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On the relaxation of a two-level system: Beyond the weak-coupling
approximation

David R. Reichman and Robert J. Silbey
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 24 August 1995; accepted 5 October 1995!

The model of two nondegenerate quantum levels coupled linearly and off-diagonally to a bath of
quantum mechanical harmonic oscillators studied previously by Laird, Budimir, and Skinner is
re-examined. Interpretations are made for both the fourth order population relaxation and dephasing
processes. Some of the methods used are applied to the standard spin-boson problem. The question
of experimental detection of predicted phenomena is discussed. An approximate method, based on
a canonical transformation of the original Hamiltonian is proposed to study the problem. ©1996
American Institute of Physics.@S0021-9606~96!50402-7#

I. INTRODUCTION

The study of two quantum mechanical levels coupled to
a heat bath of harmonic oscillators has surfaced in numerous
areas of chemistry and physics for over 30 years.1–4Much of
condensed phase spectroscopy can be reduced to the study of
two nondegenerate levels interacting with a bath of indepen-
dent modes.1,2When second order perturbation theory in the
system–bath coupling is used, equations of motions for the
reduced density matrix elements~Bloch equations! may be
obtained,1,3,5

ṡ00~ t !52k10s00~ t !1k01s11~ t !, ~1!

ṡ11~ t !5k10s00~ t !2k01s11~ t !, ~2!

ṡ10~ t !52@ i ~v01Dv!11/T2#s10~ t !, ~3!

ṡ01~ t !5@ i ~v01Dv!21/T2#s01~ t !, ~4!

wheres i j (t) are the matrix elements of the reduced density
matrix3 ~the density matrix of the ‘‘system’’!, k10 andk01 are
the ‘‘up’’ and ‘‘down’’ rate constants, respectively,v0 is the
natural frequency of the two level system,Dv is the fre-
quency shift of the system induced by the bath, and 1/T2 is
the decay rate of the off-diagonal element of the reduced
density matrix element. The diagonal elements of the re-
duced density matrix are referred to as populations, as they
measure the probability for the system to be measured in the
system states, which are labeled~u0& and u1&!. The off-
diagonal terms are often called coherences, as they are a
measure of the phase coherence between system states. This
set of equations is valid for times such that the initial, non-
exponential behavior has decayed, and the remaining ap-
proach to equilibrium is exponential.

For a wide range of problems, the Bloch equations pro-
vide an exceptionally good description of the dynamics of
two levels coupled to a dissipative bath. This is especially
true in the field of nuclear magnetic resonance, where the
equations were introduced.1,5 When the standard second or-
der approach is adopted, Eqs.~1!–~4! and the parameters
involved have simple, physical interpretations.6,8 For ex-
ample, the equations that govern the time evolution of the
populations have the ‘‘gain–loss’’ form typical of the Pauli

Master equation.7 The ‘‘up’’ and ‘‘down’’ rate constants are
given by standard, second order golden rule expressions.
When the coupling is linear in the coordinate of the bath
modes, these expressions can be understood in terms of the
absorption and emission of phonons of frequencyv0, i.e.,
modes of the bath in resonance with the two-level system
~TLS!. Coupling diagonal in the system states leads to phase
relaxation via the modulation of the energy levels of the
system by the bath.8 Coupling that is off-diagonal in the
system states lead to both changes in population, and to loss
of phase coherence, since the relative phase between system
states must change~in an averaged sense! when the popula-
tions relax. A simple derivation shows the relation, at second
order,1,3,6,8

1

T2
5

1

2T1
1

1

T28
, ~5!

where 1/T2 is the rate of total dephasing of the system, 1/T1
is the rate of population relaxation, and 1/T28 is the ‘‘pure’’
dephasing rate, caused by adiabatic fluctuations that modu-
late the system frequency. Such fluctuations tend to destroy
the phase coherence, thus rendering a positive pure dephas-
ing rate. this leads to the standard relation,

1/T2>1/2T1 . ~6!

This relation has been of great use in the analysis of spec-
troscopic experiments, although it is rigorously valid only to
second order in perturbation theory.

Recently, there have been studies that transcend second
order perturbation theory. Budimir and Skinner performed a
fourth order perturbation theory calculation to determine the
relaxation properties of a TLS linearly coupled, both diago-
nally and off-diagonally, to a Gaussian stochastic bath.9 They
showed that at fourth order, the relation~5! is not valid, and
for some parameters, 1/T2<1/2T1 . Simulations on the same
model were performed by Sevian and Skinner.10 They
showed that even for systems that violate the inequality~6!,
the initial non-Markovian behavior is often short compared
to the asymptotic, exponential relaxation. Reinekeret al., for
a different model of bath fluctuations, also showed that the
breakdown of the inequality~6! is possible.11 Laird, Budimir,
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and Skinner~hereafter denoted LBS!, performed calculations
on a TLS linearly and off-diagonally coupled to a quantum
heat bath of harmonic oscillators.12 Unlike the stochastic
studies, their model is valid at finite temperature. They also
find that the relaxation properties at fourth order are different
than at second order, although the form of the Bloch equa-
tions ~1!–~4! still hold. By using the results of the study of
LBS, Laird and Skinner showed that for the particular model
that reproduces the interesting stochastic results in the limit
of infinite temperature~the ‘‘complex Ohmic–Lorentzian’’
model!, that the inequality~6! breaks down at finite tempera-
ture as well.13 Chang and Skinner refined these calculations
by discarding the assumption that the density matrix is ini-
tially factorized, and included the short time, non-Markovian
relaxation behavior in their study.14 They found once again
that the inequality~6! can be violated. Laird, Chang, and
Skinner have recently shown that such a breakdown is pos-
sible for a ‘‘super-Ohmic’’ model of the heat bath.15

While much work has been done on the calculational
aspects of this problem, little has been done to put the results
on a physical foundation. The second order results are useful
and meaningful in part because physical interpretation can be
found for the processes involved. In the case of a TLS
coupled linearly and off-diagonally to a bath of harmonic
oscillators, we expect the population relaxation rates to de-
pend on the number of phonons in the bath at a given tem-
perature that have a frequencyv0. We expect the absence of
pure dephasing since the system–bath coupling lacks the
ability to cause fluctuations in the system’s natural fre-
quency. No such understanding exists at fourth order. In fact,
based on our knowledge of second order perturbation theory,
many of the fourth order results are surprising. What is the
physical meaning of 1/T28 at fourth order? Why can it be-
come negative in some instances~when system–bath cou-
pling constants are complex! and not in others~real system–
bath coupling parameters!? Why does the frequency shift of
the TLS not agree with the shift inferred from the renormal-
ized energy splitting? How are the fourth-order population
shifts to be interpreted? We will attempt in this note to inter-
pret the fourth order expressions, and thus answer some of
these questions. Along the way, we will touch upon more
familiar problems in the theory of quantum relaxation, such
as the celebrated spin-boson problem.16–24

We will also address the question of experimental mea-
surability of the results obtained in the fourth order calcula-
tions of Laird, Budimir, and Skinner. In doing so, we will
propose an alternate method of study for the ‘‘complex
Ohmic–Lorentzian’’ model of Laird and Skinner. Our meth-
ods and results will provide a first step in producing a unified
view of the dissipative dynamics of a TLS beyond the weak-
coupling limit.

