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Simulation of spin diffusion in a disordered system
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We simulated the effect of dilution on the transport of magnetization between classical gyromagnets,
coupled by a dipole-dipole interaction in a high external magnetic field, on a simple cubic lattice for a system
with quenched disorder. We studied the dependence of the spin-diffusion coefficient on the concentration of
dipoles on the lattice for various system sizes. For small concentrations we find that the diffusion coefficient
dependdinearly on concentration. We extrapolated the simulation results to the thermodynamic limit, i.e., to
the limit of large system sizes and wavelengths. We also tested the consequences of a strong exponential cutoff
of the dipole interactions. In this case our results show indications of a percolation transition at a finite value
of the concentration.S0163-182@06)00725-4

[. INTRODUCTION to classical spin systems can be justified by results from the
theory of line shape%:1°
The concept of spin diffusion was introduced by Additional justification for the choice of classical gyro-

Bloembergehin 1949 to explain spinlattice relaxation mea- magnets comes from previous numerical work by Tang and
surements on insulating crystals. He proposed that impuritie#/augH who showed that curves for the free-induction decay
with paramagnetic electrons create inhomogeneities in thebtained for classical spins agree fairly well with experimen-
magnetization by transmitting Zeeman energy from the spirial results. Tang and Waugh performed calculations for clas-
system to the lattice. This effect would induce a transport ofsical gyromagnets in a strong external magnetic field on fully
magnetization between the Spatia”y fixed nuclear Spin@CCUpied lattices. In their work the magnetization gradient,
coupled by dipolar interaction. Bloembergen derived a diffu-Which is caused by the paramagnetic impurities in the experi-
sion equation for this transport in first-order perturbationMents, is induced by an inhomogeneous initial condition for
theory and estimated the diffusion coefficient. Further theot® average magnetization density with a periodic profile in
retical work was done by Redfield and YuLowe and ©N€ lattice direction. Tang and Waugh studied how the spin

Gade® and Borckmans and Walgra®tn all these papers a diffusion is influenced by different orientations of the lattice
diffusi,on equation was derived under the assumptions o. the external field, by alloys of different nuclei on the same

high external field, high temperature, and small magnetiza—attice’ and by different lattice types. They also carried out

tion gradient, but from different theoretical viewpoints. Nev- calculations for systems with nearest-neighbor exchange

thel th i . for th in-diffusi couplings instead of dipole interactions between the spins. In
erineless, the resuiting expressions 1or the spin-dittusion CO(jeneral they found good agreement with theoretical restilts
efficient were similar.

X . _and with experimental results by Leppelmeier and Jether,
_ Experimental measurements of the spin-diffusion coeffi-4; |east for one orientation of the lattice in the external field.
cient unfortunately appear to be rather difficult. The reason’is The work described in this paper was stimulated by the

that the diffusion is very slow, so that conventional methOdSquestion how a system of nuclear spins would behave if it
cannot be used. In most of the experiments one therefore hggere diluted with randomly distributed vacancies or non-
to determine diffusion coefficients from measurements oinagnetic impurities. This situation is quite common in NMR
spin-lattice relaxation times. This can only be achieved withexperiments on solids and biological material. It would be
the help of assumptions concerning the microscopic mechamost interesting if experiments could be performed in the
nism of magnetization transport in the neighborhood of thefuture, in which the amount of dilutiofor defect$ could be
paramagnetic impurities and the coupling to the lattice vibrawell controlled. We expect that such experiments, though
tions. These assumptions generally cannot be verifiedifficult, could in principle be performed. The aim of our
independently. An attempt to measure the diffusion coeffi- paper is to make predictions for the concentration depen-
cient in CaF, by a completely different method at tempera- dence of the diffusion coefficients that can be tested in such
tures belav 1 K failed because of unexpectedly rapid spin-future experiments. As we shall show below, one of our
lattice relaxatior?. more important results is that the diffusion coefficient de-
In view of the difficulties in determining the microscopic creases relativelglowly (namelylinearly) at small concen-
transport mechanisms experimentally, it appears to be veriations, suggesting that experimental determination of the
much worthwhile to simulate the microscopic dynamics ofdiffusion coefficient at lower concentrations might still be
coupled spin systems numerically. Numerical simulationsfeasible.
however, are also not unproblematic: since it is at present Apart from the experimental relevance of our paper, our
impossible to perform simulations for sufficiently large results are also of interest from a theoretical point of view.
guantum-mechanical systems one has to resort to calcul#t present theoretical results for disordered models with
tions for classical gyromagnetsFortunately this restriction long-range interactions, with coupling constants of variable

