- t t t
surability of the results obtained in the fourth order calcula-4), .\ _ 1 2 NN "
tions of Laird, Budimir, and Skinner. In doing so, we will R (t)_fodtlfo dtzfo dta{TH[L(OL ()L ()L (1) ]
propose an alternate method of study for the “complex

R(t)=>, R@"(1), (14)

Ohmic—Lorentzian” model of Laird and Skinner. Our meth- ~Trg[L(DL(ty) pp] Trp[ L(t2)L(t3) o)
ods and results will provide a first step in producing a unified CTrRIL (DL (t Citol(t
view of the dissipative dynamics of a TLS beyond the weak- rb[~( )N( 2)PollL( f) ( f)pb]
coupling limit. = Trp[L(D)L(t3)pp] Tro[ L(t1)L(t2) ppl}, (16)
is found, and then is projected onto the system states. An
Il. REVIEW OF THE PROBLEM equation of the Redfield form results,

LBS considered the Hamiltonidn, . . , , .
&aa’(t): 2 el(a—a —-B+pB )thRaa"B'B’Uﬁﬁ’(t), (17)
H=HpstHp+H’, (7) BB’

where(A=1) where
J. Chem. Phys., Vol. 104, No. 4, 22 January 1996
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1508 D. R. Reichman and R. J. Silbey: The relaxation of a two-level system

R g = lim[e /(@703 =F+BDwol o |(R(1)| B) Ci(@)=2{T'1()[N(w)+1]+T1(—w)n(—- o)}, (30
= where the weighted density of staté(w), is defined as,
X(B'[}a")]. (18)
Due to the fact thaH’ is off-diagonal in the system states, Fl(w)EWEk |hd?8(w—wy). (32)
and has zero thermal average, the equations, after transfor-
mation back to the Schdinger picture, The rate, Eq(27), may thus be expressed,
ooo(t) = Roooor ool t) + Roo110711(t), (19 C1(— wg)=2T1(wo)N(wp), (32
011(1) = Ryzood(t) + Ropagraa(t), (200 which, due to the proportionality to the thermal occupation
. . of phonons atwy, may be interpreted as the absorption of
o10(t) = (—Two+ Ry010 010(t) + Rigo100a(t), (21) P ° ¢ P P

one vibrational quantum of frequeney,. The rateky, and
001(t) = (i®o+ Ro101) 001(t) + Roz1g710(t)s (22)  thus 1T, which is defined as T/ =kg;+ ko may be calcu-

) i lated in a similar manner. It is a simple exercise to show that,
are fou_nd to _hold to all o“rde'fs in t‘r‘1e cou"pllng constant. LBS;t second order, (T4)@=(1/2T,)?, demonstrating that for
immediately identify the *up” and “down” rate constants as yhe model under consideration, the second order dephasing
K10= — Roooo; (23 rate has no contribution from pure dephasing.

The fourth order terms may be calculated by applying
Egs. (16), (18), and (23)—(25). The tedious details are out-
Ki0=Ri111, (24)  lined in LBS. At fourth order, a new weighted density of
states,I'y(w) comes into play. This density of states, which
‘arises from terms containing correlation functiddig(t —t”)
=Trp[ ppA(t)A(t")], has the form,

and

respectively. A rotating wave approximation is made to de
couple the coherences in Ed21) and(22). The identifica-

tions
1M,=—ReRm14, (25) rz(w)EWZK h28(w— wy). (33
and
This density of states gives rise to a correlation function
Aw==Im{Ry0q, (260 C,(w) with the same form as Eq30), with |h,|2 replaced

can then be made, relating the dephasing rate and the frdith hi. Since the coupling constants are purely real or
quency shift to the relaxation parameters in Ef8). The  purely imaginary by assumption, the density of stdigis)
effect of the decoupling of the coherences is detailed in LBSis real. Note thatl,(w) may vanish for arbitrarily strong
There it is shown that the definition ofTl/is not effected by ~ coupling if the coupling constants are chosen to come in
such an approximation, while the expressionfaesis modi-  pairs in which one coupling constant is real and the other is
fied at fourth order. Once the definitiori83)—(26) are in  imaginary, but have equal modulus. This model will be dis-
place, a perturbative calculation of the rates may be made.cussed later in the paper.

At second order in the coupling strength, the calculation ~ The fourth order population excitation rate may be ex-
of the “up” rate constant is quite simple. By using E45)  pressed in frequency space as,
and (23), the expression for the “up” rate constant

k(&)= i{w‘lé(— P,(wo) — Pa(—
10 o 0 “2 o) P2( o) 2(—wop) ]

t .
k{2=1lim 2 RE{ f dtye 1 @ot=WC, (t—t,) |, (27
o 0 ~1 ’
‘ +C1(— wo)[ P1(wo) = P1(— o)1+ P1(— wo)
is found.C(t—t") is the standard harmonic oscillator corre- A - A ,
Cy(t—t")=Tre[ ppA(DA(t)] where
- , * , Ci(o')
=> |hJH[N(wy)+1]e ext=t) Pilw)=p | do" S, (35
k — 0
+n gloxt-t 28 -, ICi(w)
andn(w,) is the Bose factor, giving the thermal occupation
of phonons at frequency . It is convenient to express the " é_r(wr)
rates in the frequency domain. We define Pi'(w)ZS{)f do’ — ) (37
—® w —w
cA31(w)=f e'“"Cy(7)dr. (29 wherep denotes Cauchy principle part. The coupling and
R o temperature dependence of this rate expression may be ob-
C;(w) can be expressed as, tained by substituting Eq$30), (31), and(33) into Eq. (34).