II. REVIEW OF THE PROBLEM

LBS considered the Hamiltonian,12

H5HTLS1Hb1H8, ~7!

where~\51!

HTLS5v0u1&^1u, ~8!

Hb5(
k

~bk
†bk11/2!, ~9!

H85Lu1&^0u1L1u0&^1u, ~10!

L5(
k
hk~bk

†1bk!. ~11!

The Hamiltonian consists of the TLS with excited state
energyv0, a free, harmonic bath, and a coupling that is
off-diagonal in the system states, and linear in the bath nor-
mal mode coordinates. The model is confined to coupling
constants that are either purely real or purely imaginary.

The dynamics for the total density matrix~system
1Bath! is contained in the Liouville equation,

]r~ t !

]t
52 i @H,r~ t !#. ~12!

A Redfield-type formalism4 is then use to calculate equations
of motion for the bare reduced density matrix, defined by
s(t)5Trbr(t). By bare we mean that the states used as a
basis in the perturbation theory are pure system states, as
opposed to ‘‘dressed states’’ that mix system and bath. The
initial conditions are taken to be factorized,

r~0!5s~0! ^ req
b ,

wherereq
b is the equilibrium density matrix of the bath. After

transformation to the interaction picture, the equation of mo-
tion,

s8 ~ t !5R~ t !s̃~ t !, ~13!

where

R~ t !5(
n

R~2n!~ t !, ~14!

with

R~2!~ t !52E
0

t

dt1 Trb@ L̃~ t !L̃~ t1!rb#, ~15!

and

R~4!~ t !5E
0

t

dt1E
0

t1
dt2E

0

t2
dt3$Trb@ L̃~ t !L̃~ t1!L̃~ t2!L̃~ t3!rb#

2Trb@ L̃~ t !L̃~ t1!rb#Trb@ L̃~ t2!L̃~ t3!rb#

2Trb@ L̃~ t !L̃~ t2!rb#@ L̃~ t1!L̃~ t3!rb#

2Trb@ L̃~ t !L̃~ t3!rb#Trb@ L̃~ t1!L̃~ t2!rb#%, ~16!

is found, and then is projected onto the system states. An
equation of the Redfield form results,

s8 aa8~ t !5(
bb8

ei ~a2a82b1b8!v0tRaa8bb8s̃bb8~ t !, ~17!

where
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Raa8bb8[ lim
t→`

@e2 i ~a2ga82b1b8!v0t^au$R~ t !ub&

3^b8u%ua8&#. ~18!

Due to the fact thatH8 is off-diagonal in the system states,
and has zero thermal average, the equations, after transfor-
mation back to the Schro¨dinger picture,

ṡ00~ t !5R0000s00~ t !1R0011s11~ t !, ~19!

ṡ11~ t !5R1100s00~ t !1R0110s11~ t !, ~20!

ṡ10~ t !5~2 iv01R1010!s10~ t !1R1001s01~ t !, ~21!

ṡ01~ t !5~ iv01R0101!s01~ t !1R0110s10~ t !, ~22!

are found to hold to all orders in the coupling constant. LBS
immediately identify the ‘‘up’’ and ‘‘down’’ rate constants as

k1052R0000, ~23!

and

k105R1111, ~24!

respectively. A rotating wave approximation is made to de-
couple the coherences in Eqs.~21! and ~22!. The identifica-
tions

1/T252Re$R1010%, ~25!

and

Dv52Im$R1010%, ~26!

can then be made, relating the dephasing rate and the fre-
quency shift to the relaxation parameters in Eq.~18!. The
effect of the decoupling of the coherences is detailed in LBS.
There it is shown that the definition of 1/T2 is not effected by
such an approximation, while the expression forDv is modi-
fied at fourth order. Once the definitions~23!–~26! are in
place, a perturbative calculation of the rates may be made.

At second order in the coupling strength, the calculation
of the ‘‘up’’ rate constant is quite simple. By using Eq.~15!
and ~23!, the expression for the ‘‘up’’ rate constant

k10
~2!5 lim

t→`

2 ReF E
0

t

dt1e
2 iv0~ t2t1!C1~ t2t1!G , ~27!

is found.C(t2t8) is the standard harmonic oscillator corre-
lation function,

C1~ t2t8!5Trb@rbL~ t !L~ t8!#

5(
k

uhku2$@n~vk!11#e2 ivk~ t2t8!

1n~vk!e
ivk~ t2t8!%, ~28!

andn(vk) is the Bose factor, giving the thermal occupation
of phonons at frequencyvk . It is convenient to express the
rates in the frequency domain. We define

Ĉ1~v!5E
2`

`

eivtC1~t!dt. ~29!

Ĉ1~v! can be expressed as,

Ĉ1~v!52$G1~v!@n~v!11#1G1~2v!n~2v!%, ~30!

where the weighted density of states,G1~v!, is defined as,

G1~v![p(
k

uhku2d~v2vk!. ~31!

The rate, Eq.~27!, may thus be expressed,

Ĉ1~2v0!52G1~v0!n~v0!, ~32!

which, due to the proportionality to the thermal occupation
of phonons atv0, may be interpreted as the absorption of
one vibrational quantum of frequencyv0. The ratek01 and
thus 1/T1, which is defined as 1/T15k011k10 may be calcu-
lated in a similar manner. It is a simple exercise to show that,
at second order, (1/T2)

(2)5(1/2T1)
~2!, demonstrating that for

the model under consideration, the second order dephasing
rate has no contribution from pure dephasing.

The fourth order terms may be calculated by applying
Eqs. ~16!, ~18!, and ~23!–~25!. The tedious details are out-
lined in LBS. At fourth order, a new weighted density of
states,G2~v! comes into play. This density of states, which
arises from terms containing correlation functionsC2(t2t8)
5Trb[rbL(t)L(t8)], has the form,

G2~v![p(
k
hk
2d~v2vk!. ~33!

This density of states gives rise to a correlation function
Ĉ2~v! with the same form as Eq.~30!, with uhku

2 replaced
with hk

2. Since the coupling constants are purely real or
purely imaginary by assumption, the density of statesG2~v!
is real. Note thatG2~v! may vanish for arbitrarily strong
coupling if the coupling constants are chosen to come in
pairs in which one coupling constant is real and the other is
imaginary, but have equal modulus. This model will be dis-
cussed later in the paper.

The fourth order population excitation rate may be ex-
pressed in frequency space as,

k10
~4!5S 1

2p D $v0
21Ĉ2~2v0!@P2~v0!2P2~2v0!#

1Ĉ18~2v0!@P1~v0!2P1~2v0!#1P18~2v0!

3@Ĉ1~v0!2Ĉ1~2v0!#22Ĉ1~2v0!P18~v0!%, ~34!

where

Pi~v!5`E
2`

`

dv8
Ĉi~v8!

v82v
, ~35!

Ĉi8~v!5
]Ĉi~v!

]v
, ~36!