0163-1829/96/5d1)/381(7)/$10.00 54 381 © 1996 The American Physical Society



382 I. M. NOLDEN AND R. J. SILBEY 54

sign (such as dipole interactiopsare to the best of our whereB; is the local field for spin generated by all the other
knowledge lacking entirely. Therefore we chose to resort taspins in the system:
numerical simulations of the microscopic dynamics. Our re-
sults can be viewed as direct generalization and extension of B=> B,
the numerical methods used previously by Tang and s
Waugh'*? _

Some aspects of the research reported r;%re are al¥th
treated in a recent paper by Sodickson and Watgtbeit B QA QA i~
for relatively small systemg&up to 16 for the concentration Byj = bij (Mic@y+ my @y — 2mz&,)
dependence of diffusion coefficieht$n our extrapolation to and
large system sizetsee beloyw we show that the results for
16° systems are still relatively far from the thermodynamic bij=—vy 2h2A;. (2.5

limit. - i .

This paper is organized as follows. In Sec. Il we give anCoefﬂmentsAij are defined n Eq2.1). Here X,Y,Z) ref?r
overview over the model used for the simulation. Néxt to th? cpordma_te system w@z_parallel to the external field
Sec. Ill) we discuss the details of the simulation for the di- and ey, éy rotating about the f|e|q at .the Larmor frequency
luted spin system. In Sec. IV we present the results of ouryB_O' The form (2.2) of the Hamntonlan suggests that the_
numerical simulations. Finally, in Sec. V, we discuss and>PINS can .be tregted as _clas_5|cal gyromagn(_ats precessing
summarize our findings. around their local field8; given in Eq.(2.3). In this picture

the microscopic equations of motion for the spinstare

(2.3

(2.4)

Il. THEORETICAL BACKGROUND d _
i i . i - M= ymiXBi (l =1,... ’NSpir‘ISN)' (26)
We consider a system of classical spins occupying the dt

sites of a simple cubic lattice with a probability determined

by the prescribed spin concentration. The system is in a stal eeiaes,leI:it:ari]ei Sr;rl;lrpabcfrugfo (l:itljlciz dsgeﬁsgi”i;hti emcj(r)r::): Sr (;fn d-
of quenched disorder, since the spins remain on their initiar > b Y asp P

sites. The spins interact with each other through the usual'® magnetic momenty, is understood to be identically zero.

dipole-dipole coupling. We assume that there is a strong ex- AS in the case of the orde_red systérthe equations of

o . . motion (2.6) are used for the simulation: starting from a cer-
ternal magnetic field which makes transitions between State%in initial orientationm;(0), the spins are allowed to pre-
of the system highly unfavorable if the Zeeman energy is not:ess around their |OCEI1| fiélds de)rin a short time inﬁerval
conserved. If the dipolar interaction is modified in such a 9

way that these transitions cannot occur at‘alhe Hamil- é; d-srhtﬁ 'r?:jvrallggg? fic;l‘l(jtgg(ztta)\/v ﬂ?;?%r;téc tg]ck;?ir:féagte d
tonian of the spin system can be written as follows: :

according to Eqs(2.3) and(2.4). These new local fields are
_ then inserted into the equations of motion fer At. This
H=H,+H;+H,, ! .
procedure must be repeated at each time step. For higher
where the Zeeman terid,, H,;, and the flip-flop termH, accuracy the magnetic moments at titneAt are approxi-

are given by mated by a Taylor series
oAt
HZ=—yﬁ50; liz, mi(t+At)=r§OWmf”>(t), 2.7)
where the superscripinj denotes thenth time derivative.
Hi=2 Ajlizliz, The time derivatives of the magnetic moments can be calcu-
i#] lated recursively by differentiation of E¢2.6)

m"* D (t) =y m; (1) X By(1)]™
=y>
m=0

HereB{™(t)(m=n) is obtained from the derivatives of Eqgs.
(2.3 and (2.4, that in turn depend on lower-order deriva-
A= 72ﬁ2r63(1_3co§0ij) (2.1 tives of the magnetic moments.

