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We simulated the effect of dilution on the transport of magnetization between classical gyromagnets,
coupled by a dipole-dipole interaction in a high external magnetic field, on a simple cubic lattice for a system
with quenched disorder. We studied the dependence of the spin-diffusion coefficient on the concentration of
dipoles on the lattice for various system sizes. For small concentrations we find that the diffusion coefficient
dependslinearly on concentration. We extrapolated the simulation results to the thermodynamic limit, i.e., to
the limit of largesystem sizes and wavelengths. We also tested the consequences of a strong exponential cutoff
of the dipole interactions. In this case our results show indications of a percolation transition at a finite value
of the concentration.@S0163-1829~96!00725-4#

I. INTRODUCTION

The concept of spin diffusion was introduced by
Bloembergen1 in 1949 to explain spinlattice relaxation mea-
surements on insulating crystals. He proposed that impurities
with paramagnetic electrons create inhomogeneities in the
magnetization by transmitting Zeeman energy from the spin
system to the lattice. This effect would induce a transport of
magnetization between the spatially fixed nuclear spins
coupled by dipolar interaction. Bloembergen derived a diffu-
sion equation for this transport in first-order perturbation
theory and estimated the diffusion coefficient. Further theo-
retical work was done by Redfield and Yu,2 Lowe and
Gade,3 and Borckmans and Walgraef.4 In all these papers a
diffusion equation was derived under the assumptions of
high external field, high temperature, and small magnetiza-
tion gradient, but from different theoretical viewpoints. Nev-
ertheless, the resulting expressions for the spin-diffusion co-
efficient were similar.

Experimental measurements of the spin-diffusion coeffi-
cient unfortunately appear to be rather difficult. The reason is
that the diffusion is very slow, so that conventional methods
cannot be used. In most of the experiments one therefore has
to determine diffusion coefficients from measurements of
spin-lattice relaxation times. This can only be achieved with
the help of assumptions concerning the microscopic mecha-
nism of magnetization transport in the neighborhood of the
paramagnetic impurities and the coupling to the lattice vibra-
tions. These assumptions generally cannot be verified
independently.5 An attempt to measure the diffusion coeffi-
cient in CaF2 by a completely different method at tempera-
tures below 1 K failed because of unexpectedly rapid spin-
lattice relaxation.6

In view of the difficulties in determining the microscopic
transport mechanisms experimentally, it appears to be very
much worthwhile to simulate the microscopic dynamics of
coupled spin systems numerically. Numerical simulations,
however, are also not unproblematic: since it is at present
impossible to perform simulations for sufficiently large
quantum-mechanical systems one has to resort to calcula-
tions for classical gyromagnets.7 Fortunately this restriction

to classical spin systems can be justified by results from the
theory of line shapes.8–10

Additional justification for the choice of classical gyro-
magnets comes from previous numerical work by Tang and
Waugh7 who showed that curves for the free-induction decay
obtained for classical spins agree fairly well with experimen-
tal results. Tang and Waugh performed calculations for clas-
sical gyromagnets in a strong external magnetic field on fully
occupied lattices. In their work the magnetization gradient,
which is caused by the paramagnetic impurities in the experi-
ments, is induced by an inhomogeneous initial condition for
the average magnetization density with a periodic profile in
one lattice direction. Tang and Waugh studied how the spin
diffusion is influenced by different orientations of the lattice
in the external field, by alloys of different nuclei on the same
lattice, and by different lattice types. They also carried out
calculations for systems with nearest-neighbor exchange
couplings instead of dipole interactions between the spins. In
general they found good agreement with theoretical results3,4

and with experimental results by Leppelmeier and Jeener,11

at least for one orientation of the lattice in the external field.
The work described in this paper was stimulated by the

question how a system of nuclear spins would behave if it
were diluted with randomly distributed vacancies or non-
magnetic impurities. This situation is quite common in NMR
experiments on solids and biological material. It would be
most interesting if experiments could be performed in the
future, in which the amount of dilution~or defects! could be
well controlled. We expect that such experiments, though
difficult, could in principle be performed. The aim of our
paper is to make predictions for the concentration depen-
dence of the diffusion coefficients that can be tested in such
future experiments. As we shall show below, one of our
more important results is that the diffusion coefficient de-
creases relativelyslowly ~namely linearly! at small concen-
trations, suggesting that experimental determination of the
diffusion coefficient at lower concentrations might still be
feasible.