Pi8~v!5`E
2`

`

dv8
Ĉi8~v8!

v82v
, ~37!

where` denotes Cauchy principle part. The coupling and
temperature dependence of this rate expression may be ob-
tained by substituting Eqs.~30!, ~31!, and~33! into Eq. ~34!.
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Note that the zero temperature thermal excitation rate does
not vanish in the limit of zero temperature. In fact,

lim
T→0

k10
~4!5

2G1~v0!

p E
0

`

dv
G18~v!

v1v0
. ~38!

We will return to this result in Sec. III. The total population
relaxation rate~1/T1!

~4! may be computed simply from the
sum of the fourth order ‘‘up’’ and ‘‘down’’ rate constants.

The second order frequency shift may be calculated per-
turbatively from Eq.~26!. The result found by LBS is,

Dv~2!5S 1

2p D @P1~2v0!2P1~v0!#. ~39!

When compared to the ‘‘frequency’’ defined through,

K[e2bṽ, ~40!

whereK is the equilibrium constant, defined as,3,12

K5
s11~`!

s00~`!
~41!

andsi i ~`! is the equilibrium system population in stateu i &,
LBS found that@ṽ2v0#

~2! differs from Dv~2!. That is, the
second order frequency shift is not equal to the frequency
shift obtained from the equilibrium constant. This result will
be discussed in Sec. VI.

Finally, LBS calculate the fourth order contribution to
~1/T2!

~4!. As amathematical meansto test the inequality~6!,
LBS define, in analogy to second order perturbation theory,

1

T28
[

1

T2
2

1

2T1
. ~42!

The fourth order contribution to~1/T2! is found to be,

S 1T28D
~4!

5
1

p
`E

2`

` dv

v22v0
2 H v

]

]v
@Ĉ1~v!Ĉ1~2v!#

2Ĉ2~v!Ĉ2~2v!J . ~43!

It is to be emphasized that within the context of the calcula-
tions performed by LBS, the fourth order definition of ‘‘pure
dephasing’’ is a mathematical tool to study the inequality~6!,
and does not have the physical meaning of its second order
counterpart. Laird and Skinner study two models for the
spectral densities~31! and~33!. In both models, they choose
spectral densities that are Ohmic–Lorentzian in form, i.e.,

G i~v!;
va

v21a2 . ~44!

This type of spectral density reproduces the exponentially
damped decay of correlation functions~in the time domain!
that are produced by Gaussian stochastic theories. The first
model used by Laird and Skinner takes the coupling con-
stants of Eq.~33! to be real. In this case,Ĉ1(v)5Ĉ2(v).
Here, it is found that Eq.~43! is always positive, so that the
inequality ~6! is never violated. For a model with coupling
constants take so thatG2~v! vanishes ~called ‘‘complex

Ohmic–Lorentzian’’!, Laird and Skinner found that Eq.~43!
can become negative, indicating a violation of Eq.~6!. This
model for the coupling is important because it is the physical
realization of a spin-1/2 particle in a static longitudinal mag-
netic field with equal strength but uncorrelated fluctuating
magnetic fields in the two transverse directions.1,9 With the
same ‘‘complex’’ coupling model, Laird, Chang, and Skinner
have shown that Eq.~43! may be negative even if the spec-
tral densities are super-Ohmic. These results will be dis-
cussed in Secs. V and VI.

III. POPULATION RELAXATION

We begin by examining closely the fourth order popula-
tion relaxation terms. Perhaps the most surprising result un-
covered by LBS is the fact that the population excitation rate
~the ‘‘up’’ rate constant! is nonzero at zero temperature. This
result was in fact anticipated by Lindenberg and West25 in
their study of the harmonic oscillator linearly coupled to a
quantum heat bath, and by Kassner26 in his study of corre-
lated initial conditions in the spin-boson problem. All of
these studies have shown that there is residual excited state
population atT50. The origin of this population is easy to
trace in our case. We note that at zero temperature, the equi-
librium density matrix of the entire system1bath complex is
a projection operator for the ground state, assuming that the
ground state may be found. Then,26

req5ucg&^cgu. ~45!

By computing the ground state of Hamiltonian~7! to first
order in the coupling strength, we find

ucg&5N0F12(
k

hks1ak
†

~v01vk!
G uFg

0&, ~46!

whereN0 is a normalization factor, anduFg
0& is the ground

state ofH0, consisting of the direct product of the system
ground state, and the vacuum state of the bath. The following
consequences of the mixing of the system and bath states
may be noted:

~1! The density matrix, for calculations extending be-
yond the strict weak coupling limit, has an expansion in
powers of the coupling strength,27

r~ t !5r~0!~ t !1dr~1!~ t !1d~2!r~2!1••• . ~47!

In a precise treatment, attention must be paid to the various
time scales in the problem,28 so that the ‘‘time’’ appearing in
Eq. ~47! is really a hierarchy of time scales. We will not be
concerned with such a treatment here. In our problem,r~2!~`!
will contain states mixed byH8 at first order in the pertur-
bation. Thus,s~2!~`!, obtained by tracing out the bath de-
grees of freedom, will only contain population in the excited
state of the system,

s~2!~`!5F 1p E
0

` G8~v!dv

~v1v0!
G u1&^1u. ~48!

Note thats~1!~`! is identically zero. By appealing to the
properties of the system–bath coupling in the thermody-
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namic limit, we find that the residual population isO ~N0! in
magnitude, and thus cannot be neglected.29,30

~2! Equation~46! shows that, due to the mixing of states,
bath excitations exist at zero temperature. If we define the
total occupancy of phonons,N~v0!, as

N~v0!5(
k

^ak
†ak&, ~49!

then a simple calculation gives,

N~v0!5
1

p E
0

` G8~v!dv

~v1v0!
, ~50!

which is, at this temperature, equal to the equilibrium system
population.

We now turn to a discussion of the population excitation
rate constant. To see if the rate expression~34! is really a
fourth order extension of Fermi’s golden rule, we compute
the Fermi golden rule rate expression directly31

W0→15Re E
0

`

dt^T01~t!T10
† &e2 iv0t, ~51!

where the transition operator is definedT[H81H8GT, and
G is the zeroth order Green’s function. This calculation is
confined in the Appendix. Some subtleties arise in the calcu-
lation. When properly interpreted,W0→1 is identical to the
expression~34! for k10. This confirms that these rates are
indeed higher order Fermi golden rule expressions.

We may note that cross terms between second order rates
and second order populations are contained within the fourth
order rate expression. For example, the Bloch equation de-
scribing the evolution of the population differencePz(t) has
the form

Ṗz~ t !52
1

T1
@Pz~ t !2Pz~`!#. ~52!

For times (1/T1)
21@t@tb , wheretb is the correlation time

of the bath, a cross term

~1/T1!
~2!Pz

~2!~`! ~53!

contributes to the fourth order expression of 1/T1. The same
argument holds for the individual population transfer rates.
This accounts for the appearance of several terms in Eq.~34!.
For example, at zero temperature, the ‘‘up’’ rate constant has
the same form as the second order expression at finite tem-
perature, with the population of modesn~v0! replaced by the
total number of excited modesN~v0! @see Eqs.~38! and
~49!–~50!#. Thus the rate may be interpreted as the product
of the weighted density of states at the resonance frequency
times the total number of phonons created with the system
excitation.

