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Spectral diffusion on ultralong time scales in low-temperature glasses

Peter Neu, David R. Reichman, and Robert J. Silbey
Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
~Received 18 February 1997!

A dynamical theory is constructed to describe spectral diffusion in glasses in the temperature range near 1
K on long time scales. The theory invokes interacting tunneling centers@two-level tunneling systems~TLS’s!#
which provide an excess contribution to the spectral hole width which qualitatively accounts for the deviation
from standard logarithmic line broadening observed by Maieret al. @Phys. Rev. Lett.76, 2085 ~1996!#.
Alternative explanation schemes of the nonlogarithmic line broadening, avoiding interacting TLS’s, are dis-
cussed. We devise experimental tests which could be used to access the validity of the proposed theories.
@S0163-1829~97!02533-2#
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I. INTRODUCTION

At low temperatures the thermal, acoustic, and optical
havior of glasses differs significantly from that of crystallin
solids. As examples note the linear temperature depend
of the specific heat, the pronounced absorption of sound e
below 1 K, and the anomalous broadening of spectral ho
in the homogeneous line of chromophore molecules. It
been known now for more than 20 years that phonons ca
account for these observations; instead localized low-ene
excitations in the glass are needed. Since the introductio
the standard tunneling model~STM! by Anderson, Halperin,
and Varma1 and Phillips,2 and the experimental observatio
of saturability of ultrasound by Hunklingeret al.3 and Gold-
ing et al.,4 it is widely accepted that these low-energy ex
tations are two-level tunneling systems~TLS’s!. Denoting
the left and right ground state of the double-well potential
uL& and uR&, respectively, the Hamiltonian reads in a Pau
spin representation

H52
D

2
sx2

e

2
sz , ~1!

whereD/\ is the tunneling frequency,e the asymmetry en-
ergy, andsz5uL&^Lu2uR&^Ru. In the STM the interaction
between TLS’s is neglected, and it is assumed that the
neling parametersD ande are random variables with distri
bution

P~1!~e,D!de dD5
P0

D
de dD, D>Dmin ~2!

~with P0'0.631045 J21 m23 in PMMA, a polymer glass!.
The ensuing constant distribution for the TLS-energy sp
ting,

E5AD21e2, ~3!

explains in particular the linear specific heat. Including
laxation of the TLS’s via the one-phonon process with ra

R5S D

ED 2

Rmax, ~4!
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where (x5E/2kBT)

Rmax~E!5aT3x3cothx ~5!

and

a5
g2~2kB!3

2p\4%v5
, ~6!

the model describes most acoustic and optical experimen
glasses satisfactorily. Here,g is the deformation potentia
energy of the TLS-phonon coupling,% the mass density o
the glass, andv the sound velocity.

Recent experiments report a systematic disagreement
the STM. An example is the attenuation of sound below 1
mK. The STM predicts aT3 increase in contradiction with
the experimentalT(122) law.5,6 Deviations from the pre-
dicted STM behavior were also observed by Maier, Khar
mov, and Haarer in low-temperature hole-burni
experiments.7,8 They performed hole burning of a chro
mophore embedded in PMMA at temperatures around 1
up to extremely long times~from 10 s to 10 days!. They
found a logarithmic time dependence with a crossover to
algebraic behavior after about 3 h. Though the lnt behavior is
in agreement with the STM, the algebraic behavior is n
The authors could fit their data with anad hocansatz

P~e,D!5P0F 1

D
1

A

D2G , A5const , ~7!

for the TLS-parameter distribution function and the assum
tion that relaxation occurs via the one-phonon process w
the rate~4!–~6!. They motivate the distribution function~7!
by recent publications focusing on the interaction of TLS
in glasses.9–12 Indeed, Burin and Kagan12 have shown, fol-
lowing earlier ideas of Yu and Leggett,10 that pairs of inter-
acting TLS’s do provide a means of constituting a distrib
tion like the second term in Eq.~7! for certain excitations in
their energy spectrum. They called TLS’s which are distr
uted according to the first term in Eq.~7! primary TLS’s, and
those distributed according to the second term in Eq.~7!, i.e.,
pairs of primary TLS’s,secondary TLS’s. The nice feature of
their theory is that the distribution of secondary TLS’s@sec-
5250 © 1997 The American Physical Society
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56 5251SPECTRAL DIFFUSION ON ULTRALONG TIME SCALES . . .
ond term in Eq.~7!# is derived from primary TLS’s which
are distributed according to the STM@first term in Eq.~7!#.
In that sense, Burin and Kagan’s theory stays within
framework of the STM, and includes only excitations whi
have not been considered in the traditional treatment. So
these ideas have been worked out very qualitatively,
with emphasis on experiments in the millikelvin regim
Hence, the question arises whether they apply to the exp
ment of Maieret al., i.e., for relaxation processes at 1 K on
the time scale between hours and days, or whether an ex
sion of the STM—which would be as phenomenological
the STM—has to be found in order to understand this exp
ment. It is the purpose of this paper to address this issue
presenting a detailed model that includes TLS-TLS coupl
in the manner proposed by Burin and Kagan.

The paper is laid out as follows: in Sec. II, we analyze
experiment of Maieret al.7,8 and show the achievements an
failures of Burin and Kagan’s approach for experiments
the kelvin regime; in Secs. III and IV, we propose a spec
model that combines interacting TLS’s with strong-coupli
effects between TLS’s and phonons in the framework of
theory of Kassner and Silbey;13 in Sec. V, we compare the
predictions of the model with the hole-burning data in Ref.
and also discuss alternative explanation schemes, w
comprise an extension of the STM, and compare w
equivalent hole-burning measurements in proteins; finally
Sec. VI, we discuss our results and conclude with a sh
summary in Sec. VII. The mathematical details are relega
to three Appendixes in order not to obscure the basic ide

II. HOLE BURNING AT ULTRALONG TIMES
AND THE BURIN-KAGAN THEORY

In Refs. 7 and 8 photochemical hole burning in PMMA
1 and 0.5 K has been performed for extremely long tim
tmax5106 s. The authors found a lnt dependence with a
crossover to an algebraic behavior after approximately 3
The crossover shifts one order of magnitude in time fr
104 to 103 s, if the temperature is increased by a factor of

A theoretical description of spectral diffusion in glass
was provided by Hu and Walker14 and Black and Halperin.15

Reinecke16 and, later, Bai and Fayer17 extended their results
to optical experiments. Based on this work the depende
of the hole widthG(t) on the waiting timet is determined by

P~E,r !5
P0

2A12r
F1

r
1

A

r 3/2E
G , ~8!

where

r 5R/Rmax, ~9!

according to the equation

G~ t !5
p2

3\
^C&E

0

`

dE sech2
E

2kBTE0

1

dr
e

E
P~E,r !