Apart from the experimental relevance of our paper, our
results are also of interest from a theoretical point of view.
At present theoretical results for disordered models with
long-range interactions, with coupling constants of variable
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sign ~such as dipole interactions!, are to the best of our
knowledge lacking entirely. Therefore we chose to resort to
numerical simulations of the microscopic dynamics. Our re-
sults can be viewed as direct generalization and extension of
the numerical methods used previously by Tang and
Waugh.7,12

Some aspects of the research reported here are also
treated in a recent paper by Sodickson and Waugh,13 albeit
for relatively small systems~up to 163 for the concentration
dependence of diffusion coefficients!. In our extrapolation to
large system sizes~see below! we show that the results for
163 systems are still relatively far from the thermodynamic
limit.

This paper is organized as follows. In Sec. II we give an
overview over the model used for the simulation. Next~in
Sec. III! we discuss the details of the simulation for the di-
luted spin system. In Sec. IV we present the results of our
numerical simulations. Finally, in Sec. V, we discuss and
summarize our findings.

II. THEORETICAL BACKGROUND

We consider a system of classical spins occupying the
sites of a simple cubic lattice with a probability determined
by the prescribed spin concentration. The system is in a state
of quenched disorder, since the spins remain on their initial
sites. The spins interact with each other through the usual
dipole-dipole coupling. We assume that there is a strong ex-
ternal magnetic field which makes transitions between states
of the system highly unfavorable if the Zeeman energy is not
conserved. If the dipolar interaction is modified in such a
way that these transitions cannot occur at all,14 the Hamil-
tonian of the spin system can be written as follows:

H5HZ1H11H2 ,

where the Zeeman termHZ , H1 , and the flip-flop termH2
are given by

HZ52g\B0(
j
I jZ ,

H15(
iÞ j

Ai j I iZI jZ ,

H252 1
4(
iÞ j

Ai j ~ I i
1I j

21I i
2I j

1!,

if the external fieldB0 is chosen in theZ direction. HereI i is
related tomi , the magnetic moment of spini , in the usual
way (mi5g\I i). The coefficientsAi j are given by

Ai j5g2\2r i j
23~123cos2u i j ! ~2.1!

with r i j the distance between spinsi and j andu i j the angle
between the distance vectorr i j and the direction of the ex-
ternal fieldB0 . In the frame rotating aboutB0 at an angular
velocity2gB0 the termHZ is compensated and the remain-
ing Hamiltonian can be written in the form

H52mi•Bi , ~2.2!

whereBi is the local field for spini generated by all the other
spins in the system:

Bi5(
jÞ i

Bi j ~2.3!

with

Bi j5bi j ~mX
j êX1mY

j êY22mZ
j êZ! ~2.4!

and

bi j52g22\22Ai j . ~2.5!

CoefficientsAi j are defined in Eq.~2.1!. Here (X,Y,Z) refer
to the coordinate system withêZ parallel to the external field
and êX,êY rotating about the field at the Larmor frequency
gB0 . The form ~2.2! of the Hamiltonian suggests that the
spins can be treated as classical gyromagnets precessing
around their local fieldsBi given in Eq.~2.3!. In this picture
the microscopic equations of motion for the spins are14

d

dt
mi5gmi3Bi ~ i51, . . . ,Nspin<N!. ~2.6!

HereN is the number of lattice sites,Nspin the number of
spins. If sitei is in fact unoccupied by a spin the correspond-
ing magnetic momentmi is understood to be identically zero.