IV. APPLICATION TO THE SPIN-BOSON PROBLEM

In this section, we apply the methods used in Eqs.~45!
and~48! to compute some equilibrium properties of the stan-
dard spin-boson Hamiltonian.16–24We wish to show that a
direct calculation of the zero temperature localization dia-

gram~as well as relaxation rate and line shift expressions! is
possible by a simple, static application of Rayleigh–
Schrödinger perturbation theory. Our method will reproduce
the localization behavior given by the noninteracting blip
approximation~NIBA !,19 which, for the case of Ohmic dis-
sipation, is quantitatively in error ast→`.21A more rigorous
analysis, based on mapping the spin-boson model with
Ohmic dissipation onto the Ising model with long range in-
teractions, has been carried out by Spohn and Du¨mcke.22We
will be content to show that Eqs.~45! and ~48! are decep-
tively simple, and may be used to extract information that
has been obtained previously by more complicated, dynami-
cal means.

We begin with the spin-boson Hamiltonian~in the nota-
tion of Aslangulet al.19!

H52v0sx1sz(
k
Gk~bk

†1bk!1(
k

vkbk
†bk , ~54!

where, again,\ has been set to one, andsx ,sz are standard
Pauli matrices defined in the basisuL&,uR& of ‘‘left’’ and
‘‘right’’ states. This Hamiltonian describes a tunneling sys-
tem linearly coupled to a bath of harmonic oscillators. The
tunneling system can be envisioned as the lowest two levels
of a symmetric double well potential. In this picture, the
coupling term causes fluctuations in the well depths of the
potential. The case of Ohmic dissipation, which is our focus
here, is defined by a spectral density16

J~v![(
k
Gk
2d~v2vk!5

a

2
ve2v/vc. ~55!

Our goal is to compute the degree of localization at
T50, defined by,19

S~`!5
^sz~`!&

^sz~0!&
. ~56!

Instead of computing the dynamics of the system, and letting
t→`, we use Eq.~45! directly, tracing out the bath degrees
of freedom, and projecting onto the eigenstates ofsz to com-
pute Eq.~56!. It is simple to show thatS~`! is zero until a
critical value of the coupling constanta. We will simply
borrow the resultacritical51 from previous studies.16 To find
the form ofS~`! for coupling constants equal to or greater
thanacritical , we perform a small polaron transformation on
Eq. ~54!, defined by19,20

H̃5UHU†,
~57!

U5expFsz(
k

Gk

vk
~bk

†2bk!G .
The transformed Hamiltonian is given by

H̃5H̃01H̃ int ,

H̃05(
k

vkbk
†bk ,

~58!
H̃ int52v0~B1s11B2s2!,
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B65expF62(
k

Gk

vk
~bk

†2bk!G .
For Ohmic dissipation,̂B6&50. The ~left, right! system
states are now degenerate, and the interaction term cannot
break the degeneracy. A ground state is found by the choice
of the initially prepared state, which now mixes with the
higher energy states throughH̃ int . Choosing the particle to be
initially localized in the left well, the~unnormalized! ground
state is given by

ucg&5uL&u0&2v0uR& (
$n%Þ0

^$n%uB2u0&
( iniv i

u$n%&, ~59!

whereu0& is the vacuum state of the bath, and$n% denotes a
set of phonon occupations of the bath. Applying Eq.~45! and
tracing out the bath degrees of freedom, we find,

^Rus~`!uR&5v0
2(
nÞ0

u^$n%uB2u0&u2

~( iniv i !
2 . ~60!

An explicit calculation of this term is possible, which gives,

^Rus~`!uR&5v0
2E

0

`

dz1E
0

`

dz2e
22S

3H expF(
k

4Gk
2

vk
2 e2vk~z11z2!21G J ,

~61!

where

S5(
k

2Gk
2

vk
2 . ~62!

Note that the energy denominators have been rewritten in a
Laplace transformed form, which introduces the integrals
over z1 and z2. Using the spectral density for the Ohmic
bath, and explicitly calculating the integral, the result, valid
to second order inv0,

S~`!5
1

11S v0

vc
D 2$@~2a21!~2a22!#%21

; a.1,

~63!

is obtained. This result is identical to the result found in
earlier dynamical studies.16,19 The zero temperature relax-
ation rate and line shift could be calculated in a similar man-
ner, without recourse to standard dynamical techniques. We
also note that the method of Spohn and Du¨mcke is also
‘‘nondynamical,’’ in that it does not proceed through the
Liouville equation. This method, although much more com-
plicated, is necessary for obtaining the true long time behav-
ior of the Ohmic spin-boson model.

V. DEPHASING

In the usual second order Redfield approach,3,4 the rela-
tion ~5! holds. The interpretation of Eq.~5! is simple. The
decay of the coherence variable is caused by both energy
relaxation~expressed throughT1! and the~stochastic! modu-

lation of the system energy levels by the bath~expressed
throughT28!. The pure dephasing rate is positive, since the
bath can only increase the rate of phase randomization in the
system states. Generally, at second order, the pure dephasing
rate is expressed,6

Gpd5E
2`

`

dt^$H118 ~t!2H008 ~t!%$H118 2H008 %&, ~64!

whereHii8 is an operator in the bath Hilbert space, obtained
by taking the matrix element of the coupling term diagonal
in the system stateu i & ~herei50,1!. Notice that the correla-
tion function is composed of operators that determine the
instantaneous energy fluctuation induced by the bath on the
system, in agreement with the discussion above. The Hamil-
tonian ~7! contains no diagonal terms in the system–bath
coupling. Thus, at second order, the dephasing rate can be
expressed solely in terms ofT1, i.e., there is no pure dephas-
ing. As discussed in Sec. II, the fourth order dephasing rate
deviates from the second order result. If we continue to view
pure dephasing processes as those arising from diagonal fluc-
tuations~this is the view expressed by Sevian and Skinner10!,
then Eq.~5! is violated at fourth order. An alternative view is
expressed by LBS. They define

1

T28
[

1

T2
2

1

2T1

as a mathematical means to test the inequality~6!. The quan-
tity (1/T28)

(4), expressed in Eq.~43! can become negative for
certain parameters in a specific model, signaling the break-
down of the inequality~6!.

In order to probe the physical meaning of this result, we
rely on the observations made in Secs. II and VI, which
dictate that much of the bare rate expressions can be ex-
pressed and understood in terms of states that mix system
and bath character. We perform a unitary transformation

H̃5U†HU, ~65!

where

U5exp~S!.

S is chosen to diagonalize tha Hamiltonian~7! to first order
by the condition

@HTLS1Hb ,S#52H8. ~66!

In the context of the Hamiltonian~7!, this is referred to as
Fröhlich diagonalization.32 The transformation is given by

S5(
k

1

~vk
22v0

2!
$vk~bk2bk

†!@hks11hk*s2#

1v0~bk1bk
†!@hks12hk*s2#%. ~67!

We will assume for now that the density of states of the
phonon bath does not overlap significantly with the energy
splitting of the~TLS!, so that no divergence problems occur
in Eq. ~67!.33We will return to this point later in this section.
With the transformation~65!, the effective Hamiltonian,H̃,
may be written
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H̃5HTLS1Hb1H̃8,
~68!