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996
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Note that the zero temperature thermal excitation rate doe®hmic—Lorentzian}, Laird and Skinner found that E43)

not vanish in the limit of zero temperature. In fact, can become negative, indicating a violation of Eg). This
, model for the coupling is important because it is the physical
lim k(l‘(‘))=M fcdw (o) _ (39) realization of a spin-1/2 particle in a static longitudinal mag-
T—0 ™ 0 0+ wg netic field with equal strength but uncorrelated fluctuating

We will return to thi it in Sec. IIl. The total ati magnetic fields in the two transverse directidéridvith the
€ will return to this resuftin sec. 1il. 1he tolal popufalion o0 “complex” coupling model, Laird, Chang, and Skinner

relaxation rate(l/‘l'l)(“) may be computed simply from the have shown that Eq43) may be negative even if the spec-
sumTﬁf the fou(;th (()jrdefr up” and g_?twn rakt)e colnstlar:tsd tral densities are super-Ohmic. These results will be dis-
e second order frequency shift may be calculated per; \cseoq in Secs. V and VI,

turbatively from Eq.(26). The result found by LBS is,

1
Aw®= (Z)[Pl(_ o) = P1(wo)]. (39 1l POPULATION RELAXATION
When compared to the “frequency” defined through, We begin by examining closely the fourth order popula-
g tion relaxation terms. Perhaps the most surprising result un-
K=e "%, (40) covered by LBS is the fact that the population excitation rate
whereK is the equilibrium constant, defined 3% (the “up” rate constantis nonzero at zero temperature. This

result was in fact anticipated by Lindenberg and \Rfest

their study of the harmonic oscillator linearly coupled to a
quantum heat bath, and by Kassfién his study of corre-
lated initial conditions in the spin-boson problem. All of
these studies have shown that there is residual excited state
population atT=0. The origin of this population is easy to
race in our case. We note that at zero temperature, the equi-
librium density matrix of the entire systenbath complex is

a projection operator for the ground state, assuming that the
ground state may be found. Théh,

_ou(®)

oo *)
and ;i () is the equilibrium system population in state,
LBS found that[&—aw,]? differs from Aw'®. That is, the
second order frequency shift is not equal to the frequenc
shift obtained from the equilibrium constant. This result will
be discussed in Sec. VI.

Finally, LBS calculate the fourth order contribution to

(1/T,)®. As amathematical mean® test the inequality6),

K

(41)

LBS define, in analogy to second order perturbation theory, — peq=|¥g){¥ql- (45)
1 1 1 By computing the ground state of Hamiltoni@n) to first
T_éz T, 2T, (42 order in the coupling strength, we find

The fourth order contribution t@L/T,) is found to be, — _ M 0

) =No| 12 o= ||g), (46)
1\® 1 (= de d A - e
(T_é) = WJ;O P [w o [Ci(w)Ci(—w)] whereN, is a normalization factor, anf3) is the ground

state ofH,, consisting of the direct product of the system
. - ground state, and the vacuum state of the bath. The following
—Cz(w)Cz(—w)}- (43 consequences of the mixing of the system and bath states
may be noted:
It is to be emphasized that within the context of the calcula- (1) The density matrix, for calculations extending be-
tions performed by LBS, the fourth order definition of “pure yond the strict weak coupling limit, has an expansion in
dephasing” is a mathematical tool to study the inequaily ~ powers of the coupling strengfh,
and does not have the physical meaning of its second order
counterpart. Laird and Skinner study two models for the pO=p O+ p () +5%p! 7t (47
spectral densitie631) and(33). In both models, they choose In a precise treatment, attention must be paid to the various
spectral densities that are Ohmic—Lorentzian in form, i.e., time scales in the probleff,so that the “time” appearing in
Eq. (47) is really a hierarchy of time scales. We will not be
— (44)  concerned with such a treatment here. In our probjgft(z)
o ta will contain states mixed byd’ at first order in the pertur-

This type of spectral density reproduces the exponentiallyation. Thus,a(z)(oo),.obtained by tracing out the bath de-
damped decay of correlation functiofia the time domain ~ 9rees of freedom, will only contain population in the excited
that are produced by Gaussian stochastic theories. The firg{ate of the system,

model used by Laird and Skinner takes_the coupling con- 1 (I (w)dw
stants of Eq.33) to be real. In this caseC;(w)=C,(w). o2 ()= J (ot wg)
Here, it is found that Eq(43) is always positive, so that the 0 feT®o
inequality (6) is never violated. For a model with coupling Note that V() is identically zero. By appealing to the
constants take so thdf,(w) vanishes(called “complex properties of the system—bath coupling in the thermody-

wa

Ii(w)~

| 1)(1l. (48)

w

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996

Downloaded 27 Oct 2012 to 18.189.115.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1510 D. R. Reichman and R. J. Silbey: The relaxation of a two-level system

namic limit, we find that the residual population/gN°) in gram(as well as relaxation rate and line shift expressiass

magnitude, and thus cannot be neglect&t. possible by a simple, static application of Rayleigh—
(2) Equation(46) shows that, due to the mixing of states, Schralinger perturbation theory. Our method will reproduce

bath excitations exist at zero temperature. If we define théhe localization behavior given by the noninteracting blip

total occupancy of phononsl(wg), as approximation(NIBA),'° which, for the case of Ohmic dis-
sipation, is quantitatively in error ds-%.?! A more rigorous
N(wg) = E <a1ak), (49 analysis, based on mapping the spin-boson model with
k Ohmic dissipation onto the Ising model with long range in-
then a simple calculation gives, teractions, has been carried out by Spohn anctheke?* We
) will be content to show that Eq$45) and (48) are decep-
N(wg) = l J'w ["(w)do (50) tively simple, and may be used to extract information that
mJo (0+wg)’ has been obtained previously by more complicated, dynami-
cal means.

which is, at this temperature, equal to the equilibrium system
population.