As in the case of the ordered system,7 the equations of
motion ~2.6! are used for the simulation: starting from a cer-
tain initial orientationmi(0), thespins are allowed to pre-
cess around their local fields during a short time interval
Dt. The interaction of the new magnetic momentsmi(Dt)
leads to new local fieldsBi(Dt) that have to be calculated
according to Eqs.~2.3! and~2.4!. These new local fields are
then inserted into the equations of motion fort5Dt. This
procedure must be repeated at each time step. For higher
accuracy the magnetic moments at timet1Dt are approxi-
mated by a Taylor series

mi~ t1Dt !5 (
n50

m
Dtn

n!
mi

~n!~ t !, ~2.7!

where the superscript (n) denotes thenth time derivative.
The time derivatives of the magnetic moments can be calcu-
lated recursively by differentiation of Eq.~2.6!

mi
~n11!~ t !5g@mi~ t !3Bi~ t !#

~n!

5g (
m50

n S nmDmi
~n2m!~ t !3Bi

~m!~ t !. ~2.8!

HereBi
(m)(t)(m<n) is obtained from the derivatives of Eqs.

~2.3! and ~2.4!, that in turn depend on lower-order deriva-
tives of the magnetic moments.

Obviously the calculation of the local fields and their de-
rivatives costs the largest amount of computing time since it
requiresN sums overN21 lattice sites for each derivative at
each time step. One can however take advantage of the con-
volution structure of Eq.~2.3!: note that the coefficientsbi j
depend only on the distancer i j between spinsi and j , while
the magnetic moments depend only onr j . It is therefore
possible to calculate the Fourier transforms ofbi j andmj
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separately and to perform the inverse transform on their
product to obtainBi j

(n) . By using this procedure one can re-
duce the computing time7 by a factor of aboutN/ lnN.

From the microscopic magnetic moments the magnetiza-
tion density parallel to the strong external fieldB0 can be
calculated for each time step. We assume that adiffusive
transport of magnetization occurs as a result of a spatially
inhomogeneous initial condition of the magnetization. The
general form of the diffusion equation is

]M ~r ,t !

]t
5(

m,n
Dmn

]2M ~r ,t !

]m]n
,

wherem,n refer to Cartesian coordinates andDmn to the
matrix elements of the diffusion tensor. After a transforma-
tion to principal axes the Fourier transform of the diffusion
equation is

]Ak~ t !

]t
52k2DkAk~ t !, ~2.9!

whereAk(t) denotes the amplitude of the magnetization with
wave vectork andDk is defined by

Dk5k22(
m51

3

km
2Dmm . ~2.10!

The initial condition for the magnetization in the simula-
tion is chosen in the same manner as for the fully occupied
lattice:7 it is uniform in they,z plane of the crystal lattice
and follows one or more cycles of a cosine profile in thex
direction

M ~r ,0!5A0cos~kx!, ~2.11!

wherek5kêx is the wave vector of this inhomogeneity. Note
that the lattice axesx,y,z are not necessarily along the axes
X,Y,Z of the frame rotating aboutB0 .

For the occupied sites theZ components~i.e., the compo-
nents parallel toB0) of the initial microscopic magnetic mo-
ments are fixed between21 and11 with the help of a ran-
dom number generator that is constructed to achieve a
distribution appropriate to the magnetization profile~2.11! in
each crystal plane along thex direction.7 TheX andY com-
ponents are then randomly selected from a uniform distribu-
tion, under the condition thatmi has unit length. Magnetic
moments equal to zero are assigned to the unoccupied lattice
sites.

Our simulation was restricted to the situation where the
external magnetic field is oriented along the@111# direction
in the crystal coordinate system. For this caseDk defined by
Eq. ~2.10! is proportional to the trace of the diffusion tensor:
Dk@111#5 1

3Tr(D). This choice is of course not a fundamen-
tal restriction. Different orientations could also be studied.

To determineDk , rather than fittingAk(t) to a decaying
exponential function, one can take advantage of the fact that
the microscopic state of the system is exactly known: the
diffusion coefficient can be calculated directly as a function
of time from Eq.~2.9!

Dk52
]Ak~ t !/]t

k2Ak~ t !
. ~2.12!

To this purpose one has to compute the magnetization and its
first time derivative by summing theZ components of the
magnetic moments or their time derivatives, respectively,
over slices of the lattice perpendicular tok, i.e., thex direc-
tion. Fourier transformation of both quantities yieldsAk(t)
and]Ak(t)/]t.