H̃85(
k,k8

1

vk8
2

2v0
2 @Ak,k8vk8~bk1bk

†!~bk82bk8
†

!

2Bk,k8v0~bk1bk
†!~bk81bk8

†
!#u1&^1u,

where

Ak,k852i Im~hkhk8
* !,

Bk,k852 Re~hkhk8
* !.

We are now in position to consider the lowest order dynam-
ics of the states

uf̃&5U†uf0&. ~69!

For instance, the first order ground state may be calculated
by expandingU† and applying the expansion to the ground
state ofH01HTLS1Hb . The state~46! is then recovered.

Before rate expressions can be considered, we must re-
move the secular terms from the potentialṼ. To do this, we
place the thermal average ofṼ into HTLS .

18 This will leave
an interaction with zero thermal average, thereby eliminating
spurious divergences that might occur in the calculation of
rate expressions. We find

^Ṽ&5H 22v0(
k

uhku2

~vk
22v0

2!
coth

bvk

2 J u1&^1u. ~70!

If we use the identity

1

vk
22v0

2 5 lim
h→0

1

@vk
22~v02 ih!2#

5`
1

vk
22v0

22 i
p

v0
d~vk2v0!

to express the diagonal matrix element of^Ṽ& as

^Ṽ&1152
v0

p
`E

0

` 2G1~v!

~v22v0
2!
coth

bv

2

12iG~v0!coth
bv0

2
. ~71!

The real part is the second order frequency shift, and the
imaginary part is the second order dephasing rate~which is
equal to the second order population relaxation rate!. Using
the notation in Eqs.~30!–~33! and~35!, these results are seen
to be identical to Eq.~39! and the discussion following Eq.
~32!, respectively.

We note from the transformed Hamiltonian~68! that the
basis of states~69! undergoes only pure dephasing. This is
not quite correct, however, since the factorized initial condi-
tions in the basis ofH0 are correlated initial conditions for
the states~69!. This will also lead to population relaxation at
fourth order, although we will not pursue this avenue. We
now compute the pure dephasing rate of the states~69! to
lowest~fourth! order. We use the Redfield formula~64!, with
the effective potential

Ṽ2^Ṽ&.

The result is

Gpd
~4!5

1

p E
2`

`

dvF ~v21v0
2!

~v22v0
2!2

Ĉ1~v!Ĉ1~2v!

2
1

~v22v0
2!
Ĉ2~v!Ĉ2~2v!G

5
1

p E
2`

` dv

~v22v0
2! H v

]

]v
@Ĉ1~v!Ĉ1~2v!#

2Ĉ2~v!Ĉ2~2v!J , ~72!

where we have use the fact that, by assumption,v0 does not
overlapG1~v! significantly, so that the integration by parts
above is valid. The amazing feature of Eq.~72! is that it is
identical in form to the fourth order result~43! for the
‘‘pure’’ dephasing (1/T28)

(4) that was introduced solely as a
mathematical means to test the validity of the inequality~6!.
We can make the following observations:

~1! The fact that Eqs.~72! and ~43! agree whenv0 does
not significantly overlapG1~v! @or more precisely
Ĉ1(v)Ĉ1(2v)# shows that, in these instances, the in-
equality ~6! holds, and (1/T28)

(4) may be interpreted as
the pure dephasing of the states~69!. This means that, in
cases wherev0 does not significantly overlap with
G1~v!, the expression~43! is derivable from the second
order formula ~64!. In these cases, the inequality~6!
must hold,regardless of the form of Cˆ 1~v! and Ĉ2~v!.

~2! The strange result@the negativity of Eq.~43!# is thus a
consequence of a resonance phenomena, wherein the re-
sult ~72! is not valid. Heuristically, we may view this
behavior as a consequence of the lack of stability of the
potential~68!, which, as a significant number of phonons
reach resonance with the TLS, gives rise to ‘‘imaginary’’
modes.

~3! The numerical results of Laird and Skinner, and Laird,
Chang, and Skinner support the conclusion of point
~1!. If we plot the high temperature behavior of
Ĉ1(v)Ĉ1(2v) ~essentially@G1~v!2/v2#!, we see that the
negative dephasing occursonlywhen there is significant
overlap betweenv0 andG1~v!2/v2. In Fig. 1G1

2~v!/v2 is
plotted for the ‘‘Ohmic–Lorentzian’’ density of states
~G1~v!}@lv/~l21v2!#! for various values ofl and a
value of v0 equal to one. In Figs. 2 and 3 the same
function is plotted for the super-Ohmic density of states
(G1(v)} @v3e2v/vc/vc

3#) that corresponds to a Debye
bath in the deformation potential approximation. A fun-
damental difference inG1

2~v!/v2 between the two types
of spectral functions can be noted. For the Ohmic bath,
the overlap ofv0 and a significant concentration of
phonons increases in the large bandwidth limit~l→`!,
whereas this overlap is reduced in the super-Ohmic
cases. This is due to the fact that Ohmic baths have
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extensive density of modes at low frequencies, unlike
their super-Ohmic counterparts.16 It is in the large band-
width limit of the bath that most theories become
tractable.20,34 Furthermore, in most condensed phase
~crystal! systems, the TLS energy is ten to one hundred
times smaller than the cutoff frequency of the bath. For
these reasons, most previous studies have takenvc@v0.

We may also expect that, for the resonance case in super-
Ohmic systems, the method outlined in Sec. II may not be
adequate to describe the experimental situation. This is be-

cause the Redfield approach neglects the reaction force of the
system on the bath.23,35 To make such a thermodynamically
consistent calculation tractable, it is often necessary to as-
sume the bandwidth of the bath is larger thanany time scale
of the system.35,36 Otherwise, the dynamics become ex-
tremely complicated and the interesting dephasing behavior
may be hopelessly buried. When the timescale separation
exists, we expect that the methods described in Sec. II to be
adequate. As we have discussed, for super-Ohmic systems
this is precisely the regime where Eq.~6! holds. The question
of the effects of the resonance is still open, however we
believe that in super-Ohmic systems~which are often the
most realistic for condensed phase physical chemistry!, the
violation of Eq.~6! may be very difficult to detect.

VI. VARIATIONAL PROCEDURE

We now turn to a different approach to the problem con-
sidered by LBS. Our shift in focus is necessitated by the
following observations:

~1! The approach of LBS is valid only for a small range
of coupling strengths~coupling strengths for which second
order perturbation theory is not sufficient to explain TLS
dynamics, and sixth order perturbation theory is unneces-
sary!. We would like to have an analytic method that covers
a larger range of coupling strengths, and is flexible enough to
handle both the ‘‘real’’ and ‘‘complex’’ coupling models.