We now turn to a discussion of the population excitation
rate constant. To see if the rate expresdid4 is really a
fourth order extension of Fermi's golden rule, we compute ~ H=—wqox+ Uz; Gu(bf+ kaEk wbib, (54
the Fermi golden rule rate expression direttly

We begin with the spin-boson Hamiltonigim the nota-
tion of Aslangulet al!®)

" where, againf has been set to one, anq, o, are standard
Woﬁ1=ReJ dr(Toy(7) Tiye iwor, (51  Pauli matrices defined in the bagis),|R) of “left” and

0 “right” states. This Hamiltonian describes a tunneling sys-
where the transition operator is defin€e&H’ +H'GT, and  tem linearly coupled to a bath of harmonic oscillators. The
G is the zeroth order Green’s function. This calculation istunneling system can be envisioned as the lowest two levels
confined in the Appendix. Some subtleties arise in the calcu®f @ Symmetric double well potential. In this picture, the
lation. When properly interpreted,_., is identical to the coupling term causes fluctuations in the well depths of the
expression(34) for k;,. This confirms that these rates are Potential. The case of Ohmic dissipation, which is our focus

indeed higher order Fermi golden rule expressions. here, is defined by a spectral den&ity

We may note that cross terms between second order rates o
and second order populations are contained within the fourth J(w)EE Gﬁé(w— wy) = > we @, (55
order rate expression. For example, the Bloch equation de- K
scribing the evolution of the population differenPg(t) has Our goal is to compute the degree of localization at
the form T=0, defined by?

- 1

—__ _ g,
Pat)== - [Pot) = Py()]. (62 gy A=) (56)
(00))

For times (1T,) "'>t>r,, wheren, is the correlation time

of the bath, a cross term Instead of computing the dynamics of the system, and letting

t—oo, we use Eq(45) directly, tracing out the bath degrees
(1) PP () (53)  of freedom, and projecting onto the eigenstates,ab com-
pute Eq.(56). It is simple to show thak(«) is zero until a
critical value of the coupling constant. We will simply
borrow the resuliag;.,=1 from previous studie¥. To find

contributes to the fourth order expression of L/ The same
argument holds for the individual population transfer rates
This accounts for the appearance of se:/er':xl terms i, the form of % () for coupling constants equal to or greater
For example, at zero temperature, the “up” rate constant ha .

. - an agitical» We perform a small polaron transformation on
the same form as the second order expression at finite terrllz.— (54), defined bj*2°
perature, with the population of modeéw,) replaced by the 9 '
total number of excited modeN(w;) [see Egs.(38) and H=UHUT,
(49—(50)]. Thus the rate may be interpreted as the product (57)
of the weighted density of states at the resonance frequency Gy
: i U=exp 0,2, — (bi—by)
times the total number of phonons created with the system z w TR

excitation.
The transformed Hamiltonian is given by

IV. APPLICATION TO THE SPIN-BOSON PROBLEM H=Ho+Hin,

In this section, we apply the methods used in E¢$) i _2 bib
and(48) to compute some equilibrium properties of the stan- 0= 4 @kPkBic
dard spin-boson Hamiltonia=*We wish to show that a ) (59)
direct calculation of the zero temperature localization dia- H;;=—wo(B,o,+B_o_),

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996

Downloaded 27 Oct 2012 to 18.189.115.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



D. R. Reichman and R. J. Silbey: The relaxation of a two-level system 1511

Gk 4 lation of the system energy levels by the bd#xpressed
B+=exl{i22k o (b—=by) | throughT7). The pure dephasing rate is positive, since the
k bath can only increase the rate of phase randomization in the
For Ohmic dissipation{B.)=0. The (left, right) system system states. Generally, at second order, the pure dephasing
states are now degenerate, and the interaction term cannefte is expresset,
break the degeneracy. A ground state is found by the choice .
of the initially prepared state, which now mixes with the :f / Y’ oy
higher energy states through,;. Choosing the particle to be Fpo —wdT<{H11( ™)~ Hod D}{H1~ Haol), .
initially localized in the left well, theunnormalized ground

> whereH;; is an operator in the bath Hilbert space, obtained
state is given by

by taking the matrix element of the coupling term diagonal
({n}|B_|0) in the system statg) (herei=0,1). Notice that the correla-
|‘/’g>:|L>|0>_wO|R>{%O W {nh, (59 tion function is composed of operators that determine the
instantaneous energy fluctuation induced by the bath on the
system, in agreement with the discussion above. The Hamil-
tonian (7) contains no diagonal terms in the system-bath
coupling. Thus, at second order, the dephasing rate can be
o, |{{n}|B_|0)|? _expresse_d solely ir_1 terms of, i.e., there is no pure dephas-
(Rlo()|R)=w§ > TEnw)? (60)  ing. As discussed in Sec. II, the fourth order dephasing rate
n7o e deviates from the second order result. If we continue to view
An explicit calculation of this term is possible, which gives, pure dephasing processes as those arising from diagonal fluc-
. . tuations(this is the view expressed by Sevian and Skither
(Rla()|R)y= w%J dzlf dze S then Eq.(5) is violated at fourth order. An alternative view is
0 0 expressed by LBS. They define