3~12e2rRmaxt!. ~10!

Here, ^C& is the chromophore-TLS coupling strength. T
distribution P(E,r ) directly follows from Eq.~7! by using
Eqs.~3!–~5! and ~9!. With this, we find
e
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G~ t !5G~ t0!1
p2

3\
^C&P0FkBT ln

t

t0
1AAaT3~At2At0!G ,

~11!

with

a593109 K23 s21 ~12!

in PMMA.18 To compare with the experiment, we have i
cluded inG(t0) processes which are faster than the shor
experimental timet0, for which a hole broadening can b
determined. In Ref. 8~a! a fit to the experimental data pro
vided

A/kB'1027 K ~13!

at 1 and 0.5 K with an error of approximately 10%. Furthe
more, the experimental observation of spectral diffusion
to tmax;106 s suggests

Dmin /kB&1028 K ~14!

according to the relation tmax<1/Rmin5(2kBT/
Dmin)

2(1/aT3).
Very recently, Burin and Kagan12 showed that a weak

TLS-TLS interaction provides ultralow-energy excitation
They added to the Hamiltonian~1! an interaction term

HTLS-TLS52
1

4(i j Ji j sz
i sz

j , ~15!

where the interaction energy

Ji j 5
m i j

ur i2r j u3
~16!

falls off with distanceur i2r j u in a manner typical for a
dipole-dipole interaction. They assumed that the angular
erage of the coupling is zero,

^m i j &50, ~17!

and that the TLS-TLS coupling is weak, i.e.,

P0U0!1, ~18!

whereU0 is set by the variance

^m i j
2 &5U0

2 . ~19!

Such an interaction could be mediated byvirtual phonon
exchange~elastic coupling! or virtual photon exchange~elec-
trostatic coupling! between the TLS’s. In the former case th
energy scale of interaction~19! is easily found to be

U05
g2

p%v2 , ~20!

which, indeed, providesP0U0!1 for all glasses—in
PMMA:18 U0'1 eV Å3 and P0U0'1024. Based on the
smallness ofP0U0, Burin and Kagan proposed that the TLS
TLS coupling in glasses is dominated at low temperatures
an up-down transition~cf. Fig. 1!. Such an interaction con
tainscoherencebecause the up transition of one TLS inev
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5252 56PETER NEU, DAVID R. REICHMAN, AND ROBERT J. SILBEY
tably has to be followed by a down transition of the coup
TLS’s. After rotating to the eigenbasisu0i& and u1i& of Eq.
~1! by

sz
i 5~e i /Ei !Sz

i 2~D i /Ei !Sx
i , ~21!

sx
i 5~D i /Ei !Sz

i 1~e i /Ei !Sx
i , ~22!

where Sz
i 5u0i&^0i u2u1i&^1i u, such an interaction is gene

ated by the

2
D iD j

4EiEj
Ji j Sx

i Sx
j ~23!

part of Eq. ~15!. The eigenstatesu1&[u0i ,0j&, u2&[u0i ,1j&,
u3&[u1i ,0j&, u4&[u1i ,1j& of the Hamiltonian H0,i j

52(1/2)(EiSz
i 1EjSz

j ) ~cf. Fig. 2! become mixed due to th
interaction term~23!. In the up-down subspacespanned by
u0i ,1j&5u0i& ^ u1 j& and u1i ,0j&5u1i& ^ u0 j& this pair cou-
pling can effectively be described by a TLS-Hamiltonian
the type ~1! with sz5u0i ,1j&^0i ,1j u2u1i ,0j&^1i ,0j u,
sx5u0i ,1j&^1i ,0j u1u1i ,0j&^0i ,1j u, and pair asymmetry en
ergy, pair tunneling frequency, and pair level splitting

ep5Ei2Ej ,

Dp5Ji j D iD j /2EiEj , ~24!

Ep5ADp
21ep

2.

The eigenstates for the coherently coupled pair then rea

u1&5A11ep /Ep

2
u0i ,1j&1A12ep /Ep

2
u1i ,0j&,

~25!

u2&5A11ep /Ep

2
u1i ,0j&2A12ep /Ep

2
u0i ,1j&.

~26!

Clearly, the more asymmetric the pair is, i.e., the larger
energy offsetEi2Ej is, the more localized at one TLS is th
pair excitation.

Based on the distribution~2! of the single TLS tunneling
parameters and a uniform spatial distribution of the sin
TLS in the glass, Burin and Kagan12 derived the following
distribution function for the parameters of coheren
coupled pairs:

P~2!~ep ,Dp!5
p3

12
~P0kBT!~P0U0!

1

Dp
2 Q~Dp2Dp,min!,

~27!

FIG. 1. Coherent up-down coupling between two TLS’s.
f

e

e

whereQ(x), the unit step function, is included to emphasi
that the distribution has a cutoff at smallDp . Note that the
density of states of the pairs is linearly temperature dep
dent. Coherent coupling between pairs is destroyed if ther
spontaneous decay during the up-down transition. For
mary TLS’s withE'2kBT this occurs with a rate~4!, which
guided Burin and Kagan to estimate the lower bound~for
secondary TLS’s formed from symmetric primary TLS’s!

Dp,min5\aT3. ~28!

Comparing Eq.~27! with Eq. ~7! yields

A~T!5~p3/12! ~P0U0! kBT. ~29!