Obviously the calculation of the local fields and their de-
with r;; the distance between spinandj and ¢;; the angle rivatives costs the largest amount of computing time since it
between the distance vectof and the direction of the ex- requiresN sums oveN—1 lattice sites for each derivative at
ternal fieldB,. In the frame rotating abolB, at an angular each time step. One can however take advantage of the con-
velocity —yB, the termH is compensated and the remain- volution structure of Eq(2.3): note that the coefficients;
ing Hamiltonian can be written in the form depend only on the distancg between spins andj, while

the magnetic moments depend only pn It is therefore
H=-m;-B;, (2.2 possible to calculate the Fourier transformshbgf and m;

sz—%; AT+,

n

(n—m) (m)
. . . . . . . m; ) XB; 7 (t). 2.8
if the external fieldB, is chosen in th& direction. Herd; is m) ! OXBTO. 28
related tom;, the magnetic moment of spin in the usual

way (m;= yAl;). The coefficientsA;; are given by
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separately and to perform the inverse transform on theiilo this purpose one has to compute the magnetization and its

product to obtairB{” . By using this procedure one can re- first time derivative by summing th& components of the

duce the computing tinfeoy a factor of aboutN/InN. magnetic moments or their time derivatives, respectively,
From the microscopic magnetic moments the magnetizaever slices of the lattice perpendicularkoi.e., thex direc-

tion density parallel to the strong external fieBg can be tion. Fourier transformation of both quantities yieldg(t)

calculated for each time step. We assume thaliffusive  and dA.(t)/dt.

transport of magnetization occurs as a result of a spatially From hydrodynamics one knowsthat the diffusion ten-

inhomogeneous initial condition of the magnetization. Thesor D has to be taken in the limk—0 or A—cc. Simula-

general form of the diffusion equation is tions can of course only be performed for finiteln order to
determine the diffusion tensor in the linkit- 0, it will there-

IM(r,1) -y J*M(r,t) fore be necessary to extrapolate the results from numerical

at - D dudv simulations to infinitely large wavelengths and system sizes.

As the difference of two constants of the motion, namely

where u,v refer to Cartesian coordinates afi,, to the  the total energy and the Zeeman energy, the spin-spin inter-
matrix elements of the diffusion tensor. After a transforma-action energy

tion to principal axes the Fourier transform of the diffusion

equation is Nspin
1 —
A Ein=—3(Nspi) " 2, m;-B, (213
K = —K2D A1), 29 _
ot is a third constant of the motion. As remarked also by Tang
whereA,(t) denotes the amplitude of the magnetization within NiS thesis,” this quantity is always small B, is chosen in
wave vectork andD, is defined by the[111] direction. It can be used as a control parameter for

the simulation.
3 Following Tang and Waugh,we express all physical
D=k ? 2 kaDW. (2.10 quantities in “reduced units.” The nearest-neighbor distance
n=1 ro and the magnetic moment of one spinare taken to be

The initial condition for the magnetization in the simula- YMY: These definitions imply that the time unit g/ | ym|
tion is chosen in the same manner as for the fully occupie&md the unit for the diffusion coeff|C|en|tym|ér02. E?r
lattice? it is uniform in they,z plane of the crystal lattice CaF, these units are 35410° s and 2.1 10"m?s ",
and follows one or more cycles of a cosine profile in the respectively.
direction

[ll. DETAILS OF THE SIMULATION
M(r,0)=A,cogkx), (2.11 FOR THE DISORDERED SYSTEM

wherek =keg, is the wave vector of this inhomogeneity. Note  Simulations were carried out for lattice sizes of
that the lattice axes,y,z are not necessarily along the axes N=I|+m*n=16%32° and 64. The lower limit is due to ac-
X,Y,Z of the frame rotating abo,. curacy requirements, the upper to restrictions on memory