4G2
% [ EX[{ E _2k e ok(Z1+zy) 1” , i 1 1
K

i T, T, 2T,

where|0) is the vacuum state of the bath, afig denotes a
set of phonon occupations of the bath. Applying Eth) and
tracing out the bath degrees of freedom, we find,

(61) as a mathematical means to test the inequéityThe quan-

where tity (1/Té)(4), expressed in Eq43) can become negative for
>G2 certain parameters in a specific model, signaling the break-
s=> _2k (62) down of the inequality(6). . ' '
ko oy In order to probe the physical meaning of this result, we

Note that the energy denominators have been rewritten in &Y On the observations made in Secs. Il and VI, which

Laplace transformed form, which introduces the integralsd'ctate that much of the _bare rate expressions can be ex-
over z, and z,. Using the spectral density for the Ohmic pressed and understood in terms of states that mix system

bath, and explicitly calculating the integral, the result, validand bath character. We perform a unitary transformation

to second order iy, H=U'HU, (65)
1
3 (20) = ] a1, where
w
1+ w—°) [(2a—1)(2a—2)]} 2 U=expS).
Cc

(63 S is chosen to diagonalize tha Hamiltoniéf) to first order

is obtained. This result is identical to the result found inPY the condition

earlier dynamical studie$:*® The zero temperature relax- [Hr o+ Hp,S]=—H’. (66)

ation rate and line shift could be calculated in a similar man- o o
ner, without recourse to standard dynamical techniques. Wi the context of the Hamiltoniaf), this is referred to as

also note that the method of Spohn andn@ike is also  Frohlich diagonalizatiorf? The transformation is given by
“nondynamical,” in that it does not proceed through the

Liouville equation. This method, although much more com- 822 — {wk(bk—bl)[hko++h;§ o_]
plicated, is necessary for obtaining the true long time behav- K (0= wp)

ior of the Ohmic spin-boson model. +wo(by+ b [ o, —hfo 1} (67)

We will assume for now that the density of states of the
phonon bath does not overlap significantly with the energy

In the usual second order Redfield approatthe rela-  splitting of the(TLS), so that no divergence problems occur
tion (5) holds. The interpretation of Eq5) is simple. The in Eq.(67).23 We will return to this point later in this section.
decay of the coherence variable is caused by both energWith the transformation65), the effective Hamiltoniani,
relaxation(expressed through,) and the(stochasticmodu-  may be written

V. DEPHASING
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1512 D. R. Reichman and R. J. Silbey: The relaxation of a two-level system
H:HTLS—’_HD—’_H,Y ~_<(/>
(68) |
H' =, ——— [Acw o (b +bl)(be—bl,) The result is
kk' @~ Wg
bt bl (byr + b w_ L[4, (@)
= By w wo(byt by) (b +by ) 1[1)(1], Ppg=—] do (P ad)? Ci(0)Cy(—w)
where L
Ay = 2i Im(hkh:,), - m Co(w)Cy(— w)}
Bk'kr=2 thkh:’) 1 * do
. L _ =— o= D) [C (0)Ci(—w)]
We are now in position to consider the lowest order dynam- 7 ) (0®— wp)
ics of the states
|6)=U"] o). (69) —Cz(w)Cz(—w)+. (72)

For instance, the first order ground state may be calculated
by expandlngJJr and applying the expansion to the groun
state ofHy+Hy s+Hy,. The statg46) is then recovered.
Before rate expressions can be considered, we must ré!
move the secular terms from the potenWaITo do this, we
place the thermal average ufinto Hys. 18 This will leave
an interaction with zero thermal average, thereby ehmmatmd};:/
spurious divergences that might occur in the calculation o

rate expressions. We find (1)
~ k k
(V)={ =200, —5— coth |1(1]. (70
k Kk~ ®p)
If we use the identity
li !
= lim .
W= Wy 50 [‘1)5_((1)0_I 7)°]
= —i 1 S — ) (2)
=p o= ' ay (wk—wo
to express the diagonal matrix eIement(Eﬂ) as
o » 2I'1(w) Bw
(V)1y= —@f mco h=-
. Bwo )
+ 2|F(w0)coth7. (71

The real part is the second order frequency shift, and the
imaginary part is the second order dephasing tatgich is
equal to the second order population relaxation)rdtsing
the notation in Eq9.30)—(33) and(35), these results are seen
to be identical to Eq(39) and the discussion following Eq.
(32), respectively.

We note from the transformed Hamiltoni&é®8) that the
basis of state$69) undergoes only pure dephasing. This is
not quite correct, however, since the factorized initial condi-
tions in the basis oH, are correlated initial conditions for
the state$69). This will also lead to population relaxation at
fourth order, although we will not pursue this avenue. We
now compute the pure dephasing rate of the stéi€s to
lowest(fourth) order. We use the Redfield formuiéd), with
the effective potential

al

¢ Where we have use the fact that, by assumptigdoes not
overlapI';(w) significantly, so that the integration by parts
bove is valid. The amazing feature of E@2) is that it is
identical in form to the fourth order resul@43) for the
“pure” dephasing (1T5)® that was introduced solely as a
thematical means to test the validity of the inequdbly

e can make the following observations:

The fact that Eqs(72) and (43) agree whenw, does
not significantly overlapI';(w) [or more precisely
C1(w)C1(— w)] shows that, in these instances, the in-
equality (6) holds, and (I15)*) may be interpreted as
the pure dephasing of the stat€§). This means that, in
cases wherew, does not significantly overlap with
I'/(w), the expressioii43) is derivable from the second
order formula(64). In these cases, the inequalitg)
must hold,regardless of the form of Lw) and Cy(w).
The strange resufthe negativity of Eq(43)] is thus a
consequence of a resonance phenomena, wherein the re-
sult (72) is not valid. Heuristically, we may view this
behavior as a consequence of the lack of stability of the
potential(68), which, as a significant number of phonons
reach resonance with the TLS, gives rise to “imaginary”
modes.
The numerical results of Laird and Skinner, and Laird,
Chang, and Skinner support the conclusion of point
(1). If we plot the high temperature behavior of
C1(0)C4(— w) (essentiallyT;(w)%w?]), we see that the
negative dephasing occunsly when there is significant
overlap betweemy, andI';(w)7w?. In Fig. 1T%(w)/w’ is
plotted for the “Ohmic—Lorentzian” density of states
(T'(w)*[A/(N*+w?)]) for various values ofA and a
value of w, equal to one. In Figs. 2 and 3 the same
function is plotted for the super-Ohmic density of states
(T'(w) = [w3e““’°’6/w§]) that corresponds to a Debye
bath in the deformation potential approximation. A fun-
damental difference if4(w)/w® between the two types
of spectral functions can be noted. For the Ohmic bath,
the overlap ofw, and a significant concentration of
phonons increases in the large bandwidth lifhit-c0),
whereas this overlap is reduced in the super-Ohmic
cases. This is due to the fact that Ohmic baths have
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FIG. 1. I'¥w)/w? for “Ohmic—Lorentzian” density of state¥;(w)=[A\w/ FIG. 3. Same plot as Fig. 2 with the values«f (in units of cm™?) (a) 0.7,

(«?+\?)]. The value ofA, which has units of frequency, is taken to be 1 (b) 1.006,(c) 2. The function (IT})* is negative for 0.218 w,/wy>1.006.
cm L w, is taken to be 1 cit. The values of (in units of cm'%) are (a)

0.6,(b) 1, (c) 1.47,(d) 2. For (M wg)>1.4679, (1T45)® becomes negative.

cause the Redfield approach neglects the reaction force of the

system on the batf?*° To make such a thermodynamically
extensive density of modes at low frequencies, unlikeconsistent calculation tractable, it is often necessary to as-
their super-Ohmic counterpartit is in the large band- sume the bandwidth of the bath is larger ttzany time scale
width limit of the bath that most theories become of the Syste[ﬁ5v36 Otherwise, the dynamics become ex-
tractable?>* Furthermore, in most condensed phasegremely complicated and the interesting dephasing behavior
(crysta) systems, the TLS energy is ten to one hundredmay be hopelessly buried. When the timescale separation
times smaller than the cutoff frequency of the bath. Forexists, we expect that the methods described in Sec. Il to be
these reasons, most previous studies have takefw,.  adequate. As we have discussed, for super-Ohmic systems

We may also expect that, for the resonance case in supeflis iS precisely the regime where E@) holds. The question
Ohmic systems, the method outlined in Sec. Il may not b the effects of the resonance is still open, however we

adequate to describe the experimental situation. This is bdelieve that in super-Ohmic systemishich are often the
most realistic for condensed phase physical chenjisthe

violation of Eq.(6) may be very difficult to detect.

VI. VARIATIONAL PROCEDURE

We now turn to a different approach to the problem con-
sidered by LBS. Our shift in focus is necessitated by the
following observations:

(1) The approach of LBS is valid only for a small range
of coupling strengthgcoupling strengths for which second
order perturbation theory is not sufficient to explain TLS
dynamics, and sixth order perturbation theory is unneces-
sary). We would like to have an analytic method that covers
a larger range of coupling strengths, and is flexible enough to
handle both the “real” and “complex” coupling models.

(2) The interpretation of the physical processes con-
tained in the fourth order theory of LBS is difficult. The
interpretation of population relaxation terms is relatively
w straightforward and is expounded in Sec. lll, the Appendix,
1 and further in this section. We have already shown how, for

the particular Hamiltonian(7), the “pure dephasing” rate,
FIG. 2. Same plot for the super-Ohmic density of stdtefw) = (Bw®/ lf_l'é, can _be related_to the pure_dephasing of_states that are
wd)e 0, B is taken to be 1 ciit, w, has the value 1 ciit, and the values  Mixed at first order in perturbation theory. This correspon-
of . (in units of cnm'Y) are(a) 0.1, (b) 0.15, (c) 0.281. dence, we believe, is strictly valid only for potentials of the

I'$(w) /w?
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1514 D. R. Reichman and R. J. Silbey: The relaxation of a two-level system

type (10), which allow no pure dephasing at second order. fi
Can higher order dephasing processes be given interpreta- UIGXF{—(|1><O|+|O><1|)§ - (by=b)|, (78
tions akin to the interpretation of their second order counter- K
parts in the case of more general coupling?

