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The van der Waals interaction of a pair of anisotropic molecules near planar dielectric surfaces is
studied by using the linear response formalism. The spatial correlation function~Green function! of
the vacuum electric field in the presence of dielectric surfaces is obtained by using suitable Fresnel
mode functions of the quantized electric field. In the short-distance limit, it is observed that the
long-range interaction potential is significantly modified by the dielectric surfaces and strongly
depends on the geometry of the two molecules near dielectric surfaces. When the two molecules are
anisotropic, depending on the molecular alignments with respect to the surfaces, the van der Waals
interaction is enhanced or suppressed by the existence of the surfaces. When the two molecules are
in between two dielectric surfaces, the overall magnitude of the van der Waals interaction is
suppressed in comparison to that in the free space because the vacuum electromagnetic field
intensity is reduced by the transmissivities that are generally less than unity. ©1996 American
Institute of Physics.@S0021-9606~96!00219-8#

I. INTRODUCTION

Boundary effects on various quantum phenomena, such
as level shifts of an atom in various types of cavities, en-
hancement or suppression of spontaneous emission rate, ex-
citation transfer etc., are of current interests both theoreti-
cally and experimentally.1 The modifications by the
boundary conditions are the manifestation of the changes in
mode structures of electromagnetic fields near boundaries.
For example, the spontaneous emission rate of an excited
atom near a dielectric surface can be enhanced or suppressed
depending on the distance from the surface.1–3 Based on the
Fermi Golden rule, the spontaneous emission rate is propor-
tional to the mean square fluctuation amplitude of the quan-
tum vacuum field.4–6 In the vicinity of a dielectric surface,7

the spatial variation of the field fluctuation amplitude differs
from that of the free space, which in turn cause modulations
of spontaneous emission rate as a function of distance from
the surface. In this paper, we shall show how these changes
in modal structures near planar surfaces modify the van der
Waals interaction between two polarizable molecules.

It was perhaps MacLachlan8 who first showed that the
van der Waals interaction between two neutral polarizable
molecules can be significantly altered by the existence of the
dielectric surface compared to that of the free space. He
showed that the van der Waals interaction potential of a pair
of molecules in the vicinity of a dielectric surface depends
on the detailed geometry. If the two molecules are located
side by side parallel to the dielectric surface, the intermo-
lecular interaction decreases in comparison to that in the free
space. In contrast, when one is on top of the other, the inter-
action potential increases. In case when the anisotropy of the
molecular polarizability is large, this boundary effect, in-
duced by a single dielectric surface, on the van der Waals

interaction of a pair of molecules can be very large so that
the van der Waals interaction could be suppressed or en-
hanced dramatically. Although this case was theoretically
studied by Imura and Okano,9 the clear physical interpreta-
tions and implications of these results were not fully ex-
plored in their paper.

In this paper, we focus on the more general situation
when two molecules are located in a planar microcavity~see
Fig. 1!. Particularly, the distance between the two surfaces is
much shorter than the most important wavelength of the sys-
tem, that is, the wavelength of the optical transition fre-
quency of the molecules or dielectric media. Noting that usu-
ally the optical transition wavelength is order of hundreds of
nanometer, the short distance limit we shall consider is the
case when both the intermolecular distance and intersurface
distance are smaller than this length scale. If a pair of mol-
ecules are located in a planar microcavity~Fabry–Perot cav-
ity!, one can expect that the van der Waals interaction is
similarly but more strongly modified by the two planar di-
electric surfaces, though there are distinctive differences in
modal structures in comparison to the case of a single sur-
face. A related problem, the properties of liquid confined by
two dielectric surfaces, has been extensively studied by mea-
suring normal and shear forces between the two surfaces as a
function of distance between the two surfaces.10–12This case
is found to be very important in the surface sciences of liquid
lubricants, adhesion and wear properties,13 wetting and dew-
etting of surfaces,14 liquid films,15 etc. Despite of the exten-
sive theoretical studies using Lifshitz’s theory16 and molecu-
lar dynamics simulations as well as experimental studies,
fundamental aspect of the intermolecular interaction between
molecules in a plane-confined geometry has not been stud-
ied.