For the occupied sites ti# componentgi.e., the compo- and CPU time. The routines that were used to perform the
nents parallel td,) of the initial microscopic magnetic mo- fast-Fourier transforms require that lattice dimensions are
ments are fixed betweenl and+1 with the help of a ran- powers of 2. Periodic boundary conditions were chosen in all
dom number generator that is constructed to achieve three spatial directions. This implies that the dipole coupling
distribution appropriate to the magnetization profRell) in coefficientsb;; have to be set equal to zero on the boundaries
each crystal plane along thedirection’ The X andY com-  of the interaction cellof sizeN).
ponents are then randomly selected from a uniform distribu- The configuration of occupied and unoccupied sites on the
tion, under the condition thah; has unit length. Magnetic lattice was determined by the following method: for each
moments equal to zero are assigned to the unoccupied lattidattice site a random number was generated from a uniform
sites. distribution on the intervdl0,1]. The site was considered as

Our simulation was restricted to the situation where theunoccupied if that number was larger than the desired spin
external magnetic field is oriented along fHel1] direction  concentratiort<1.0, and occupied otherwise. The resulting
in the crystal coordinate system. For this cBgedefined by  spin configuration was stored in the form of occupation num-
Eg.(2.10 is proportional to the trace of the diffusion tensor: bersp;=1 or 0 for all lattice sites. The actual concentration
D\[111]=3Tr(D). This choice is of course not a fundamen- is then given byc= Ngpin/ N.
tal restriction. Different orientations could also be studied. Next we comment on the parametekg and k=2/\

To determineD,, rather than fittingA,(t) to a decaying that determine the initial profile of the magnetization in Eq.
exponential function, one can take advantage of the fact thaR.11). A was chosen equal tiQl/2 and|/4 for each lattice
the microscopic state of the system is exactly known: thesize provided that=\=16. The initial amplitude?, of the
diffusion coefficient can be calculated directly as a functioninhomogeneity was fixed between 0.5 and 1.0 in such a way

of time from Eq.(2.9 that the initial amplitude of the Fourier transform of the mag-
netization fork=2x/\, A(t=0) (that is approximately
_ IA(1)/ (2.12 equal tocAy), was smaller than or equal to 0.5. We checked
KT KAL) ' that different values foA, (within sensible limity do not
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influence the results of the simulation. The number of deriva-
tives for each time step was limited to {8ee Eqs(2.7),
(2.8)]. Dynamic error control was used to adjust this number
in the course of the simulation in order to reduce the calcu-
lating time: as explained in Ref. 12, one can assume that the
cumulative error increases exponentially with time during
the simulation. It is therefore most efficient to compute cor-
rections in the form of higher-order derivatives only as long
as they are larger than the estimated cumulative error at that
time step. The minimum number of derivatives was chosen
to be 4. Within these limits significant influence upon the
results could not be observed.

A minor problem is that the decay of the amplitude
A, (t) of the perturbation2.9) slows down with increasing

diffusion coefficient

A or with decreasing concentration. We therefore adjusted 0 20 40 60
the length of the time intervaht in order to obtain both a time in reduced units

noticeable decline of the magnetization within 300—400

timesteps and a Sufﬁcient]y |arge range over Wh:&khcould FIG. 1. Results of a simulation for a system of side= 643,

be accurately determined. On the other haftl,was not wavelengthh = 16 at the concentratioo— 0.9496: amplitude of the
chosen larger than 1.5 reduced units in order to trace thBerturbationA, diffusion coefficientD,, and spin-spin energy
microscopic motions of the spins with sufficient accuracyEim as functlons of the time in reduced units. The time step is
(see above, during 1 reduced unit of time a spin precessé;%tzo'z' The time average db,(t), D=0.185, was calculated
through one radian of angleThe smallest value we used for rom the data for 4&t=<50; the corresponding standard deviation
At was 0.2, was found to be 0.009.