Consider the Hamiltoniafiv) with a (perhaps more real-
istic) modified system—bath couplifig,

H' = 1) 10l +[0)Hiy (1| +[1)Hi (1] (13 A—UTHU=Fi,+V,

where the termiaii’j are bath operators. This type of coupling 5
appears in the stochastic study of Budimir and Skinner. At Hy=a[|1)(1|—|0)(0|]+Hy,
finite temperature, the Bloch equations will not be valid at
fourth order for such a potential. In fact, at equilibrium, it is
simple to show

where{f,} is a set of variational parameters. In t/@,1)
basis, the transformed Hamiltonian is found to be

V=3V, +VO)[[1)(1]-[0)(0]]

o10(0) = Try( 1|exp{ — BH}|0) +(Vo+ Vo =V )|1K0]+ (V,+ V. = V_)|0)(1],
B (X _ _ (79
=f d)\f d'ye“’“’O(Hil(—l)\)Hio(—l'y)), (74
0 0 where
where
~ — 235, (f2lw2) coth Bw, /2
Hij(—ie)=ebH/ e b, (75) o= wge “TKIK k) COMPeKs, (80)

Thus, in the basis of states defined Hy, the equilibrium @0 -
reduced density matrix of the system is not diagonal. We V+=V’i=7 e~ 22kfklo(bd=b) _ =4 (81)
could choose a basis of states that makegg>) vanish, @o

however this seems artificial in light of the fact that even the

fourth order calculation is, strictly speaking, a weak coupling
calculation, and should be rendered in the eigenstates of

Ho.2” The previous point highlights a difficulty of using the
“bare” representation even at fourth order. We WOU!d like to\ne have again identified the renormalized frequency of the
have a method that incorporates a “dressed” basis that alsystem by the removal of the secular term framAs an

lows for clear physical interpretation of the rate processes. jjjystration of the utility of the dressed picture, we note that
(3) Based on the point§l) and (2), we note that the

experimental line shape may, in fact, be given by

vz=§ (he— ) (b +by). (82)

. fi
1 _— by=Db+ —= o,
l(0)==Re jo dte 'Y m(t)), (76) k

where o, is expressed in th®),|1) basis. If we chosd, to

wherep is the dressed dipole operator. Clearly, as shown ir}ninimize the free energy of the system, then we find the
connection with the discussion of dephasing and populatiorﬂ,aniCit equation for the variational constants
relaxation much of the bare relaxation rates at fourth order '

may be expressed in terms of lower order rate expressions
involving states that mix system and bath character. The true  f, —p,
test of the correct calculation of the line shape must, in the
end, come from experiments.
(4) Lastly, the fourth order theory of LBS provides a Thus, at zero temperature we find the second order result
testing ground for the ability of variational methods to repro-
duce the exact, perturbative behavior of a small quantum o g 1 (= T'jw)
mechanical system coupled to quantum reseR/aif. (byby)= p f (@t wg) 9
The models studied by LBS consist of a real coupling 0 0
model[I';(w)=T",(w), see Eqs(31) and(33)], and a complex
coupling modelI';(w)=I"(w), I'y(w)=0]. The real coupling
model is identical to the standard spin-boson mddeé Eq.
(54)] in a basis of states,

~ ~ =1
w w w

1+—Ocoth&tanh& . (83
(O 2 2

(84)

in exact agreement with E¢50). Thus the dressed represen-
tation is able to account for the number of “bath” excitations
present at zero temperature.
Next we show that, for the purpose of calculating relax-
1 1 ation rates, a minimization of the energy of the system is
|0)= v [L)+[R, [1)=—T[IL)—[R). (77 more accurate than a minimization of the free eneegen at
finite temperature Consider the “up” rate constant, calcu-
We employ the variational polaron transformation, utilizedlated from Eq.(79) by the use of the second order Fermi
earlier in the study of the spin-boson probléh, golden rule expressioh,
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o0 . 1 sense that it depends on the choice of the variational con-
Fo—>1=f dte'w°t< [Vz(t)+ > [V+(t)—V—(t)]] stant. We conclude thahe minimization of the system’s en-
o ergy is more accurate in the calculation of weak coupling
1 rates than a minimization of the system’s free enggich
X{VZJF 5 V- _V+]] > would not reproduce Eq32)].
Equation(88) may be expanded to fourth order as

* iz Wy .
=f dte ""0‘< (Vz(t)— — sinh d)(t)} , 1 . .
2 PP == = Co(— wp) by~ Ci(~ wo)dw(g.
w 90
x{vz+7osinh®]>, (85 %0
The label “partial” is now included because we have left out
where some fourth order terms. Note that this is identical to the first

two terms of Eq(34) where the definition39) of Aw® has
been usedsince we are dealing here with the real coupling

We chose the variational constants to minimize the energy di"0del,P2(w)=P(w)]. Thus these terms may be viewed as
the system, which is the zero temperature limit of E&8) second order type expressions oscillating about the shifted
frequency. This gives explicit support to the claim that re-

sumed, dressed expressions will appear in higher order cal-
culations of bare relaxation rates. From E8g) we can find

ixth and higher order contributions to the rate constant by
imple Taylor expansion of the delta function and the renor-

malized frequency. Other fourth order terms can be found

P = 25k ko) (b=b}).

w
fk:hk( 1+ —O

Wi

(86)

Note that in this approximation the frequency shift at seconci
order is given by

® simply by expanding the sind term to third order and in-
. Tile) COthT cluding all cross products in the correlation function. This
Awf,?r:wofo dw “otag? (87)  will contribute terms akin to the mixing of first and third

order amplitudes as outlined in the Appendix. Note, however,
which differs from the exact result E¢39) by the form of  that these terms cannot be identical to the remaining terms in
the energy denominator. This error can be viewed as th&d. (39). This is due to the fact that second order rates cal-
failure to incorporate a minimization of the energybnth  culated from Eq(76) obey
the ground and excited states of the system. An energy mini-
mization of the excited state of the system yields ERf) K.= Tos_ - Bag 91)
with a minus sign in the denominator. In fact, if we heuris- | S
tically replacef2 with f2f¢, wheref{ represents a variational
constanfequivalent to Eq(86)] for energy minimization in
the ground state, antf represents a variational constant for

energy minimization in the system’s excited state, then Eqéisely why the equilibrium constant of E¢91) differs from