This looks encouraging; however, after a closer examinat
there are several inconsistencies. First, Maieret al.8 could fit
their data with a temperature-independentparameterA.
Burin and Kagan’s theory givesA}T. The 10% variation,
which Maieret al.8 found between the 1 and 0.5 K data,
too weak to account for the linear temperature dependenc
the theory. Second, putting in numbers, we find, for PMM
at 1 K, A(1 K)/kB'1024 K and Dp,min /kB'400 mK,
which is inconsistent with the experimental values~13! and
~14! by several orders of magnitude. Indeed, at 1 K, TLS
with Dmin /kB;0.4 K can never be responsible for spect
diffusion on the time scale between 103 and 106 s. However,
it is possible that very asymmetric primary TLS’s are respo
sible for long-time spectral diffusion. For very asymmetr
TLS’s, the estimate of Burin and Kagan, Eq.~28!, would be
significantly reduced. Hence, though Burin and Kaga
theory predicts the measured time dependence quite a
rately, there arise severe inconsistencies in orders of ma
tude and the temperature dependence upon applying
theory at 1 K. It should be mentioned that Burin and Kag
considered only the millikelvin regime, which avoids a
these problems.

III. KASSNER-SILBEY APPROACH FOR PRIMARY
AND SECONDARY TLS’s

Though the picture developed by Burin and Kagan is v
appealing, it explains only qualitatively the hole-burnin
data of Maieret al.7,8 The question arises whether a micr
scopic calculation can yield testable predictions based on
interacting TLS scheme of Burin and Kagan. We carry o
calculations based on a strong coupling of TLS’s to phon

FIG. 2. Energy levels and eigenstates of the Hamilton
H0,i j 52(1/2)(EiSz

i 1EjSz
j ) (Ei.Ej ). Framed are the up-down

states which build a basis for the secondary TLS.
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56 5253SPECTRAL DIFFUSION ON ULTRALONG TIME SCALES . . .
with deformation potentialg'1 eV. This allows for a shift-
ing of the rate distribution towards longer times and inde
brings the ‘‘calculated’’ value ofA @see Eq.~29!# into closer
agreement with experiment. Furthermore, the inclusion
strong-coupling effects alone gives a reasonable fit to
experiment of Maieret al. for intermediate times@cf. Fig.
3~a!#.

Let us start with the usual spin-boson Hamiltonian for
ensemble of TLS’s interacting with phonons via a stra
field. In the TLS eigenbasis the Hamiltonian reads

H52
1

2(i
EiSz

i 1(
i ,q

~ ū iSz
i 2uiSx

i !cq
i ~bq1b2q

† !

1(
q

\vqbq
†bq , ~30!

with

cq
i 5 igqS 1

2%Vvq
D 1/2

eiq•r i ~31!

and

ui5D i /Ei , ū i5e i /Ei . ~32!

According to this, the TLS’s become dressed with clouds
virtual phonons. As a result the coupling between the TL
will also be changed. The assumption traditionally made
that the dressed entities can be considered as weakly i
acting. Hence, first-order perturbation theory in the dres
states might be sufficient at low temperatures.

Based on this picture, Kassner and Silbey13 derived a
Sz

i Sz
j interaction between TLS’s and a reduction of relaxat

rates for asymmetric TLS’s. Compared to Eq.~4!, they found
well below the Debye temperature of the glass,T!QD ,

R5S D

ED 2

e2G~e/E!2
Rmax, ~33!

where@cf. Eq. ~6!#

G5~\/8pkB! aQD
2 . ~34!

It is a peculiar feature of their approach that symme
TLS’s have no reduced rates—i.e.,Rmax is still given by Eq.
~5!—and have zero interaction. It is this very fact whic
significantly changes the distribution functionP(1)(E,r ) of
single TLS energiesE and dimensionless relaxation rat
r 5R/Rmax compared to the STM result@cf. first term in Eq.
~8!#. According to Eq.~33!

r 5S D

ED 2

e2G~e/E!2
~35!

@compared to the STM resultr 5(D/E)2#. With this, Kassner
and Silbey derived the distribution

P~1!~E,r !5
P0

2r ū ~r !$11G@12 ū2~r !#%
, ~36!

where ū (r )5e/E is the inverse function of

r ~ ū !5~12 ū2!e2G ū2
. ~37!
d

f
e

f
s
is
er-
d

c

The result is a stretching of the distribution inr towards
smaller values; i.e.,P(1)(r ) has an extended tail for suc
rates. The flaws and merits of the Kassner-Silbey way
handling strong-TLS-phonon-coupling effects have been
cussed in Ref. 13. An important point is that anSx

i Sx
j inter-

action between TLS’s, as used in Burin and Kagan’s
proach, cannot be derived from this approach.

In Appendix A we have generalized Kassner and Silbe
approach to include coherent coupling between pairs.
procedure has been as follows. First, we have eliminated
diagonal (Sz

i ) and off-diagonal (Sx
i ) coupling in the Hamil-

tonian~30! by two separate unitary transformations~A1! and
~A6!. Second, instead of continuing with the full transform
Hamiltonian, we have projected out theone-phonon coupling
part in the dressed state basis. This has been achieve
expanding the generated phonon shift operators around
mean value up to the first leading term incq

i . This generates
one-phonon transition matrix elements in the four-level s
tem of the pair and, more importantly, Debye-Waller facto
which renormalize Burin and Kagan’s coherent coupli
term ~23! as

2Ji j D ie
2G~e i /Ei !

2/2D je
2G~e j /Ej !

2/2/~4EiEj !Sx
i Sx

j . ~38!

Here,

1

4
Ji j 5(

q

cq
i c2q

j

\vq
, ~39!

which is equivalent to Eqs.~16!–~20!. The pair asymmetry
energy and tunneling amplitude read

ep5Eie
2WiGui

2/22Eje
2WjGuj

2/2, ~40!

Dp5Ji j D ie
2G ūi

2/2D je
2G ūj

2/2/2EiEj , ~41!

with Wi5e2G ūi
2/2. One should note that forG@1 the

Debye-Waller factore2Wiui
2/2 is practically unity except for

nearly symmetric TLS’s. Since we will be mainly intereste
in strongly asymmetric TLS’s, we will always use this sim
plification hereafter. In Appendix B we calculate the pa
parameter distribution function. The result is

P~2!~ep ,Dp!5P~2!~Dp!P~2!~ep!, ~42!

with

P~2!~Dp!5
P0

Dp
2e2G/2I 0

2~G/4!Q~Dp2Dp,min!, ~43!

whereI 0(z) is a modified Bessel function, and

P~2!~ep!5 f ~ep!1 f ~2ep!, ~44!

with

f ~ep!5
A~T!