The spin-spin interaction enerd®.13 was found to be
small, namely of the ordet 10~ 2 for all concentrations. The increasing wavelength of the perturbatifms the decay in
fact thatE;, should remain constant during the simulation Ac(t) slows dowr. Two typical examples of the output of
was used to control the choice of the other parameters. In ogimulations at spin concentrations nea+1.0 and at low
simulation E;,, was found to be constant with an accuracyconcentrations are shown in Figs. 1 and 2 for-64° and
better than 10° during one run of at least 300 time steps. A=16.

The memory required for system sizes of*3nd 64 The concentration was lowered until the standard devia-
lattice sites and 10-4 derivatives per time step is about 2.4on of D(t) became of the same order of magnitude as the
and 18 megawords, respectively. Computing times for 30@verageD, itself. This limit depends of course on the system
time steps with 10 derivatives each are about 12 min fosize. For 64 sites concentrations as low as0.01 could be
328 lattice sites and about 80 min for B4attice sites on a reached. The standard deviations were of the order 10
Cray X-MP. Because of the long calculation times only al0 3. Forc=1.0 the standard deviations amounted to about
few simulations could be carried out for each value of the5% to 8% of the value oD, depending on the system size
concentration. Each of these was performed for a differenand the wavelength of the perturbation. The valDgof the
configuration of occupied lattice sites and a different initialdiffusion coefficient at a given system size and wavelength
distribution of the magnetic moments. We did not repeatwere plotted as a function of the spin concentration as shown
simulations for the same spin configuration with varying ini-
tial conditions for the magnetization.

0.08

IV. RESULTS OF THE SIMULATION

. . . L. L At
For given lattice size and wavelength of the initial pertur- 008 -

bation we performed simulations for different spin concen-
trations in steps oAc=0.1 or less. In the simulations we
calculated the amplitudé\(t) of the magnetization with
wave vectork of the perturbation, the spin-spin interaction
energyE;(t) [from Eqg.(2.13] and the diffusion coefficient
D(t) according to Eq(2.12. From the results fob,(t) we
determined an appropriate time range to calculate an average
value D, and its standard deviation: usually it took of the of Bin¥
order of 10 time steps for the diffusion coefficient to rise . . . .
from zero to a stationary value. This switch-on time was 0 50 100 150 200

therefore neglected in the averaging procedure. We observed ime in reduced units

that the strength of the fluctuationsin, increases when the

amplitudeA,(t) drops below 0.1 in reduced units. Further- FIG. 2. The same foN=643 and\ =16 at the concentration
more the size of the fluctuations increases with decreasing=0.0748,At=0.8; D,=0.016 with standard deviation 0.002 for
lattice size or concentration, as one would expect, and witl32<t<208.

0.04 [

diffusion coefficient

0.02
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FIG. 3. Diffusion coefficient as a function of the spin concen-  FIG. 5. Diffusion coefficient as a function of the concentration
tration for A =16 at system sizeN = 16°,32°,64°, for system sizeN=64° at wavelengths. = 16,32,64.

in Figs. 3-5. Each data point represents the average value of the fact that the distance between the curves in Fig. 5

Dy from a single run over a suitable time interval that wasgecreases with increasingsuggests that an extrapolation of
determined according to the criteria described above. Stafpe spin-diffusion coefficient to infinitely large wavelength

dard deviations of the order 16 are of the order of the (o k. 0) might be feasible with the available data. In order
diameter of the data points. Excellent fits of the data over the, 4o so. we assume that the diffusion coefficibn(\) at
whole range ofc can be obtained just by using third-order gy eq concentratiort and for a finite value of approaches

polynomials. These are the “guides to the eye” in Figs. 3-5.¢ extrapolated valub (=) in the following way:
For all studied system sizes and for all valueshothe

diffusion coefficient as a function of the spin concentration
showslinear behavior for small values of as well as for

small deviations front=1.0. In Figs. 3-5 there is no evi- This f ds to kd dent diffusi p”
dence whatsoever of a percolation threshold, at least for con- IS form corrésponds to a-dependent difiusion coetti-

centrations larger than 0.01 cient, with algebraic corrections to the leading—+0) be-