In this paper, we shall focus on the van der Waals inter-
action between two nonpolar molecules when they are in
close proximity to the surfaces, treating the surfaces in a
macroscopic manner. There exist however numerous effects
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that cannot be taken into account by using the macroscopic
picture of a solid surface with the phenomenological Max-
well’s equations. For example, the nonlocality of the dielec-
tric function near a surface17–22may play a crucial role when
the distance between the molecules and a surface is order of
that between atoms of the solid. Second, the surface can
induce a permanent dipole moment by distorting the ground
state wave function of the molecule.17 The magnitude of the
induced permanent dipole moment increases as the molecule
approaches the surface. Besides of the two complications
mentioned above, there exist various mechanisms causing
deviations from the van der Waals interaction. In order to
remedy the effect of the nonlocality of the dielectric func-
tion, Zaremba and Kohn23 used the jellium model as an ap-
proximate microscopic model for a metal surface. They
showed, when studying the interaction of a single atom with
a metal surface, that the reference~dynamical image! plane
position has to be calculated by taking into account the mi-
croscopic nature of the metal surface. Thus the effective dis-
tance between the molecule and the surface differs from the
distance between the molecule and the jellium surface. How-
ever, the basic theories developed by Lifshitz are still appro-
priate in describing key aspects of physisorption and the role

of the dielectric surface. Thus, although the results given in
this paper will suffer from the lack of a realistic quantum
description of the solid surface, they should be useful in
understanding fundamental aspects of the boundary effects
and in developing proper intermolecular potential functions
used in molecular dynamics simulation studies.

This paper is organized as follows. In Sec. II, the effec-
tive Hamiltonian of nonpolar polarizable molecules is dis-
cussed. The van der Waals interaction between general an-
isotropic molecules in a planar cavity is considered in Sec.
III. Two limiting cases of a single dielectric surface and two
dielectric surfaces are discussed in Secs. IV and V, respec-
tively. Finally we summarize the results in Sec. VI.

II. EFFECTIVE INTERACTION HAMILTONIAN

The usual minimal coupling Hamiltonian24 contains two
interaction terms that are linearly and quadratically propor-
tional to the vector potential of the quantized field. By using
the Power–Zienau–Wooley transformation,24–26one can ob-
tain the multipolar Hamiltonian,

H5Hmol1HF1H I . ~1!

The molecular Hamiltonian is, in the second quantized form,

Hmol5(
m

(
j~m!

\VmjB̂mj
1 B̂mj1(

m
2pE dr uP̂m

'~r !u2.

~2!

The subscriptsm and z denote themth molecule andzth
state of the mth molecule, respectively.Vmz is the transition
frequency between the ground stateug(m)& and thezth state
uj(m)&. B̃mj

1 and B̂mj are transition operators defined by
B̂mj

1 5uj(m)&^g(m)u and B̂mj5ug(m)&^j(m)u, respectively.
The transition operators obey the usual commutation rela-
tions,

@B̂mj ,B̂m8j8
1

#5~122B̂mj
1 B̂mj!dmm8djj8 . ~3!

We assumed that the overlap between molecules is ignored.
One of the notable difference of the multipolar Hamiltonian
from the minimal coupling form is that the intermolecular
interaction in the multipolar form is purely determined by the
retarded exchange of the virtual transverse photons, whereas
the minimal coupling Hamiltonian contains additional in-
stantaneous intermolecular interaction terms.25,26

The quantized field Hamiltonian is as usual,4

HF5(
kl

\vk~ âkl
1 âkl11/2!, ~4!

where the photon creation and annihilation operators are de-
noted byâkl

1 andâkl . The interaction HamiltonianH I in Eq.
~1! is

H I52E dr P̂~r !•D̂~r !. ~5!

Here the polarization operator, that is associated with the
transitions between states of a given molecule, is defined as

FIG. 1. ~a! Two types of modes are shown. Type I modes are associated
with the incident modes propagating downward from the dielectric 1 to the
interface between the dielectric 1 and the free space, whereas type II modes
are associated with the incident modes propagating upward from the dielec-
tric 3 to the interface between the dielectric 3 and the free space.~b! De-
tailed geometry of the two molecules with respect to the two surfaces are
drawn. Two close circles represent the two real molecules in the free space
region, whereas the two circles in the dielectric media are pictorial repre-
sentations of the image molecules of the B-molecule.
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P̂~r !5(
m

m̂md~r2Rm!, ~6!

where the dipole operatorm̂m is

m̂m5 (
j~m!

m̄mj~B̂mj1B̂mj
1 !. ~7!