12e2bep
Q~Emax2ep!H lnS 2

11e2bep
D

2 lnS 11e2bEmax

11e2b~ep1Emax!
D J . ~45!
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The parametersEmax andDp,min are cutoffs which are set b
the requirement of stability for the coupled pairs.Emax is a
cutoff in the energy of theprimary TLS’s, which, as we will
see below, is generally a function of the temperature
Emax@kBT, P(2)(ep) is the sum of a constant and a be
shaped curve centered aroundep50 with a width of
O(kBT). It can be approximated by

P~2!~ep!'A~T!@ ln21~12 ln2!exp~2b2ep
2/9!# ~46!

for all practical purposes. IfEmax!kBT, the distribution
P(2)(ep) becomes independent ofep ,

P~2!~ep!'A~T!Emax~T!/4kBT. ~47!

In the limit Emax@kBT andG,ep /kBT!1, we find Burin and
Kagan’s result~27!. This confirms that their model is valid a
ultralow temperatures for nearly symmetric TLS’s with we
coupling to phonons. In the limitG@1, the asymptotic ex-
pansion of the modified Bessel function,I 0(z)'ez/A2pz
(z@1), provides a renormalization ofP0 by a factor of
2/(pG).

IV. STABILITY ANALYSIS

To determineEmax andDp,min , we first neglect the leve
broadening effect of the phonons. Then,Emax scales with the
glass transition temperature, andDp,min is set by the concen
tration Np of pairs in the glass. To determineNp , we start
with estimating the probability for two TLS’s separated by
distancer to form a pair toP(r )'P0U0 /(8p/3)ur u3. Then
the concentration of pairs in a shell@V2V/2,V1V/2# is
given byNp'*V/2

3V/2nP(r )dr , wheren5P0kBT is the number
of thermal TLS’s. This yields

Np5~1/2!~P0T!~P0U0!ln3, ~48!

which in three dimensions is independent of the volumeV
due to theur u23 law of interaction. The maximum volum
V* 5(4p/3)ur* u3 each of these pairs can occupy is given
1/Np which determines the minimum interaction ener
Jmin5U0 /ur* u3. This provides according to Eq.~41!

Dp,min5
1

2
Jmin5

p

3
~P0U0!2 kBT ~49!

as a reasonable estimation of the lower bound. Indeed
PMMA, Eq. ~49! providesDp,min /kB51028 K which, at 1 K,
corresponds to a maximum relaxation timetmax5106–107 s.

Let us now include decoherence effects by phonons.
will not provide a full discussion of the relaxation dynami
in the four-level system of the pair, but instead try to arg
more physically. After two unitary transformations~A1! and
~A6!, one finds the Hamiltonian~A11! as pointed out in Ap-
pendix A. Here, only the term}Sx^ Sy allows relaxation
within the up-down subspace$u0,1&,u1,0&%. The relaxation
mechanism is a flip-flop process linked with the emission
absorption of a phonon. The relaxation rate scales w
(Dp /Ep)2:

R~p!5r pRmax
~p! , ~50!

where
If

or

e

e

r
h

r p5S Dp

Ep
D 2

, ~51!

Rmax
~p! 'aT3xp

3cothxp , ~52!

andxp5Ep/2kBT. We used thatap'a, as discussed in Ap-
pendix A. Note that there is no Debye-Waller factor of t
Kassner-Silbey type because of the coupling of the phon
to sy

p instead of tosz
p . The coherent coupling is destroye

by spontaneous decay during the up-down transition of
mary TLS’s constituting a pair: for instance
u0,1&,u1,0&→u0,0&. Based on this argument, Burin and Kag
estimatedDp,min5\aT3, where aT3 is the decay rate of
symmetric, primary TLS’s with E52kBT. Clearly, on the
time scale explored in the experiment of Maieret al.,
strongly asymmetric TLS’s dominate the hole width inste
of symmetric ones. Note that in constructingP(2)(ep ,Dp)
@Eq. ~42!#, we integrated over values of the energy splittin
of the primary TLS’s less thanEmax(T), which have the cor-
rect initial population factors to ensure the creation of sta
pair excitations. We now investigate which primary TLS
are able to guarantee stability of secondary TLS’s at 1 K; i
we ask whether the limitEmax(T).kBT or ,kBT applies.
We first study if secondary TLS’s may be formed from p
mary TLS’s with thermal splitting,E;O(kBT), at 1 K. We
need to satisfy three conditions. First, we require

Ep /\>R~E52kBT!, ~53!

where R(E52kBT)[raT3<1/t is the relaxation rate of a
primary thermal TLS’s which has not yet decayed att, i.e.,
for which @cf. Eq. ~33!#

1/r>aT3t'1013–1016, ~54!

with t5103–106 s. These two requirements guarantee t
the secondary TLS is coherent on the time scale where
viations from logarithmic spectral diffusion is seen. Furthe
more, if secondary TLS’s are responsible for the spectral
broadening after 103 s, the pair rate must satisfyR(p)t51.
This provides the relation (Dp /Ep)251/aT3txp

3cothxp . Us-
ing this relation, multiplying Eq.~53! by 1/Ep , and squaring
it, one can now easily check that Eq.~54! always implies Eq.
~53!.

With respect to the stability of secondary TLS’s at 1
we conclude the following: First, from the condition~54! we
deduce the criterionr !1; i.e., the primary TLS’s must be
very asymmetric. Second, upon replacingDp5Jr @cf. Eq.
~41!# and noting thatxp /Axp

3cothxp'1 for 0<xp<1, we find
the criterion

J

2kBT
.AaT3t'106–108. ~55!

Hence, according toJ5U0 /d3 andU0'104 K Å 3, the rel-
evant TLS’s are separated by a distanced&1 Å. Note that
these estimates are highly approximate. In particular,
have approximated the rate at which coherence in a sec
ary TLS is destroyed by the relaxation rate of a primary TL
without consideration of the true rates that govern
coupled four-level system. However, we may still conclu
that at 1 K it is unlikely that primary TLS’s with thermal
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splitting E;O(kBT) can form pairs, unless they sit ex
tremely close to each other. This fact suggests a natural
off Emax(T) in the energy splittings of the primary TLS’
that comprise the secondary TLS’s existing at 1 K. This c
off is motivated by the above stability criteria, and c
change the temperature dependence ofP(2)(ep) in Eq. ~44!
and of the hole width in general. We will return to this poi
in the next section. According to this, the distributio
P(2)(Ep ,r p) reads

P~2!~Ep ,r p!5P~2!~r p!P~2!~Ep , r̄ p!, ~56!

where

P~2!~r p!5
P0 e2G/2I 0

2~G/4!