.(3.9) would be reproduced e>_<ac.tly at second order, as long The equilibrium rate constant defined as the ratio of rates
it is understood that the principle part of the sum is to be

taken(see Sec. V for a discussipn given by Eq.(34) and its “down” rate counterpart at fourth
Using Eq.('86) in Eq. (85), we calculate terms arising order. The equilibrium constant given by H§1) is a prop-

from the lowest order expansion of sidh findin erty of the dressed, not the bare, basis.
P 9 We now turn to a calculation of the dephasing properties

that is, the equilibrium constant defined by the quotient of
the dressed rate constants is given by a Boltzmann factor
containing the renormalized frequency. This illustrates pre-

[partiall_ ™ wy ) in the dressed basis. In the transformed picture, the pure
o= ) 1+250_0+ o2 dephasing rate may be calculated with second order pertur-
0 bation theory as
X 2 [h?n(@) 8(w— o), (88) wd [ o2
K pd:?f dt| (cosh®(t)cosh®)— —
— o0 (,00

where “partial” is used to indicate that terms of fourth and
higher order involvingd?"**, n=1 arising from the expan- 0% (=

sion of sinh® have been omitted. At second order in the =2 Jlm[COShf(t)_l]v (92)
coupling we can make the replacement=,, and we find

. where
e =272 |hd?n(w) 8w —wo)=Ca(~wo) (89 fo
. (COSwt coth——i sin wt)
in exact agreement with Eq32). While we expect this g(t)=if dol (o) 2
agreement based on the fact that at second order we are 27— ! (w+ @g)?
essentially using bare states, the result is not obvious, in the (93
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1516 D. R. Reichman and R. J. Silbey: The relaxation of a two-level system

Note that the pure dephasing rate is zero at second order, .
again due to the fact that the second order expansion of the B=
transformed results are really bare results, and should agree

with standard second order results in the basidHgf At 1, is the unit operator for the bath. The expressions\or

i
1b—w—0§ [hl (b +by) |- (97)

fourth order, we find and f, are unchanged. We find that the pure dephasing for
. R R this model
w o0 C C —
rg="20 [, SHeeCe) (94) @3 (-
T Jo (0+ o) de:7 f_wdt[coshg(t)—l]

where the definition(30) has been used fcfr‘,l(w). For the ">
real coupling model, this expression is identical to E4S) +2@ fw &.(D)sinh £(t)dt 08
and (72) except for the denominatdif the integration by w(z) —w 1(Bsinh &(ydt. %8)

parts_ in Eq.(72) is valld,_see Sec. ¥ Again, as in the d|s—_ Note that the dephasing rate in the complex coupling model
cussion of the renormalized frequency, the two expressions

would be identical if, in Eq(85), we replaced? with fEfg. can be expressed as the pure dephasing rate of the real cou-

We now discuss how the technique described earlier ir?)“ng model plus an additional term. When expanded to

this section may be applied to the complex coupling mode (Svl}ltr:]héo(rdff O?ri]s ?g&ﬁssllr?goﬂ]r:u? r(tac;I iﬁﬁst):oi:dléz?ou-
of (LBS). This model is of importance because it provides a 2@ ' P

model of dipole with spin-1/2 precessing with Larmor fre- fr:':r? mgdef’uﬁgzoiefsg ?ggo;atreatzt f;”:gﬂ?:g: tlg ?erzirg
guency w, around a fixed magnetic field along tlzeaxis bop '

while being perturbed by equal strength but uncorreIateéeonuenrOI Wslthlitttri]r? b;r?hzesrti;téanon dtggsrz(')tH:VV;?I\;er'in\ima;he
magnetic fields in the two transverse directidfisin this gy spiting ystenti, b

model, the spectral densify(w) is identically zero, that is bath density of states, the results are essentially identical
' P Y2 y ' (with the few modifications discussed in this secjiowe

5 note in passing that the method used to study the complex
Ia(w)= ; hi6(w—w)=0. (95 coupling model may be used to study other physical systems
. . . 40
of interest that have the generalized spin-boson f(@6).
In the spin-boson language, our Hamiltonian for this com-
plex coupling model may be written

® VIlI. CONCLUSION
H=— =2 o+ > wwbib+alay)
k

2 We briefly recap what has been accomplished in this

paper. We have used the study of a two level system linearly
+ hl(al+a.)+ hl(bl+b.). 96 and off-diagonally coupled to a bath of harmonic oscillators
azzk: I (@t a0 UVEk: Il (bt by (%6 conducted by Laird, Budimir, and Skinner to highlight sev-
eral aspects of dynamical calculations that transcend the
weak coupling limit. We have clarified the origin and mean-

iHton ¢ h h hi ing of the finite zero temperature population excitation rate,
Hamiltonian of Eq(54). We have separated the bath into tWo 54 haye shown the relationship between the population

independent sets of modes that cpuple With equal strengt_h ¥ansfer constants calculated by LBS and the standard,
°_”h°9°”a' syst.em operators. This |§'preC|ser the ph_ys'cal‘l)urth-order Fermi golden rule expression. The fourth order
5|t_uat|on that gives _rlse_to the _condeBS). Note that in “pure” dephasing expression, introduced by LBS as a purely
this form, the Ham|lt0n|arg93%) |s_n0_th|ng more than the  5ihematical entity, has been give a physical meaning. In
pseudo-JahnTeller systeni® This insight allows Us 10  cqain instances, this rate has been shown to be derivable

chose a dressing transformation from an impressive set G, the second order Redfield expression for pure dephas-
methods that have been applied to this and similar problem%g, which means that, in these instances, the expression de-