m̄mj is the electric dipole transition matrix element.D̂~r ! in
the interaction Hamiltonian is thetransversedisplacement
field operator, that is the conjugate momentum of the vector
potential in the multipolar Hamiltonian,

D̂~r !5 i(
kl

S 2p\vk

V D 1/2$fkl~r !âkl2fkl* ~r !âkl
1 %, ~8!

and the vector potential is

Â~r !5(
kl

S 2p\c2

Vvk
D 1/2$fkl~r !âkl1fkl* ~r !âkl

1 %. ~9!

fkl~r ! are the normalized mode functions satisfying the cor-
responding Helmholtz equations with the proper boundary
conditions.5

The interactions between nonpolar polarizable molecules
can be described by the second-order or fourth-order pertur-
bation theories depending on the situation. For example, the
attractive interaction between a molecule and a dielectric
wall is a second-order problem, i.e., quadratic Stark shift,27,28

that is, the interaction potential is linearly proportional to the
molecular polarizability. The interaction of a pair of mol-
ecules can be, as shown by London,29 obtained by using the
fourth-order perturbation theory, where the energy shift is
proportional to both polarizabilities of the two molecules.
Therefore we find that it is useful to derive an effective
Hamiltonian by eliminating a one-photon vertex in the Feyn-
man diagrams.26 By using the Heisenberg equations of mo-
tion of the transition operators and introducing the
Weisskopf–Wigner approximation ~Adiabatic
approximation!,30 the effective interaction Hamiltonian can
be obtained as

H I
eff52(

m
F(
kl

ãm~vk!:D̂kl~Rm!GD̂~Rm!, ~10!

where the term in the square bracket in Eq.~10! is the effec-
tive induced dipole operator and the molecular polarizability
operators are defined as

ãm~vk!5
1

\ (
j~m!

@12Ŵmj~0!#m̄mjm̄mjS 2Vmj

Vmj
2 2vk

2D ,
~11!

Ŵmj is the population operator,Ŵmj52B̂mj
1 B̂mj . The spon-

taneous emission contribution to the effective dipole operator
was neglected, since we focus on the molecular interaction
between two molecules in the ground states. As expected, the
effective interaction Hamiltonian given above involves two
photon processes. A vacuum field with wave vectork and
polarization directionl creates an induced dipole at the cen-
ter of themth molecule, and in turn this induced dipole in-
teracts with vacuum field at the same position. We shall use

a second-order perturbation theory with respect to this effec-
tive interaction Hamiltonian to obtain the interaction poten-
tial of a pair of nonpolar polarizable molecules.

III. VAN DER WAALS INTERACTION

The van der Waals interaction of a pair of molecules has
been a subject of extensive studies since the seminal paper of
London.29 Recently Power and Thirunamachandran31

showed that the van der Waals–Casimir interaction can be
calculated by considering two induced dipoles at the centers
of the two molecules and then the two induced dipoles inter-
act through the well-known retarded dipole–dipole interac-
tion tensor obtained by McLone and Power.32 For a pair of
molecules A and B, the interaction energy is thus given by
the vacuum expectation value,

DE5(
kl

^m̂A
eff~k,l!•Ṽ~k!•m̂B

eff~k,l!&vac, ~12!

where theeffectiveinduced dipole operators are defined as

m̂m
eff~k,l!5ãm~vk!•Dkl~Rm!. ~13!

This result, Eq.~12!, can also be obtained by using the
second-order perturbation theory with respect to the effective
interaction Hamiltonian given in Eq.~10!. Inserting the dis-
placement field operator given in terms of mode functions in
Eq. ~8! into Eqs.~12! and ~13! gives

DE52
\c

p E
0

`

dk Tr@ãA~vk!Ṽ~k!ãB~vk!F̃
1~k!#,

~14!

where the dipole–dipole interaction tensorṼ(k) and its Hil-
bert transform,F̃(k), can be written in terms of classical
mode functions

F̃~k![2k3 ReF 1

4p E dV(
l

f kl~RA!fkl* ~RB!G ,
Ṽ~k![

4p

V
Re (

k8l8

k82

k22k82
f k8l8~RA!fk8l8

* ~RB!

5
2

p E
0

`

dk8
k8

k822k2
F̃~k8!. ~15!