~2! The interpretation of the physical processes con-
tained in the fourth order theory of LBS is difficult. The
interpretation of population relaxation terms is relatively
straightforward and is expounded in Sec. III, the Appendix,
and further in this section. We have already shown how, for
the particular Hamiltonian~7!, the ‘‘pure dephasing’’ rate,
1/T28 , can be related to the pure dephasing of states that are
mixed at first order in perturbation theory. This correspon-
dence, we believe, is strictly valid only for potentials of the

FIG. 1. G1
2~v!/v2 for ‘‘Ohmic–Lorentzian’’ density of statesG1~v!5@Alv/

~v21l2!#. The value ofA, which has units of frequency, is taken to be 1
cm21. v0 is taken to be 1 cm21. The values ofl ~in units of cm21! are ~a!
0.6, ~b! 1, ~c! 1.47, ~d! 2. For ~l/v0!.1.4679, (1/T28)

(4) becomes negative.

FIG. 2. Same plot for the super-Ohmic density of statesG1(v) 5 (Bv3/
v0
3)e2v/v0. B is taken to be 1 cm21, v0 has the value 1 cm

21, and the values
of vc ~in units of cm21! are ~a! 0.1, ~b! 0.15, ~c! 0.281.

FIG. 3. Same plot as Fig. 2 with the values ofvc ~in units of cm21! ~a! 0.7,
~b! 1.006,~c! 2. The function (1/T28)

(4) is negative for 0.218.vc/v0.1.006.
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type ~10!, which allow no pure dephasing at second order.
Can higher order dephasing processes be given interpreta-
tions akin to the interpretation of their second order counter-
parts in the case of more general coupling?

Consider the Hamiltonian~7! with a ~perhaps more real-
istic! modified system–bath coupling,6

H85u1&H108 ^0u1u0&H018 ^1u1u1&H118 ^1u, ~73!

where the termsHi j8 are bath operators. This type of coupling
appears in the stochastic study of Budimir and Skinner. At
finite temperature, the Bloch equations will not be valid at
fourth order for such a potential. In fact, at equilibrium, it is
simple to show

s10~`!5Trb^1uexp$2bH%u0&

5E
0

b

dlE
0

l

dgegv0^H118 ~2 il!H108 ~2 ig!&, ~74!

where

Hi j8 ~2 i e!5eeHbHi j8 e
2eHb. ~75!

Thus, in the basis of states defined byH0, the equilibrium
reduced density matrix of the system is not diagonal. We
could choose a basis of states that makess10~`! vanish,
however this seems artificial in light of the fact that even the
fourth order calculation is, strictly speaking, a weak coupling
calculation, and should be rendered in the eigenstates of
H0.

27 The previous point highlights a difficulty of using the
‘‘bare’’ representation even at fourth order. We would like to
have a method that incorporates a ‘‘dressed’’ basis that al-
lows for clear physical interpretation of the rate processes.

~3! Based on the points~1! and ~2!, we note that the
experimental line shape may, in fact, be given by

I ~v!5
1

p
Re E

0

`

dte2 ivt^m̃m̃~ t !&, ~76!

wherem̃ is the dressed dipole operator. Clearly, as shown in
connection with the discussion of dephasing and population
relaxation much of the bare relaxation rates at fourth order
may be expressed in terms of lower order rate expressions
involving states that mix system and bath character. The true
test of the correct calculation of the line shape must, in the
end, come from experiments.

~4! Lastly, the fourth order theory of LBS provides a
testing ground for the ability of variational methods to repro-
duce the exact, perturbative behavior of a small quantum
mechanical system coupled to quantum reservoir.20,37

The models studied by LBS consist of a real coupling
model@G1~v!5G2~v!, see Eqs.~31! and~33!#, and a complex
coupling model@G1~v![G~v!, G2~v!50#. The real coupling
model is identical to the standard spin-boson model@see Eq.
~54!# in a basis of states,

u0&5
1

&

@ uL&1uR&], u1&5
1

&

@ uL&2uR&]. ~77!

We employ the variational polaron transformation, utilized
earlier in the study of the spin-boson problem,20

U5expF2~ u1&^0u1u0&^1u!(
k

f k
vk

~bk2bk
1!G , ~78!

where $ f k% is a set of variational parameters. In theu0&,u1&
basis, the transformed Hamiltonian is found to be

H̃5U1HU5H̃01Ṽ,

H̃05ṽ0@ u1&^1u2u0&^0u#1Hb ,

Ṽ5 1
2~V11V2!@ u1&^1u2u0&^0u#

1~Vz1V22V1!u1&^0u1~Vz1V12V2!u0&^1u,

~79!

where

ṽ05v0e
22(k~ f k

2/vk
2
! cothbvk/2, ~80!

V15V2* 5
v0

2 H e22(k~ f k /vk!~bk2bk
1

!2
ṽ0

v0
J , ~81!

Vz5(
k

~hk2 f k!~bk1bk
1!. ~82!

We have again identified the renormalized frequency of the
system by the removal of the secular term fromṼ. As an
illustration of the utility of the dressed picture, we note that

b̃k5bk1
f k
vk

sx ,

wheresx is expressed in theu0&,u1& basis. If we chosef k to
minimize the free energy of the system, then we find the
implicit equation for the variational constants,

f k5hkS 11
ṽ0

vk
coth

bvk

2
tanh

bṽ0

2 D 21

. ~83!

Thus, at zero temperature we find the second order result

^b̃k
†b̃k&5

1

p E
0

` G18~v!

~v1v0!
dv, ~84!

in exact agreement with Eq.~50!. Thus the dressed represen-
tation is able to account for the number of ‘‘bath’’ excitations
present at zero temperature.

Next we show that, for the purpose of calculating relax-
ation rates, a minimization of the energy of the system is
more accurate than a minimization of the free energy,even at
finite temperature. Consider the ‘‘up’’ rate constant, calcu-
lated from Eq.~79! by the use of the second order Fermi
golden rule expression,3
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G0→15E
2`

`

dtei ṽ0tK HVz~ t !1
1

2
@V1~ t !2V2~ t !#J

3HVz1
1

2
@V22V1#J L

5E
2`

`

dte2 i ṽ0tK HVz~ t !2
v0

2
sinhF~ t !J

3HVz1
v0

2
sinhFJ L , ~85!

where

F5e2(k~ f k /vk!~bk2bk
†
!.

We chose the variational constants to minimize the energy of
the system, which is the zero temperature limit of Eq.~83!,

f k5hkS 11
ṽ0

vk
D 21

. ~86!

Note that in this approximation the frequency shift at second
order is given by

Dvvar
~2!5v0E

0

`

dv

G1~v! coth
bv

2

~v1v0!
2 , ~87!

which differs from the exact result Eq.~39! by the form of
the energy denominator. This error can be viewed as the
failure to incorporate a minimization of the energy inboth
the ground and excited states of the system. An energy mini-
mization of the excited state of the system yields Eq.~86!
with a minus sign in the denominator. In fact, if we heuris-
tically replacef k

2 with f k
gf k

e, wheref k
g represents a variational

constant@equivalent to Eq.~86!# for energy minimization in
the ground state, andf k

e represents a variational constant for
energy minimization in the system’s excited state, then Eq.
~39! would be reproduced exactly at second order, as long as
it is understood that the principle part of the sum is to be
taken~see Sec. V for a discussion!.