From hydrodynamics one knows15 that the diffusion ten-
sorDk has to be taken in the limitk→0 or l→`. Simula-
tions can of course only be performed for finitel. In order to
determine the diffusion tensor in the limitk→0, it will there-
fore be necessary to extrapolate the results from numerical
simulations to infinitely large wavelengths and system sizes.

As the difference of two constants of the motion, namely
the total energy and the Zeeman energy, the spin-spin inter-
action energy

Eint52 1
2 ~Nspin!

21(
i51

Nspin

mi•Bi ~2.13!

is a third constant of the motion. As remarked also by Tang
in his thesis,12 this quantity is always small ifB0 is chosen in
the @111# direction. It can be used as a control parameter for
the simulation.

Following Tang and Waugh,7 we express all physical
quantities in ‘‘reduced units.’’ The nearest-neighbor distance
r 0 and the magnetic moment of one spinm are taken to be
unity. These definitions imply that the time unit isr 0

3/ugmu
and the unit for the diffusion coefficientugmu/r 0 . For
CaF2 these units are 35.13106 s and 2.1231015m2 s21,
respectively.

III. DETAILS OF THE SIMULATION
FOR THE DISORDERED SYSTEM

Simulations were carried out for lattice sizes of
N5 l *m* n5163,323 and 643. The lower limit is due to ac-
curacy requirements, the upper to restrictions on memory
and CPU time. The routines that were used to perform the
fast-Fourier transforms require that lattice dimensions are
powers of 2. Periodic boundary conditions were chosen in all
three spatial directions. This implies that the dipole coupling
coefficientsbi j have to be set equal to zero on the boundaries
of the interaction cell~of sizeN).

The configuration of occupied and unoccupied sites on the
lattice was determined by the following method: for each
lattice site a random number was generated from a uniform
distribution on the interval@0,1#. The site was considered as
unoccupied if that number was larger than the desired spin
concentrationc̃<1.0, and occupied otherwise. The resulting
spin configuration was stored in the form of occupation num-
berspi51 or 0 for all lattice sites. The actual concentration
is then given byc5Nspin/N.

Next we comment on the parametersA0 and k52p/l
that determine the initial profile of the magnetization in Eq.
~2.11!. l was chosen equal tol ,l /2 and l /4 for each lattice
size provided thatl>l>16. The initial amplitudeA0 of the
inhomogeneity was fixed between 0.5 and 1.0 in such a way
that the initial amplitude of the Fourier transform of the mag-
netization for k52p/l, Ak(t50) ~that is approximately
equal tocA0), was smaller than or equal to 0.5. We checked
that different values forA0 ~within sensible limits! do not
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influence the results of the simulation. The number of deriva-
tives for each time step was limited to 10@see Eqs.~2.7!,
~2.8!#. Dynamic error control was used to adjust this number
in the course of the simulation in order to reduce the calcu-
lating time: as explained in Ref. 12, one can assume that the
cumulative error increases exponentially with time during
the simulation. It is therefore most efficient to compute cor-
rections in the form of higher-order derivatives only as long
as they are larger than the estimated cumulative error at that
time step. The minimum number of derivatives was chosen
to be 4. Within these limits significant influence upon the
results could not be observed.

A minor problem is that the decay of the amplitude
Ak(t) of the perturbation~2.9! slows down with increasing
l or with decreasing concentration. We therefore adjusted
the length of the time intervalDt in order to obtain both a
noticeable decline of the magnetization within 300–400
timesteps and a sufficiently large range over whichDk could
be accurately determined. On the other hand,Dt was not
chosen larger than 1.5 reduced units in order to trace the
microscopic motions of the spins with sufficient accuracy
~see above, during 1 reduced unit of time a spin precesses
through one radian of angle!. The smallest value we used for
Dt was 0.2.

The spin-spin interaction energy~2.13! was found to be
small, namely of the order61023 for all concentrations. The
fact thatEint should remain constant during the simulation
was used to control the choice of the other parameters. In our
simulationEint was found to be constant with an accuracy
better than 1026 during one run of at least 300 time steps.