Figures 3 and 4 show that, for a fixed valuexf the ~ havior, D¢(k)=D¢(0)[1+O(k)“]. Our assumption that the
diffusion coefficientD,(c) is insensitive to the lattice size. CO'Tections arealgebraicin k is based on an analogy with
This shows thatfor fixed A =16) the limit of infinitely large hydrodynamics, where algebraic corrections occur in con-
systems is reached already Mt=\3. On the other hand, junction Wlth_ Iong-t_lme tails in the correlation functiofs.
from our results it is evident that, if the lattice size is kept 1N€S€ long-time tails are caused by many-body or nonlocal
fixed, D (c) grows with increasing. for all c<1. This oc- ef_fects in the dynamics of a phy_smal system. In addition, we
curs even for the largest studied system witd 6ites (see will see below that the data are fitted well by an ansatz of the
Fig. 5. For c=1.0 these data are in agreement with Tangforrn (4.1). .
and WaugH. _ We assume the parameta!esand ) in Eq. (4.1 to be .

independent of the concentration. In a first step we determine
a and § for 1.0=c=0.5 with the help of the third-order
025 ' ' ' ' polynomials forA =16, 32, and 64 that have been used to fit
; the simulated data in Fig. 5. Our criterion for the restriction
o020 | o N=g4® g @t of the concentration interval is that the distance between the
@ Nea? o curves forD, (c) in Fig. 5 should be larger than the accuracy
o in the simulation datdi.e., the diameter of the data points,
015 1 o ] see abovgin order to obtain meaningful results. By averag-
ing over the chosen concentration interval we find the fol-
o010 | ] lowing values:a=0.45 with a standard deviation,=0.08
andé=1.14 with a standard deviatian;=0.16. Using these
results we calculat® .(«) from Eq.(4.1) for fixed values of
0.05 | ] ¢ over the whole concentration range. In Fig. 6 the diffusion
coefficient forA —« is plotted as a function of the concen-
o . . . , tration. The indicated error bars represent the influence of the
0 02 04 06 08 10 errors o, and os. In this figure we also repeat the fitted
concentration curves from Fig. 5 in order to allow a comparison between
the simulated data and the extrapolation. It is clear from Fig.

FIG. 4. Diffusion coefficient as a function of the spin concen- 6 that the results fok =16 are still far from the thermody-

tration for \ =32 at system sizel=32% 64°. namic limit.

D(N)=D¢(®)(1—6N"9). 4.9

diffusion coefficient
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0.3
. extrapol. curve
fit of simul. data, 1=64
----- fit of simul. data, A=32
- fit of simul. data, A=16
02Ff

o

diffusion coefficient

01

0.2 0.4 0.6 0.8
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FIG. 6. Extrapolation of the diffusion coefficient fox— oo
based on the fitted curves fot=64° (see Fig. 5.

We also investigated how strongly the tendency toward
percolation sets in if one crosses over from long-rafdje
polan interaction to nearest-neighbor interaction. Our result
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cient approaches zero far=0.1 whereas folR.=1.0 the
percolation threshold has to lie at a lower concentration.
Both data sets can be fitted well by curves of tperely
emqiric) form exp( a/c)(Bc®+ yc+ 8), with « of the order of
10~

The conclusion of our study is that one needs an ex-
tremely strong exponential cutoff to see any tendencies to-
ward percolation for concentrations of order #@r larger.
These results demonstrate tlifapercolation occurs at all for
dipolar interaction, it must occur for concentrations so small
that they are numerically unreachable and probably experi-
mentally irrelevant.