2r p
3/2A12r p

Q~r p2r p,min! ~57!

and

P~2!~Ep , r̄ p!5
A~T!

uEpu~12e2 r̄ pbEp!
H lnS 2

11e2b r̄ pEp
D

2 lnS 11e2bEmax

11e2b~ r̄ pEp1Emax!
D J ~58!

1 ~Ep→2Ep!, ~59!

with 0,Ep<Emax(T), r̄ p5A12r , andA(T) given by Eq.
~29!.

V. COMPARISON WITH EXPERIMENT

We now calculate the broadening of a spectral hole in
inhomogeneous line due to spectral diffusion induced
single TLS’s and pairs. According to the standa
theory,7,14–17 the experimentally observed line broadeni
DG(t)[G(t)2G(t0) can be written as

DG~ t !5
p2

3\
^C&E

0

`

dE sech2
E

2kBTE0

1

dr @ ū~r !P~1!~E,r !

1A12rP ~2!~E,r !#~e2rRmaxt02e2rRmaxt!, ~60!

where P(1)(E,r ) and P(2)(E,r ) is given by Eqs.~36! and
~56!, respectively. To calculate these integrals, we repl
the last factor by the step function, which restricts ther
integration to the interval@1/Rmaxt,1/Rmaxt0#. This gives

DG~ t !5DG~1!~ t !1DG~2!~ t !, ~61!

where

DG~1!~ t !5
p2

3\
^C&P0 kBT ln

12 ū2~1/aT3t0!

12 ū2~1/aT3t !
~62!

is the contribution of the primary TLS’s to the spectral ho
width. To calculate the pair contributionDG (2)(t), we con-
sider the limitsEmax(T)@kBT and!kBT, separately.

A. Limit Emax„T…@kBT

Remember, in this limit coherently coupled pairs can
built by thermal primary TLS’s. We find from Eq.~60!
ut-

t-

e
y

e

e

DG~2!~ t !5
p2

3\
e2G/2I 0

2~G/4! ^C&P0

3A~T! AaT3 ~At2At0!. ~63!

Putting Eqs.~61!–~63! together provides an equation whic
is very similar to the result~11!. However, this equation is
based on the microscopic picture of phonon-mediated T
TLS interaction. There are two regimes where the fun
tion ū (1/aT3t) can be determined analytically:~i! short-

time limit aT3t!eG which gives ū2(1/aT3t)
'@1/(11G)# ln(aT3t) and ~ii ! long-time limit aT3t@eG

which gives ū2(1/aT3t)'12eG/aT3t. In Ref. 8~b!, Maier
has fit his data with only the first term in Eq.~61!. By nu-
merical inversion of Eq.~37!, he could find good agreemen
on intermediate time scales up to 200–300 min. We h
illustrated this in Fig. 3~a!. The values for the fit parameter
G and P0^C& are 32 and 631025, respectively. With this
value for G, the crossover from the short- to the long-tim
behavior happens after;150 min; Eqs.~12! und ~34! yield a
Debye temperature ofQD5108 K, which is in reasonable
agreement with literature data for PMMA. It is in part due
the success of the Kassner-Silbey theory at intermed
times that we have adopted the strong-coupling approac
our dynamical starting point. For times larger than 300 m
Maier attributed the deviations of the theory from the expe
mental data to the contribution of interacting TLS’s. If this
true, we should find agreement between theory and exp
ment when including the second term in Eq.~61!. In Fig.
3~b! we have plottedDG(t), Eqs. ~61!–~63!, together with
the experimental data of Ref. 8 for 1 K~upper curve! and 0.5
K ~lower curve!. We used the same value forG as in the
previous plot, and have optimized the TLS-TLS coupli
parameterP0U0 and the TLS-chromophore coupling param
eter P0^C& to find best agreement for the 0.5 K data. T
result isP0U052.531026 andP0^C&5431025. The upper
curve shows the prediction of the theory for the 1 K data.
The parameter value forP0U0, which fits the 0.5 K data, is
by a factor 25–35 smaller than the literature value.18 How-
ever, we see that a superposition of a lnt and at0.5 term can
be interpreted as an effectivet0.38 power law on the experi-
mental time scale as seen by Maieret al. Hence, under the
assumption that primary TLS’s with thermal energy splitti
can form stable secondary TLS’s at 1 K, we findDG (2)

}T5/2, giving a temperature dependence that is too stro
compared with the experimental observation which indica
DG (2)}T3/2, at least in fitting the data at the two temper
tures 0.5 K and 1 K. This can clearly be seen by the pred
tion of the theory for the data in Fig. 3~b!.

B. Limit Emax„T…!kBT

We have noted in the previous section that it is very u
likely that thermal primary TLS’s can form stable pairs at
K. If we impose a minimum separation distance betwe
primary TLS’s~say 5 Å!, then a natural energy cutoff ente
due to the stability requirements outlined in the previo
section. If we assume that this cutoffEmax satisfies the con-
dition
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Emax~T!!kBT, ~64!

then we can estimateEmax(T) from the conditions consid
ered in Sec. IV. Specifically, fromRt;1, R(p)t;1,
xp /Axp

3cothxp;1, andr 5Dp /J,

S Emax~T!

2kBT D 3

cothS Emax~T!

2kBT D;
Jmax

2kBTAaT3t
, ~65!

where Jmax5U0 /dmin
3 . This shows thatEmax(T);T21/4,

which significantly alters the temperature dependence of
hole width. If the above condition is met, then

P~2!~Ep!'A~T!Emax~T!/4kBT;T21/4 ~66!

and

DG~2!~ t !'
p2

6\
e2G/2I 0~G/4! ^C&P0 ~At2At0!

3AaT3 A~T! S Emax~T!

2kBT D 2

. ~67!