As discussed by Alper and Silbé&ya transformation of the 0 for *pure” dephasing by LBS must remain positive,
form (78), coupled with second order perturbation the@¥ (o qering 1T,=1/2T,. We have briefly discussed the detec-
was applied to the real coupling moglelccurately accounts o of the violation of the inequality6). Lastly, we have
for the energy spectrum of the Hamiltonié®6). By apply-  giscussed the relationship between the dynamics of the den-
ing the transformatiori78) to the Hamiltonian(96), and by jry matrix calculated in a bare basas is done in LB and
treating the two sets of modes as independent, i.e., a dressed basis, defined by a suitable canonical transforma-
[a,b']=0 tion of the Hamiltonian. This allows for a better understand-
ing of the frequency shift, and rate constant calculated in
for anya andb, we can express the Hamiltoni&®6) in the  (LBS). Lastly, it is shown how a variational method may be

We have written the Hamiltonian in tHe ),|R) basis of Eq.
(77) to show the similarity with the standard spin-boson

form (79), with the modification use to handle the various models studied by Laird and Skin-
- ner. It is shown that, in some instances, the results are very

V+=Vi=@ ef2Ek<fk/wk><ak*ab|§_ ®o , similar to the results ofLBS). The approximate method is

2 wo easier to implement and more flexilfla terms of extensions
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beyond fourth orderthan the method ofLBS), but is not We begin with the standard definition of the transition
able to show a breakdown of the inequali). rate[equivalent to Eq(51)],3!
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lowship. where the tilde refers to the interaction picture. It can be seen
immediately that for the particular form &1’ given in Eq.
APPENDIX (10), the fourth order contributions to EGA1) consist of the

The purpose of this appendix is to calculate the populamixing of first and third order amplitudes, while the contri-
tion excitation(“up” ) rate constant by standard means, andbution from the mixing of the second order amplitudes van-
to show the relationship between this expression and the exshes.
pression calculated ifLBS). ComputingW,_.; to fourth order gives

t t t . . . .
W= — lim jodtljoldtzjozdt?,{e"“Ote"”otle"“otZe‘""0‘3(/\T(tg)A(tz)AT(t)A(tl)>

t—oo
+e—imoteiwotleiwotZe—iwot3<AT(t3)A(tl)AT(t)A(t2)>+e—iwoteiwotle—intZeimot3<AT(tz)A(tl)AT(t)A(t3)>
+ g wotg " Twoliglwotag Twota{ AT(t5) A (1) AT(t) A(1))}. (A2)
Using Wick’s theorerhito break up the four point correlation functions into products of two point functions, and making the
changing of variables;=t—t;,m»=t;—t,,3=t,—t5, we find, (letting t—)

Wy 1=—2 Refo dTlJO defo drg{e 190" C,(71)CF (73) + Cy(75)C (11 + 7o+ 73) + CF (14 + 1) C¥ (7o+ 75)

+Cy(71+ 75)CF (724 73) + C5 (71 + 73+ 73)Co( 1) + CF (71)C (73) ]+ €710 ¥ B[ CY (7,) Cy (71 + 7o+ 73)
+C3(71+ 72)Cy( 7o+ 73) + C1(73)CY (71)C1(71) Cy(73) + Co( 71+ 72)Co( 7o+ 73) + Co (71 + 7+ 73)Cy(72) 1},
(A3)

where the notation of Eq28) has been used. The first no- Even with the removal of the divergent terms, the ex-
table feature of this expression is that part of it diverges apression(A3) appears different from the equivalent expres-
t—oo, The origin of these divergent terms has been discussesion[Eq. (90)] in LBS. If we evaluate Eq(A3) in frequency

by Zwanzig® In fact, one reason for introducing the “Van- space by using the methods outlined in Appendix B of LBS,
Hove limit” (A% constant\—0, t—x) is to eliminate such we find

terms. These terms arise when a virtual state in the third

order amplitude coincides with the initigtea) state from 1 ~

which the transition is made. If we make the restriction that ~ Wo_1=7— {wg [ P2(wp) — Pa( — wp) ]+ Ci(— wp)

the virtual states are to be distinct from the states physically

involved in the transition, then these terms may be X[P1(wg) — P1(— wo) ]+ PL(— wo)[ C1(wp)
neglected? It is interesting to note that the divergent terms . - ,
have the form —C1(= )] 2C1(— w) P1(wo) (A5)

1\ ~ (2 in the notation of Eqs(29), (30), and(35)—(37). This result
_(T_l) ({2[U(t.0[0)[%)? (A4) s identical to Eq.(34).

We may ask why the rate calculated by the method out-
ast—o. Here, 1T, is the sum of “up” and “down” rate  lined in Sec. Il naturally avoids the divergence problems
constants, and|(1]U(t,0)|0)]) is the thermally averaged associated with EqIA3). To investigate this, we recast the
transition probability for a transition to occur between theproblem by projecting the Liouville equation onto the system
ground and excited states of the system. states’ We find,
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