V. SUMMARY AND CONCLUSIONS

We studied the dependence of the spin-diffusion coeffi-
cient on the concentration of spins on a lattice by performing
computer simulations of the microscopic dynamics of the
system. For low concentrations we found linear behavior of
the diffusion coefficient as a function of the spin concentra-

fion. We showed that the long range of the dipolar interac-

tion is decisive for this behavior by examining how an in-

Sreasingly strong exponential cutoff of the interaction leads
for the full range dipole coupling suggest, that the qualitativet gy g &p

0 a percolation effect.

dependence of the diffusion coefficient on the concentration We investigated the concentration dependence of spin-

is not influenced by the size of the system or the use oB

wavelengths smaller than the lattice size in #hdirection,
we therefore restricted our studies to a system with$Ses
for A=16. The dipole coupling constants; (2.5 were re-
placed by

bij = bijexq— rij /RC)
for cutoff distancesR.=1.0 and 0.5. Obviously, the expo-

iffusion coefficients for increasing lattice size and wave-
length \ of the perturbation. Fok fixed we found that the
limit gf infinitely large system size is already reached for
N=\".

On the other hand, the fact that the diffusion coefficients
still grow with increasing\ for fixed system size, even for a
system of 62 lattice sites(see Fig. 5, suggests that the limit
A— (or k—0) is not yet reached. It is however possible to

nential cutoff leads to a strong reduction of the couplingget an impression of what the limiting curve for the diffusion

constants at larger distances. For exampjgjs reduced at
r;=8 by a factor of 10% for R;=1.0 and by 107 for
R.=0.5. The results foR,=0.5 are shown in Fig. 7. The

coefficientD, (c) would look like. As described in Sec. IV,
we used the simulation results for a system dize64° to
determine Eq(4.1) for the asymptotic behavior of the diffu-

most interesting effect of the exponential cutoff is the factSion coefficient fom — at a fixed concentration. The result

that in both case®, depends no longer linearly on for
concentrations below 0.2. F&.=0.5 the diffusion coeffi-

0.008

0.006

0.004

diffusion coefficient

0.002

0.2 0.4 0.6 0.8 1.0

concentration

FIG. 7. Exponential cutoff of the dipole interaction with
R.=0.5. Diffusion coefficient as a function of the concentration for
system sizeN=32% at wavelength\ = 16.

of our extrapolation in Fig. 6 shows that, evenat 64,
deviations from the limiting curve are rather large for all
except the lowest concentrations. This is of course due to the
fact that the extrapolation curv@.l) approaches its limit
very slowly, as can be illustrated by an example: if the ex-
trapolation curve is to be taken seriously, the distance of the
diffusion coefficient from the limiting value foc=1 is re-
duced to 0.0Xcorresponding to the error bar in Fig. énly

for \ as large as 2000, which is obviously not reachable with
present-day numerical methods. Accordingly, our prediction
for the diffusion coefficient aN= 128 and\ =128, e.g., for
c=1, from Eq.(4.1), D1,¢1.0)=0.239+0.015, shows still a
large  deviation from the extrapolated value
D.(1.0)=0.274-0.01. Hence, we cannot expect simula-
tions for a system with 128attice sites to give a true picture
of the long-wavelength limit either, but those simulations
could be very helpful to improve the extrapolation curve.
Such a project would no doubt require a large amount of
CPU time on a computer with high memory capacity. How-
ever, the simulations could be restricted\te 128, since one
can expectsee Figs. 3 and)4hat the diffusion coefficients
for N=128 and\ =64, 32, and 16 are the same as for the
smaller systems.
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Forc= 1.0 there is generally good agreement between thereparation of a large number of samples with a specified
simulation results on the one hand and theoretical concentration of atoms with a nonzero nuclear magnetic mo-
derivations for the spin-diffusion coefficient as well as ex- ment and of nonmagnetic impurities or vacancies. Further-
perimental resulfs on the otherat least for thd100] orien-  more, the diffusion for small concentrations of magnetic at-
tation of the external field relative to the crystal latjice oms is even slower than far=1.0, so that measurements of

In our simulation, where&<1, it is not so easy to com- increased accuracy are necessary. On the other hand, for di-
pare to these theories, since the theoretical work uses thmle coupling our simulations predict a relatively sloin-
translational invariance of the fully occupied lattice in aneap decrease of the diffusion coefficients for concentrations
essential way. Hence, the theories of Refs. 3 and 4 cannat<0.2, suggesting that experiments at lower concentrations
easily be adapted for the disordered system at low concemnight still be feasible.
trations. An expansion for small deviations froo=1.0
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