In the regime whereEmax(T)!kBT, this expression is essen
tially temperature independent. Thus, the stability requ
ments imply an interesting thermal breakup of the second
TLS’s.

VI. DISCUSSION

For very low temperatures@Emax(T)@kBT#, the majority
of asymmetric TLS’s are stable even if constructed fro
asymmetric primary TLS’s that have energy splittings on
order ofkBT, leading to the strong temperature depende
depicted in Fig. 3~b!. We have argued that at higher tempe
tures, a crossover should occur where the temperature de
dence should become weaker, as secondary TLS’s bec
less stable. Therefore, it is qualitatively consistent with t
picture that the observed temperature dependence at;1 K is
weaker than that shown in Fig. 3~b!. Such arguments requir
further ‘‘slowing down’’ of the temperature dependence19

This is indeed seen experimentally at 2 K.20 Hanniget al.are
able to fit their data with essentially the same value ofA at
0.5 K and 1 K, and a value of 0.3A(T50.5 K! at 2 K.
Eventually, the entire TLS picture should break down
some temperature in the range 1–10 K. A clear test of
validity of this picture would be to see if the stronger tem
perature dependence emerges at lower temperatures.
experiments are difficult to conduct at ultralow temperatur
due to slow equilibration effects.

We may also note that the discrepancy between the ‘
rived’’ and literature values ofP0U0 can be explained by the
thermal breakup of secondary TLS’s demanded by stab
criteria. As the temperature is raised, the primary TLS’s m
lie closer together to form a stable secondary TLS’s at lo
times. The probability of finding two neighboring primar
TLS’s a very close distance apart is small, which effectiv
decreases the ‘‘derived’’ value ofP0U0. Note that there is
also a reduction inDG (2)(t) due to the factor (Emax/2kBT)2

@see Eq.~67!#. Thus, at least qualitatively, it is indeed po
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sible that a picture based on coupled TLS’s can account
all the properties currently observed in longtime spectral d
fusion experiments.

So far we have shown the pros and cons of applying
idea of coupled pairs to hole-burning experiments
ultralong-time scales at 1 K. Here we propose an interes
experiment which, although difficult to perform, would pro
vide a conclusive test of the coupled TLS hypothesis. A c
cial observation is that the exponent of the power law
pends on thedimensionality of the glassy probe. Fo
example, the exponent would be systematically smaller if
primary TLS’s were confined to~quasi! two dimensions,
while the interaction between them still varies as 1/ur u3. This
would result in a distribution functionP(Dp)}Dp

5/3 @from
P(Dp)}P(J)5P(ur u)ur u(udur u/dJu) and J}ur u23, P(ur u)5
const# and therefore in at1/3 power law. The experiment we
suggest has already been performed, albeit not for the
pose that we discuss here and not on a time scale up to 16 s.
The hole-burning experiment by Orritet al.21 on an ionic dye
in a Langmuir-Blodgett monolayer lying on a thre
dimensional substrate is an experiment of the type we p
posed above—the TLS dynamics is restricted to two dim
sions whereas sound waves and strain are not affected b
interface between the amorphous layer and the bulk. Ind
Orrit et al.21 have observed spectral diffusion which could
explained by Pack and Fayer22 using the standard tunnelin
model. From this perspective it seems promising to exte
the experiment of Orritet al. to longer times and look
whether a power law weaker than the three-dimensional
sult t0.5 could be observed.

There are, however, reasons to be skeptical of the pic
we have outlined. A number of approximations have be
invoked that render only a semiquantitative description
the experimental results. These approximations include
reduction of the primary TLS to an effective secondary TL
and the use of relaxation rates for uncoupled TLS’s to d
cuss decoherence effects for coupled secondary TL
These approximations, especially the first one, may not
valid at temperatures near 1 K. Clearly, one has to th
about alternative explanations. A simple idea would be
attribute the deviation from the standard lnt behavior to a
nonequilibriumstate of those TLS’s which relax on thes
long-time scales. Indeed, recent experiments by Fried
et al.23 have proved that spectral diffusion in glasses un
nonequilibrium conditions results in a nonlogarithmic tim
evolution of the hole width. However, the data in the expe
ment of Maieret al. were obtained after letting the samp
relax at the measurement temperature for a longer pe
than the later data recording period. Hence, one expects
all relaxation processes shorter than this waiting time oc
under equilibrium conditions.

It is interesting to compare the glass results with equi
lent experiments on proteins. Hole-burning experiments
proteins show almost no hole broadening up to 3 h, follow
by a nonlogarithmic hole-broadening regime.24 Temperature-
cycle hole-burning experiments25 lead to the conclusion tha
the excess broadening of the hole in the protein canno
interpreted in the framework of the STM. Hence, one mig
speculate that in both glasses and proteins, the interactio
TLS’s becomes important at long-time scales. An alternat
conclusion avoids the notion of interacting TLS’s altogeth
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FIG. 3. ~a! Hole broadening in PMMA at 1 K
~upper curve! and 0.5 K~lower curve! compared
with the Kassner-Silbey theory for single TLS’s
The experimental data are from Ref. 8. The tw
solid lines areDG (1)(t), Eq. ~62!, for 1 K ~upper
solid curve! and 0.5 K~lower solid curve! with
G532 (QD5108 K! and P0^C&5631025. ~b!
Same figure as above but now with the contrib
tion of both the single and pair TLS’s@logarith-
mic and algebraic part of Eq.~61!#. The param-
eters P0^C&5431025 and P0U052.531026

have been optimized to find best agreement w
the 0.5 K data;G532 has been kept fixed. Com
parison with the 1 K data clearly shows that th
temperature dependence as predicted by Eqs.~29!
and ~61! is too strong.
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Perhaps the energy landscape of glasses is not too diffe
from that of proteins, and also shows features of organiza
at high barriers. Recall that the experiments of Maieret al.
were carried out in PMMA, which is a polymer glass. Po
mer glasses may be expected to have conformations sim
to proteins. For example, such ‘‘conformational’’ dynami
may involve side chain motions. The physical picture is t
the energy landscape comprises high barriers in additio
constantly distributed lower barriers within each of its b
sins. The algebraic behavior then results from tunnel
through those high barriers, which have to be distribu
around a ‘‘typical’’ valueV0. This value has to be suffi
ciently high in order that the onset of the algebraic behav
occur only after 3 h. We give some details on these idea
Appendix C; more can be found in Ref. 26. The model p
dicts a temperature and time dependence of the hole w
with an exponent which is slightly weaker thanT3/2 andt1/2,
respectively, and a slowly decreasing function ofT and t.
ent
n

lar

t
to
-
g
d

r
in
-
th

We note that if indeed specific polymer dynamics~like side
chain motion! are responsible for deviations from logarith
mic spectral diffusion, perhaps a deuterated sample m
show different hole-broadening behavior.