The memory required for system sizes of 323 and 643

lattice sites and 10-4 derivatives per time step is about 2.4
and 18 megawords, respectively. Computing times for 300
time steps with 10 derivatives each are about 12 min for
323 lattice sites and about 80 min for 643 lattice sites on a
Cray X-MP. Because of the long calculation times only a
few simulations could be carried out for each value of the
concentration. Each of these was performed for a different
configuration of occupied lattice sites and a different initial
distribution of the magnetic moments. We did not repeat
simulations for the same spin configuration with varying ini-
tial conditions for the magnetization.

IV. RESULTS OF THE SIMULATION

For given lattice size and wavelength of the initial pertur-
bation we performed simulations for different spin concen-
trations in steps ofDc50.1 or less. In the simulations we
calculated the amplitudeAk(t) of the magnetization with
wave vectork of the perturbation, the spin-spin interaction
energyEint(t) @from Eq. ~2.13!# and the diffusion coefficient
Dk(t) according to Eq.~2.12!. From the results forDk(t) we
determined an appropriate time range to calculate an average
valueDk and its standard deviation: usually it took of the
order of 10 time steps for the diffusion coefficient to rise
from zero to a stationary value. This switch-on time was
therefore neglected in the averaging procedure. We observed
that the strength of the fluctuations inDk increases when the
amplitudeAk(t) drops below 0.1 in reduced units. Further-
more the size of the fluctuations increases with decreasing
lattice size or concentration, as one would expect, and with

increasing wavelength of the perturbation@as the decay in
Ak(t) slows down#. Two typical examples of the output of
simulations at spin concentrations nearc51.0 and at low
concentrations are shown in Figs. 1 and 2 forN5643 and
l516.

The concentration was lowered until the standard devia-
tion of Dk(t) became of the same order of magnitude as the
averageDk itself. This limit depends of course on the system
size. For 643 sites concentrations as low asc50.01 could be
reached. The standard deviations were of the order 1022 to
1023. For c51.0 the standard deviations amounted to about
5% to 8% of the value ofDk depending on the system size
and the wavelength of the perturbation. The valuesDk of the
diffusion coefficient at a given system size and wavelength
were plotted as a function of the spin concentration as shown

FIG. 1. Results of a simulation for a system of sizeN5643,
wavelengthl516 at the concentrationc50.9496: amplitude of the
perturbationAk , diffusion coefficientDk , and spin-spin energy
Eint as functions of the time in reduced units. The time step is
Dt50.2. The time average ofDk(t), Dk50.185, was calculated
from the data for 4<t<50; the corresponding standard deviation
was found to be 0.009.

FIG. 2. The same forN5643 and l516 at the concentration
c50.0748,Dt50.8; Dk50.016 with standard deviation 0.002 for
32<t<208.
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in Figs. 3–5. Each data point represents the average value of
Dk from a single run over a suitable time interval that was
determined according to the criteria described above. Stan-
dard deviations of the order 1022 are of the order of the
diameter of the data points. Excellent fits of the data over the
whole range ofc can be obtained just by using third-order
polynomials. These are the ‘‘guides to the eye’’ in Figs. 3–5.

For all studied system sizes and for all values ofl the
diffusion coefficient as a function of the spin concentration
showslinear behavior for small values ofc as well as for
small deviations fromc51.0. In Figs. 3–5 there is no evi-
dence whatsoever of a percolation threshold, at least for con-
centrations larger than 0.01.

Figures 3 and 4 show that, for a fixed value ofl, the
diffusion coefficientDk(c) is insensitive to the lattice size.
This shows that~for fixedl>16) the limit of infinitely large
systems is reached already atN5l3. On the other hand,
from our results it is evident that, if the lattice size is kept
fixed,Dk(c) grows with increasingl for all c<1. This oc-
curs even for the largest studied system with 643 sites~see
Fig. 5!. For c51.0 these data are in agreement with Tang
and Waugh.7

The fact that the distance between the curves in Fig. 5
decreases with increasingl suggests that an extrapolation of
the spin-diffusion coefficient to infinitely large wavelength
~or k→0) might be feasible with the available data. In order
to do so, we assume that the diffusion coefficientDc(l) at
fixed concentrationc and for a finite value ofl approaches
the extrapolated valueDc(`) in the following way:

Dc~l!5Dc~`!~12dl2a!. ~4.1!