Using Eq. ~86! in Eq. ~85!, we calculate terms arising
from the lowest order expansion of sinhF, finding

G0→1
@partial#5

p

2 S 112
v0

ṽ0
1

v0
2

ṽ0
2D

3(
k

uhku2n~vk!d~vk2ṽ0!, ~88!

where ‘‘partial’’ is used to indicate that terms of fourth and
higher order involvingF2n11, n>1 arising from the expan-
sion of sinhF have been omitted. At second order in the
coupling we can make the replacementv05ṽ0, and we find

G0→1
~2! 52p(

k
uhku2n~vk!d~vk2v0![Ĉ1~2v0! ~89!

in exact agreement with Eq.~32!. While we expect this
agreement based on the fact that at second order we are
essentially using bare states, the result is not obvious, in the

sense that it depends on the choice of the variational con-
stant. We conclude thatthe minimization of the system’s en-
ergy is more accurate in the calculation of weak coupling
rates than a minimization of the system’s free energy, @which
would not reproduce Eq.~32!#.

Equation~88! may be expanded to fourth order as

G0→1
@partial#,~4!52

1

v0
Ĉ1~2v0!Dvvar

~2!2Ĉ18~2v0!Dvvar
~2! .

~90!

The label ‘‘partial’’ is now included because we have left out
some fourth order terms. Note that this is identical to the first
two terms of Eq.~34! where the definition~39! of Dv~2! has
been used@since we are dealing here with the real coupling
model,P2(v)5P1(v)#. Thus these terms may be viewed as
second order type expressions oscillating about the shifted
frequency. This gives explicit support to the claim that re-
sumed, dressed expressions will appear in higher order cal-
culations of bare relaxation rates. From Eq.~88! we can find
sixth and higher order contributions to the rate constant by
simple Taylor expansion of the delta function and the renor-
malized frequency. Other fourth order terms can be found
simply by expanding the sinhF term to third order and in-
cluding all cross products in the correlation function. This
will contribute terms akin to the mixing of first and third
order amplitudes as outlined in the Appendix. Note, however,
that these terms cannot be identical to the remaining terms in
Eq. ~39!. This is due to the fact that second order rates cal-
culated from Eq.~76! obey

Keq[
G0→1

G1→0
5e2bṽ0, ~91!

that is, the equilibrium constant defined by the quotient of
the dressed rate constants is given by a Boltzmann factor
containing the renormalized frequency. This illustrates pre-
cisely why the equilibrium constant of Eq.~91! differs from
the equilibrium rate constant defined as the ratio of rates
given by Eq.~34! and its ‘‘down’’ rate counterpart at fourth
order. The equilibrium constant given by Eq.~91! is a prop-
erty of the dressed, not the bare, basis.

We now turn to a calculation of the dephasing properties
in the dressed basis. In the transformed picture, the pure
dephasing rate may be calculated with second order pertur-
bation theory as

Gpd5
v0
2

2 E
2`

`

dtF ^coshF~ t !coshF&2
ṽ0
2

v0
2G

5
ṽ0
2

2 E
2`

`

@coshj~ t !21#, ~92!

where

j~ t !5
4

p E
2`

`

dvG1~v!

S cosvt coth
bv

2
2 i sin vt D

~v1ṽ0!
2 .

~93!
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Note that the pure dephasing rate is zero at second order,
again due to the fact that the second order expansion of the
transformed results are really bare results, and should agree
with standard second order results in the basis ofH0. At
fourth order, we find

Gpd
~4!5

4v0
2

p E
0

`

dv
Ĉ1~v!Ĉ1~2v!

~v1v0!
4 , ~94!

where the definition~30! has been used forĈ1~v!. For the
real coupling model, this expression is identical to Eqs.~43!
and ~72! except for the denominator@if the integration by
parts in Eq.~72! is valid, see Sec. V#. Again, as in the dis-
cussion of the renormalized frequency, the two expressions
would be identical if, in Eq.~85!, we replacedf k

2 with f k
ef k

g.
We now discuss how the technique described earlier in

this section may be applied to the complex coupling model
of ~LBS!. This model is of importance because it provides a
model of dipole with spin-1/2 precessing with Larmor fre-
quencyv0 around a fixed magnetic field along thez-axis
while being perturbed by equal strength but uncorrelated
magnetic fields in the two transverse directions.1,9 In this
model, the spectral densityG2~v! is identically zero, that is

G2~v!5(
k
hk
2d~v2vk!50. ~95!

In the spin-boson language, our Hamiltonian for this com-
plex coupling model may be written

H52
v0

2
sx1(

k
vk~bk

†bk1ak
†ak!

1sz(
k

uhku~ak
†1ak!1sy(

k
uhku~bk

†1bk!. ~96!

We have written the Hamiltonian in theuL&,uR& basis of Eq.
~77! to show the similarity with the standard spin-boson
Hamiltonian of Eq.~54!. We have separated the bath into two
independent sets of modes that couple with equal strength to
orthogonal system operators. This is precisely the physical
situation that gives rise to the condition~95!. Note that in
this form, the Hamiltonian~96! is nothing more than the
pseudo-Jahn–Teller system.38,39 This insight allows us to
chose a dressing transformation from an impressive set of
methods that have been applied to this and similar problems.
As discussed by Alper and Silbey,39 a transformation of the
form ~78!, coupled with second order perturbation theory~as
was applied to the real coupling model! accurately accounts
for the energy spectrum of the Hamiltonian~96!. By apply-
ing the transformation~78! to the Hamiltonian~96!, and by
treating the two sets of modes as independent, i.e.,

@a,b†#50

for anya andb, we can express the Hamiltonian~96! in the
form ~79!, with the modification

V15V2* 5
v0

2 Fe22(k~ f k /vk!~ak2ak
†
!B̂2

ṽ0

v0
G ,

B̂5F1b2 i

v0
(
k

uhku~bk
†1bk!G . ~97!

1b is the unit operator for the bath. The expressions forVz

and f k are unchanged. We find that the pure dephasing for
this model

Gpd5
ṽ0
2

2 E
2`

`

dt@coshj~ t !21#

12
ṽ0
2

v0
2 E

2`

`

Ĉ1~ t !sinh j~ t !dt. ~98!

Note that the dephasing rate in the complex coupling model
can be expressed as the pure dephasing rate of the real cou-
pling model plus an additional term. When expanded to
fourth order, an expression similar to Eqs.~43! and ~72!
~with Ĉ2~v!50! is found. In both the real and complex cou-
pling models, the dephasing rate at fourth order is greater
than the population relaxation rate, in contrast to results
found with the bare perturbation theory. However, when the
energy splitting of the system,v0, does not overlap with the
bath density of states, the results are essentially identical
~with the few modifications discussed in this section!. We
note in passing that the method used to study the complex
coupling model may be used to study other physical systems
of interest that have the generalized spin-boson form~96!.40