The expression for the dipole–dipole interaction
tensor,Ṽ(k), was derived in Appendix A,dV5sinududf.
Since the two tensors,F̃(k) and Ṽ(k), are related to each
other by the Kramers–Kronig relationship, one can in prin-
ciple calculateṼ(k) by obtainingF̃(k) and vice versa. As
can be seen in the definition ofF̃(k) in Eq. ~15!, F̃(k) con-
tains information on the spatial correlation of displacement
field operator̂ D̂kl~RA!D̂kl~RB!&vac. Equation~14! involves
both the elastic scattering of the fluctuating vacuum field by
molecules and the inelastic virtual processes, such as the
absorption and emission of the virtual photons. As a matter
of fact, the two tensors,F̃(k) and Ṽ(k), are proportional to
the imaginary and real parts of the Green function of the
fluctuating vacuum electric field,33,34 where the Green func-
tion is defined by the Fourier component of the antisymme-
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trized time correlation function of the electric field operator.
A detailed derivation ofF̃(k) by using Eq.~15! with proper
mode functions of the quantized electromagnetic fields is
given in Appendix C. ThenṼ(k) can be calculated from Eq.
~15!.

In order to rewrite the van der Waals interaction energy
in Eq. ~14!, we define

G̃~k![Ṽ~k!1 i F̃ ~k!, ~16!

to obtain

DE52
\c

2p
Im E

0

`

dk Tr@ãA~vk!G̃~k!ãB~vk!G̃
1~k!#.

~17!

We find that it is useful to rewrite Eq.~17!, which is given by
an integral over the real frequency, as an integral over the
imaginary frequencyk→ ik with k.0 so that we have

DE5
\c

2p E
0

`

dk Tr@ãA~ ikc!G̃~ ik!ãB~ ikc!G̃1~ ik!#.

~18!

HereG̃( ik) is proportional to the temperature Green’s func-
tion, which is defined in terms of the Matsubara electromag-
netic field operators.33 As well-known, the temperature
Green’s function is related to the retarded Green function by
using the analytic continuation procedure rotating the real
frequency axis into the pure imaginary axis. We wish to
emphasize that, even though we used a set of fully quantized
electromagnetic fields, the van der Waals interaction poten-
tial reduces to a problem of calculating the spatial correlation
function of the fields. Moreover those mode functions are
determined by theclassical Helmholtz equation with the
proper boundary conditions.

A. Anisotropic molecular polarizability

Instead of considering an arbitrary polarizability, we
shall focus on the symmetric top molecules. The polarizabil-
ity tensor for a symmetric top molecule can be expressed
most generally as

ã~v!5a~v! Ĩ2b~v!~ Ĩ23ûû!, ~19!

where û denotes the unit vector which lies along the prin-
ciple axis of the symmetric top molecule. By designating
ai~v! anda'~v! as the polarizabilities of the molecule along
the symmetry axis and along any axis perpendicular toû,
respectively, we defined the isotropic and anisotropic parts of
the molecular polarizability as

a~v!5
1

3
$a i~v!12a'~v!%,

~20!

b~v!5
1

3
$a i~v!2a'~v!%.

It should be noted that the polarizability tensor given in Eq.
~19! is symmetric and that the anisotropic part, proportional
to b~v!, is traceless.

B. van der Waals interaction in short distance limit

Using the proper mode functions of fully quantized elec-
tromagnetic field near two planar surfaces, we calculated
F̃(k) in Appendix C. In the short distance limit, as discussed
in Appendix C, the Fresnel reflection and transmission coef-
ficients are assumed to be independent on the incidence
angleu and the contributions from multiple~more than once!
reflections by the two surfaces are ignored. Moreover, the
retardation effects caused by the finite speed of light can be
ignored. In this limit, the Green function,G̃( ik), in the
imaginary frequency domain can be approximately given as

G̃~ ik!5G̃I
even~ ik!1G̃I

odd~ ik!1G̃II
even~ ik!1G̃II

odd~ ik!

>C0~ ik!
Ĩ23r̂ r̂

r 3
1CI~ ik!

Ĩ 823R̂IR̂I8

RI
3

1CII~ ik!
Ĩ 823R̂IIR̂II8

RII
3 , ~21!

where the coefficients in the imaginary frequency domain are

C0~ ik![
1

2 S F 2Ae1~ ik!

e1~ ik!11G
2H 11Fe3~ ik!21

e3~ ik!11G
2J

1F 2Ae3~ ik!

e3~ ik!11G
2H 11Fe1~ ik!21

e1~ ik!11G
2J D ,

~22!