This form corresponds to ak-dependent diffusion coeffi-
cient, with algebraic corrections to the leading (k→0) be-
havior, D̄c(k)5D̄c(0)@11O(k)a#. Our assumption that the
corrections arealgebraic in k is based on an analogy with
hydrodynamics, where algebraic corrections occur in con-
junction with long-time tails in the correlation functions.16

These long-time tails are caused by many-body or nonlocal
effects in the dynamics of a physical system. In addition, we
will see below that the data are fitted well by an ansatz of the
form ~4.1!.

We assume the parametersa and d in Eq. ~4.1! to be
independent of the concentration. In a first step we determine
a and d for 1.0>c>0.5 with the help of the third-order
polynomials forl516, 32, and 64 that have been used to fit
the simulated data in Fig. 5. Our criterion for the restriction
of the concentration interval is that the distance between the
curves forDl(c) in Fig. 5 should be larger than the accuracy
in the simulation data~i.e., the diameter of the data points,
see above! in order to obtain meaningful results. By averag-
ing over the chosen concentration interval we find the fol-
lowing values:a50.45 with a standard deviationsa50.08
andd51.14 with a standard deviationsd50.16. Using these
results we calculateDc(`) from Eq.~4.1! for fixed values of
c over the whole concentration range. In Fig. 6 the diffusion
coefficient forl→` is plotted as a function of the concen-
tration. The indicated error bars represent the influence of the
errorssa and sd . In this figure we also repeat the fitted
curves from Fig. 5 in order to allow a comparison between
the simulated data and the extrapolation. It is clear from Fig.
6 that the results forl516 are still far from the thermody-
namic limit.

FIG. 4. Diffusion coefficient as a function of the spin concen-
tration forl532 at system sizesN5323,643.

FIG. 5. Diffusion coefficient as a function of the concentration
for system sizeN5643 at wavelengthsl516,32,64.

FIG. 3. Diffusion coefficient as a function of the spin concen-
tration forl516 at system sizesN5163,323,643.
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We also investigated how strongly the tendency towards
percolation sets in if one crosses over from long-range~di-
polar! interaction to nearest-neighbor interaction. Our results
for the full range dipole coupling suggest, that the qualitative
dependence of the diffusion coefficient on the concentration
is not influenced by the size of the system or the use of
wavelengths smaller than the lattice size in thex direction,
we therefore restricted our studies to a system with 323 sites
for l516. The dipole coupling constantsbi j ~2.5! were re-
placed by

b̃ i j5bi jexp~2r i j /Rc!

for cutoff distancesRc51.0 and 0.5. Obviously, the expo-
nential cutoff leads to a strong reduction of the coupling
constants at larger distances. For example,bi j is reduced at
r i j58 by a factor of 1023 for Rc51.0 and by 1027 for
Rc50.5. The results forRc50.5 are shown in Fig. 7. The
most interesting effect of the exponential cutoff is the fact
that in both casesDk depends no longer linearly onc for
concentrations below 0.2. ForRc50.5 the diffusion coeffi-

cient approaches zero forc50.1 whereas forRc51.0 the
percolation threshold has to lie at a lower concentration.
Both data sets can be fitted well by curves of the~purely
empiric! form exp(2a/c)(bc21gc1d), with a of the order of
1021.

The conclusion of our study is that one needs an ex-
tremely strong exponential cutoff to see any tendencies to-
ward percolation for concentrations of order 1022 or larger.
These results demonstrate thatif percolation occurs at all for
dipolar interaction, it must occur for concentrations so small
that they are numerically unreachable and probably experi-
mentally irrelevant.