One is tempted to speculate that these ‘‘non-STM-lik
high barriers arise from the presence of the chromophor
the glassy host,27 because they have not been observed
sound attenuation experiments up to 100 K.28,29 Note, how-
ever, that these experiments were not performed on poly
glasses, and that sound attenuation experiments on PM
and PS indeed show a strong increase in the mechanical
above;50 K.30 Interestingly, doping a network glass wit
OH impurities leads to the same observation,29 which con-
ceivably supports the importance of side chain motion
polymer glasses. Furthermore, in contrast to the glass,
protein probe is not doped by a dye. Instead part of
protein is chemically changed in order to serve as a ch
mophore. Thus, it seems that such deviations from stand
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spectral diffusion behavior are not due to the inclusion of
chromophore into the sample.

One should also note that nonlogarithmic line broaden
is the typical case because a logarithmic time depende
occurs only in case of a 1/Dn distribution for the singular
casen51. Without invoking the physical reasons for devi
tions from the standard 1/D distribution function introduced
by Anderson, Halperin, and Varma and of Phillips, we m
say that for small values ofD ~corresponding to long times!,
the distribution of barriers is not really flat, but instead
smoothly varying function of the parameterl ~see Appendix
C!. That the distribution of barriers in such a model turns o
to be a log-normal distribution shows a striking similarity
general systems exhibiting 1/f a noise.31

VII. CONCLUSIONS

In this paper we have analyzed the consistency of
conjecture thatcoupled pairs of TLS’s dominate spectral d
fusion on ultralong time scales. Because the pair distributio
P(2)(ep ,Dp) is correlated with the distribution of the pr
mary ‘‘STM-like’’ TLS’s, we have in a sense pushed th
STM as far as possible by looking at these low-energy e
tations. We believe that this is an important step, which
to be donebefore trying to find another extension of th
STM for every new experiment. The question was whet
they also apply to the 1 K regime and, in particular, whethe
they can provide an explanation of the longtime hole-burn
experiment of Maieret al. We find that a picture based o
the idea of interacting tunneling systems seems consis
with the experimental data, although we are unable to
certain aspects of the experiment, such as the tempera
dependence, quantitatively. Also, alternative explanati
have been presented. These models are, at the mome
least as speculative as the scenario of coherently cou
pairs. For this reason, we have discussed some possible
perimental tests of the theoretical models we have presen
More theory and experiments have to be done to fina
evaluate the role of coupled TLS’s in glasses and to und
stand the origin of nonlogarithmic hole broadening
glasses.
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APPENDIX A

In this appendix we generalize Kassner and Silbey’s
proach to include coherent coupling between pairs. For
goal we first apply the unitary transformation

U15expF(
i ,q

~2 ū icq
i /\vq!~bq2b2q

† !Sz
i /2G[)

i
ew iSz

i /2

~A1!
e

g
e

y

t

e

i-
s

r

g

nt
t

ure
s
, at
ed
ex-
d.

y
r-

e

-
is

to the Hamiltonian~30! which eliminates the diagonal cou
pling of phonons toSz

i . The transformed Hamiltonian
H→U1

21HU1 reads, withS6
j 5(1/2)(Sx

j 6 iSy
j ),13

H52
1

2(i
EiSz

i 1(
q

\vqbq
†bq

2(
i ,q

uicq
i ~bq1b2q

† ! ~B2
i S1

i 1B1
i S2

i !

2
1

4(i , j Ji j @ ū i ū jSz
i Sz

j 22ui ū j~B2
i S1

i 1B1
i S2

i !Sz
j #,

~A2!

where

1

4
Ji j 5(

q

cq
i c2q

j

\vq
, ~A3!

and

B6
i 5expF6(

q
~2 ū icq

i /\vq!~bq2b2q
† !G[e6w i.

~A4!

TheB6
i are the usual phonon shift operators. Instead of p

ceeding with the full transformed Hamiltonian, we proje
out theone-phonon fluctuationsaround the shifted harmoni
oscillators coordinates. This is achieved by expand
B6

i [^B6
i &1(B6

i 2^B6
i &)5^B6

i &6w i , where

^B6
i &5e2G~e i /Ei !

2/2, ~A5!

and neglecting two-phonon terms. Applying Fermi’s gold
rule to the remaining one-phonon term directly yields t
rate~33!. A coherent coupling between pairs is generated
eliminating this term by a second unitary transformation

U25expF2(
i ,q

~2ui^B6
i &cq

i /\vq!~bq2b2q
† !Sx

i /2G
[)

i
e2f iSx

i /2. ~A6!

This yields

H52
1

2(i
Ei S̃z

i 1(
q

\vqbq
†bq2

1

4(i , j Ji j $ ū i ū j S̃z
i S̃z

j

1ui^B6
i &uj^B6

j & Sx
i Sx

j 22ui ū j~^B6
i &Sx

i 2 iw i S̃y
i ! S̃z

j %,

~A7!

where
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S̃z
j 5Sz

j coshf j2 iSy
j sinhf j , ~A8!

S̃y
j 5Sy

j coshf j1 iSz
j sinhf j . ~A9!

Expanding again around the one-phonon fluctuati
n

ir

u

q.

el

t

s

around the shifted harmonic oscillator coordinate by repl
ing S̃z

j 'Sz
j ^D6

j &2 if jSy
j and S̃y

j 'Sy
j ^D6

j &1 if jSz
j , where

^D6
j &5e2G~D j ^B6

j &/Ej !
2/2, ~A10!

one finds
H52
1

2(i
Ei^D6

i &Sz
i 1(

q
\vqbq

†bq1
i

2(i
Eif iSy

i 2
1

4(i , j Ji j $ ū i^D6
i & ū j^D6

j &Sz
i Sz

j 1ui^B6
i &uj^B6

j & Sx
i Sx

j

22ui^B6
i & ū j^D6

j &Sx
i Sz

j 12 i ui^B6
i & ū jf jSx

i Sy
j 12 i ui^D6

i & ū j^D6
j &w jSy

i Sz
j 2 i ū i ū j~^D6

j &f iSy
i Sz

j 1^D6
i &f jSz

i Sy
j !%.