VII. CONCLUSION

We briefly recap what has been accomplished in this
paper. We have used the study of a two level system linearly
and off-diagonally coupled to a bath of harmonic oscillators
conducted by Laird, Budimir, and Skinner to highlight sev-
eral aspects of dynamical calculations that transcend the
weak coupling limit. We have clarified the origin and mean-
ing of the finite zero temperature population excitation rate,
and have shown the relationship between the population
transfer constants calculated by LBS and the standard,
fourth-order Fermi golden rule expression. The fourth order
‘‘pure’’ dephasing expression, introduced by LBS as a purely
mathematical entity, has been give a physical meaning. In
certain instances, this rate has been shown to be derivable
from the second order Redfield expression for pure dephas-
ing, which means that, in these instances, the expression de-
rived for ‘‘pure’’ dephasing by LBS must remain positive,
rendering 1/T2>1/2T1 . We have briefly discussed the detec-
tion of the violation of the inequality~6!. Lastly, we have
discussed the relationship between the dynamics of the den-
sity matrix calculated in a bare basis~as is done in LBS!, and
a dressed basis, defined by a suitable canonical transforma-
tion of the Hamiltonian. This allows for a better understand-
ing of the frequency shift, and rate constant calculated in
~LBS!. Lastly, it is shown how a variational method may be
use to handle the various models studied by Laird and Skin-
ner. It is shown that, in some instances, the results are very
similar to the results of~LBS!. The approximate method is
easier to implement and more flexible~in terms of extensions
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beyond fourth order! than the method of~LBS!, but is not
able to show a breakdown of the inequality~6!.
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APPENDIX

The purpose of this appendix is to calculate the popula-
tion excitation~‘‘up’’ ! rate constant by standard means, and
to show the relationship between this expression and the ex-
pression calculated in~LBS!.

We begin with the standard definition of the transition
rate @equivalent to Eq.~51!#,31

W0→15 lim
t→`

d

dt
^u^1uŨ~ t,0!u0&u2&, ~A1!

where the tilde refers to the interaction picture. It can be seen
immediately that for the particular form ofH8 given in Eq.
~10!, the fourth order contributions to Eq.~A1! consist of the
mixing of first and third order amplitudes, while the contri-
bution from the mixing of the second order amplitudes van-
ishes.

ComputingW0→1 to fourth order gives

W0→152 lim
t→`

E
0

t

dt1E
0

t1
dt2E

0

t2
dt3$e

2 iv0teiv0t1eiv0t2e2 iv0t3^L†~ t3!L~ t2!L
†~ t !L~ t1!&

1e2 iv0teiv0t1eiv0t2e2 iv0t3^L†~ t3!L~ t1!L
†~ t !L~ t2!&1e2 iv0teiv0t1e2 iv0t2eiv0t3^L†~ t2!L~ t1!L

†~ t !L~ t3!&

1eiv0te2 iv0t1eiv0t2e2 iv0t3^L†~ t3!L~ t2!L
†~ t1!L~ t !&%. ~A2!

Using Wick’s theorem2 to break up the four point correlation functions into products of two point functions, and making the
changing of variablest15t2t1 ,t25t12t2 ,t35t22t3 , we find, ~letting t→`!

W0→1522 ReE
0

`

dt1E
0

`

dt2E
0

`

dt3$e
2 iv0~t12t3!@C1~t1!C1* ~t3!1C2~t2!C2* ~t11t21t3!1C1* ~t11t2!C1* ~t21t3!

1C1~t11t2!C1* ~t21t3!1C2* ~t11t21t3!C2~t2!1C1* ~t1!C1* ~t3!#1e2 iv0~t11t3!@C1* ~t2!C1~t11t21t3!

1C2* ~t11t2!C2~t21t3!1C1~t3!C1* ~t1!C1~t1!C1~t3!1C2~t11t2!C2~t21t3!1C1~t11t21t3!C1~t2!#%,

~A3!

where the notation of Eq.~28! has been used. The first no-
table feature of this expression is that part of it diverges as
t→`. The origin of these divergent terms has been discussed
by Zwanzig.30 In fact, one reason for introducing the ‘‘Van-
Hove limit’’ ~l2t constant,l→0, t→`! is to eliminate such
terms. These terms arise when a virtual state in the third
order amplitude coincides with the initial~real! state from
which the transition is made. If we make the restriction that
the virtual states are to be distinct from the states physically
involved in the transition, then these terms may be
neglected.42 It is interesting to note that the divergent terms
have the form

2S 1T1D
~2!

^u^1uŨ~ t,0!u0&u2&~2! ~A4!

as t→`. Here, 1/T1 is the sum of ‘‘up’’ and ‘‘down’’ rate
constants, and̂ u^1uŨ(t,0)u0&u2& is the thermally averaged
transition probability for a transition to occur between the
ground and excited states of the system.

Even with the removal of the divergent terms, the ex-
pression~A3! appears different from the equivalent expres-
sion @Eq. ~90!# in LBS. If we evaluate Eq.~A3! in frequency
space by using the methods outlined in Appendix B of LBS,
we find

W0→15
1

2p
$v0

21@P2~v0!2P2~2v0!#1Ĉ18~2v0!

3@P1~v0!2P1~2v0!#1P18~2v0!@Ĉ1~v0!

2Ĉ1~2v0!#22Ĉ1~2v0!P18~v0! ~A5!

in the notation of Eqs.~29!, ~30!, and~35!–~37!. This result
is identical to Eq.~34!.

We may ask why the rate calculated by the method out-
lined in Sec. II naturally avoids the divergence problems
associated with Eq.~A3!. To investigate this, we recast the
problem by projecting the Liouville equation onto the system
states.41 We find,
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Ṗ~ t !5K ~ t !P~ t !, ~A6!

where

P~ t !5F s00~ t !
s10~ t !
s01~ t !
s11~ t !

G ,
K ~ t !5Ȧ~ t !A21~ t !,

A~ t !5FG0000~ t ! G0010~ t ! G1000~ t ! G1001~ t !

G0010~ t ! G0011~ t ! G1010~ t ! G1011~ t !

G0100~ t ! G0101~ t ! G1100~ t ! G1101~ t !

G0110~ t ! G0111~ t ! G1110~ t ! G1111~ t !

G ,
and

Gi jkl ~ t !5^~U†! i j ~ t !Ukl~ t !&.

By noting the formK (t) must take for the Bloch equations to
hold, we find, ast→`

Ȧ~ t !5BA~ t !, ~A7!

where

B

5S 2k10 0 0 k01

0 2H 1

T2
1 i ~v01Dv!J 0 0

0 0 2H 1

T2
2 i ~v01Dv!J 0

k10 0 0 2k01

D .

Note that at orders higher than fourth, the matrixB must be
modified to incorporate the coupling of coherences. From
Eq. ~A7!, we find the implicit equation for the ‘‘up’’ rate,

k105
1

T1
^u^1uŨ~`,0!u0&u2&1

d

dt
^u^1uŨ~`,0!u0&u2&.

~A8!

The noteworthy feature of Eq.~A8! is that the rate explicitly
contains terms canceling the divergence associated with un-
restricted summation over virtual states.42 We also note that
Eq. ~A7! provides a much easier evaluation of the rate ex-
pression than the method of LBS since no commutators are
involved. In fact, Eqs.~A3! and~A8! show that the standard
definition @Eqs.~51! or ~A1!# is all that is needed, since the
remaining term merely serves to cancel the divergence due to
the unrestricted summation over virtual states. We thus could
~much more easily! compute 1/T2 as

S 1T2D
~4!

5ReH Ġ0011

G0011
J ~4!

. ~A9!
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