V. SUMMARY AND CONCLUSIONS

We studied the dependence of the spin-diffusion coeffi-
cient on the concentration of spins on a lattice by performing
computer simulations of the microscopic dynamics of the
system. For low concentrations we found linear behavior of
the diffusion coefficient as a function of the spin concentra-
tion. We showed that the long range of the dipolar interac-
tion is decisive for this behavior by examining how an in-
creasingly strong exponential cutoff of the interaction leads
to a percolation effect.

We investigated the concentration dependence of spin-
diffusion coefficients for increasing lattice size and wave-
lengthl of the perturbation. Forl fixed we found that the
limit of infinitely large system size is already reached for
N5l3.

On the other hand, the fact that the diffusion coefficients
still grow with increasingl for fixed system size, even for a
system of 643 lattice sites~see Fig. 5!, suggests that the limit
l→` ~or k→0) is not yet reached. It is however possible to
get an impression of what the limiting curve for the diffusion
coefficientDl(c) would look like. As described in Sec. IV,
we used the simulation results for a system sizeN5643 to
determine Eq.~4.1! for the asymptotic behavior of the diffu-
sion coefficient forl→` at a fixed concentration. The result
of our extrapolation in Fig. 6 shows that, even atl564,
deviations from the limiting curve are rather large for all
except the lowest concentrations. This is of course due to the
fact that the extrapolation curve~4.1! approaches its limit
very slowly, as can be illustrated by an example: if the ex-
trapolation curve is to be taken seriously, the distance of the
diffusion coefficient from the limiting value forc51 is re-
duced to 0.01~corresponding to the error bar in Fig. 6! only
for l as large as 2000, which is obviously not reachable with
present-day numerical methods. Accordingly, our prediction
for the diffusion coefficient atN51283 andl5128, e.g., for
c51, from Eq.~4.1!, D128(1.0)50.23960.015, shows still a
large deviation from the extrapolated value
D`(1.0)50.27460.01. Hence, we cannot expect simula-
tions for a system with 1283 lattice sites to give a true picture
of the long-wavelength limit either, but those simulations
could be very helpful to improve the extrapolation curve.
Such a project would no doubt require a large amount of
CPU time on a computer with high memory capacity. How-
ever, the simulations could be restricted tol5128, since one
can expect~see Figs. 3 and 4! that the diffusion coefficients
for N51283 andl564, 32, and 16 are the same as for the
smaller systems.

FIG. 6. Extrapolation of the diffusion coefficient forl→`
based on the fitted curves forN5643 ~see Fig. 5!.

FIG. 7. Exponential cutoff of the dipole interaction with
Rc50.5. Diffusion coefficient as a function of the concentration for
system sizeN5323 at wavelengthl516.
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For c51.0 there is generally good agreement between the
simulation results7 on the one hand and theoretical
derivations3,4 for the spin-diffusion coefficient as well as ex-
perimental results11 on the other~at least for the@100# orien-
tation of the external field relative to the crystal lattice!.

In our simulation, wherec,1, it is not so easy to com-
pare to these theories, since the theoretical work uses the
translational invariance of the fully occupied lattice in an
essential way. Hence, the theories of Refs. 3 and 4 cannot
easily be adapted for the disordered system at low concen-
trations. An expansion for small deviations fromc51.0
might be possible. To our knowledge, a theory for a disor-
dered system with dipole coupling is not available. Such a
theory would necessarily be very complicated, not only be-
cause of the disorder. The additional difficulties arise from
the long range of the dipole interaction and the fact that its
character changes from attractive to repulsive as the orienta-
tion u i j varies.

Comparison between our simulation results for the con-
centration dependence of the spin diffusion and experiments
would be interesting. We are aware of the fact that an ex-
perimental investigation would be difficult. It would require

preparation of a large number of samples with a specified
concentration of atoms with a nonzero nuclear magnetic mo-
ment and of nonmagnetic impurities or vacancies. Further-
more, the diffusion for small concentrations of magnetic at-
oms is even slower than forc51.0, so that measurements of
increased accuracy are necessary. On the other hand, for di-
pole coupling our simulations predict a relatively slow~lin-
ear! decrease of the diffusion coefficients for concentrations
c<0.2, suggesting that experiments at lower concentrations
might still be feasible.
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