~A11!
or

n
s-
g,
The only operators which act nontrivially in the up-dow
subspace$u0,1&,u1,0&% are Sz^ 1, 1^ Sz , Sx^ Sx , Sx^ Sy ,
andSy^ Sx . If we define new pseudospin operators for pa
( i , j ),

sx
p5u0i ,1j&^1i ,0j u1u1i ,0j&^0i ,1j u, ~A12!

sy
p52 i u0i ,1j&^1i ,0j u1 i u1i ,0j&^0i ,1j u, ~A13!

sz
p5u0i ,1j&^0i ,1j u2u1i ,0j&^1i ,0j u, ~A14!

we can project the quoted operators onto the up-down s
space, which yields Sz^ 1→sz

p , 1^ Sz→2sz
p ,

Sx^ Sx→sx
p , Sx^ Sy→2sy

p , andSy^ Sx→sy
p . If we project

the Hamiltonian~A11! accordingly, we find for each pair

Hpair52
Dp

2
sx

p2
ep

2
sz

p1 iDpsy
p(

q

2cq
p

\vq
~bq2b2q

† !

1(
q

\vqbq
†bq , ~A15!

with

Dp5Ji j

D iD j

2EiEj
^B6

i &^B6
j &, ~A16!

ep5Ei^D6
i &2Ej^D6

j &, ~A17!

cq
p5cq

i ~e i /Ei !2cq
j ~e j /Ej !. ~A18!

Applying Fermi’s golden rule to the interaction term in E
~A15! provides a one-phonon relaxation rate

Rp5aDp
2Ep /~2kB!3 coth~Ep/2kBT!. ~A19!

Here, we have used that the oscillating term incq
pcq

p* is
small so that pairs and single TLS’s relax approximat
with the same coupling parametera provided that
e i /Ei'1. Note that because of the coupling of phonons
sy

p ~instead ofsz
p), there is no diagonal coupling term}Sz

p

as in Eq.~30! after rotation to the pair-TLS eigenbasis.
s

b-

y

o

APPENDIX B

In this appendix we calculate the distribution function f
the pair parametersDp andep of Eqs.~40! and~41!. We note
that the single-TLS distribution function foru5D/E and
E5AD21e2 readsP(E,u)5P0 /(uA12u2). The distribu-
tion function for the pair parameter is then given by

P~2!~ep ,Dp!

5E dE1

11e2bE1
E dE2

11ebE2
E

0

1

du1E
0

1

du2

3E dJ P~E1 ,u1!P~E2 ,u2!P~J!

3
1

2
$d~ep2E11E2!1d~ep1E12E2!%

3dS Dp2
1

2
Ju1u2e2G~12u1

2
!/2e2G~12u2

2
!/2D . ~B1!

The factors (11e6bE)21 account for the thermal occupatio
of the primary TLS’s. If the TLS’s are homogeneously di
tributed in the glass and interact via a dipolar couplin
J5U0 /ur u3, the distribution function ofJ reads for a three-
dimensional probe

P~J!5
4p

3

U0

J2 . ~B2!

Using now that

E
0

1

du
e2u2G/2

A12u2
5

p

2
e2G/4I 0~G/4!, ~B3!

whereI 0(z) is a modified Bessel function, and

E
y

1 dx

~11x!~11mx!
5

1

12mF ln
2

11y
2 ln

11m

11myG ,
with x5e2bE, y5e2bEmax, andm5e2bep, one easily finds
Eqs.~42!–~45!.
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APPENDIX C

In this appendix we show how a modified tunnelin
model which comprises an additional Gaussian distribut
in the tunneling parameterl centered around the mean valu
l0@1 can provide an algebraic line broadening. The n
distribution reads, withD5\v0 e2l,

P~e,l!5P01
P0Ã

A2ps2
e2~l2l0!2/2s2

, ~C1!

where Ã is a dimensionless constant, andl>lmin(E),
lmin(E)5 ln(\v0 /E). A similar model has been used prev
ously by Jankowiak and Small27 and by Zimdars and Fayer32

to discuss three-pulse photon echo data.33,34 A combination
of both terms is needed in order that the onset of the a
braic line broadening does not occur too early. In the follo
ing it will turn out sufficient to reduce the number of param
eters by setting

s2[l0 . ~C2!

The ensuing distribution inD then reads

P~e,D!5P0F 1

D
1

B ~\v0!12~1/2l0!ln~\v0 /D!

D22~1/2l0!ln~\v0 /D! G , ~C3!

whereB5Ãe2l0/2/A2pl0. This distribution has to be com
pared with Eq.~7!. Defining the maximum relaxation rate a
givenE by R[e22[l2lmin(E)]Rmax(E), the distribution func-
tion in relaxation ratesR and TLS energiesE reads
g

ld

y

g

tt.
-

n

e-
-

~e/E! P~E,R!5
P0

2 F 1

R
1

B Rmax
n~R!

R11n~R!G , ~C4!

where

n~R!5
1

2
2

1

8l0
ln~Rmax/R!. ~C5!

From this expression, it is obvious that an algebraic l
broadeningDG(t)}tm with an exponentm,0.5 occurs for
l0@ ln@Rmax(T)t#. The exact calculation reveals

DG~ t !5
p2

3\
P0^C&kBTF ln~ t/t0!

1ÃH erfcS l02~1/2!ln~KTt!

A2l0
D

2erfcS l02~1/2!ln~KTt0!

A2l0
D J G , ~C6!

where erfc(x) is the complementary error function, an
K[(\v0 /kB)2a. With \v0 /kB5O(1 K!, one finds
K'1010 K 21 s21. For l0@ ln(KTt) this gives an algebraic
line growth

DG~ t !}BT~KTt!~1/2!2~1/8l0!ln~KTt!. ~C7!

More details and a comparison to experiment can be foun
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