CI~ ik![2F 2Ae1~ ik!

e1~ ik!11G
2Fe3~ ik!21

e3~ ik!11G ,
CII~ ik![2F 2Ae3~ ik!

e3~ ik!11G
2Fe1~ ik!21

e1~ ik!11G .
In Eq. ~21!, r̂ , R̂I , andR̂II are the unit vectors ofr , RI , and
RII , respectively.I 8 andR̂8 are defined in Eq.~C4!. It should
be noted that the dielectric functions in the above equations
are evaluated in the imaginary frequency so that they are
monotonously decreasing function with respect to the imagi-
nary frequency. The first term in Eq.~21! represents the con-
tributions from direct interaction without involving any re-
flection of a virtual photon by the surfaces, whereas the
second and third terms correspond to those involving a single
reflection by the lower surface and that by the upper surface,
respectively. Inserting the two polarizability tensors defined
in Eq. ~19! and the Green functions in Eq.~21! into Eq. ~18!
gives the van der Waals interaction,

DE52
\c

2p E
0

`

dk H C0
2L0,0

r 6
1
C0CIL0,I

r 3RI
3 1

C0CIIL0,II

r 3RII
3

1
CI
2L I,I

RI
6 1

CII
2L II,II

RII
6 1

CICIIL I,II

RI
3RII

3 J , ~23!
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where, form, n50,I,II,

Lm,m~ ik!5Tr$aAaBT̃mT̃m
12aAbBT̃mt̃BT̃m

1

2bAaBt̃AT̃mT̃m
11bAbBt̃AT̃mt̃BT̃m

1%

Lm,n~ ik!5Tr$aAaB~ T̃mT̃n
11T̃nT̃m

1!2aAbB~ T̃mt̃BT̃n
1

1T̃nt̃BT̃m
12bAaB~ t̃AT̃mT̃n

11 t̃AT̃nT̃m
1!

1bAbB~ t̃AT̃mt̃BT̃n
11 t̃AT̃nt̃BT̃m

1! ~24!

with

t̃A23ûAûA ,

t̃B5 Ĩ23ûBûB ,

T̃05T̃23r̂ r̂ , ~25!

T̃I5 Ĩ 823R̂IR̂I8 ,

T̃II5 Ĩ 823R̂IIR̂II8 .

Equations~23! with ~24! and~25! are the main results in this
section, and show complex dependence on the distances be-
tween real molecules as well as between real and image mol-
ecules. Only the first term is inversely proportional to the
sixth power of the direct intermolecular distance. Therefore,
the first term is the largest one since bothRI and RII are
always larger than the direct distance through the free space.
The physical meaning of each term can be understood by
considering the exchange process of a couple of virtual pho-
tons. As shown in Fig. 2~a!, the first term on the right-hand
side of Eq.~23! corresponds to the case when the two virtual
photons are exchanged via free space. On the other hand, the
second and third terms@Figs. 2~b! and 2~c!, respectively#
involve a single reflection by the lower and upper surfaces,
respectively. The fourth and fifth terms@Figs. 2~d! and 2~e!#
involve two reflections by the same surface, whereas the
sixth term @Fig. 2~f!# does two reflections—once by each
surface.

The general expression given in Eq.~23! is very compli-
cated because of the geometrical factors, though it is quite

straightforward to rewrite them in terms of angles and dis-
tances defined in Fig. 1~b!. Instead of discussing Eq.~23!
more in detail, we shall consider several limiting cases that
should be found useful in practical calculations. Since the
van der Waals interaction between either isotropic or aniso-
tropic molecules in vacuum has been studied extensively, we
shall not consider those cases in the following sections.

IV. SINGLE DIELECTRIC SURFACE

We shall consider, in this section, the case when the two
molecules are in the vicinity of a single dielectric surface.
Let us assume that the upper dielectric medium is replaced
with an infinite vacuum. In this case, the dielectric function
e1( ik) equals to 1, that is the transmission coefficientt12
becomes unity whereasr 2150. Then the third, fifth, and sixth
terms on the right-hand side of Eq.~23! vanish.

A. Isotropic molecules

If the two molecular polarizabilities are isotropic, from
Eq. ~23! we find

DE52
3\

pr 6
I 0

aa1
\~223 cos 2c23 cos 2x!

2pr 3RI
3 I 1

aa

2
3\

pRI
6 I 2

aa , ~26!

where

I 0
aa5E

0

`

dkaA~ ik!aB~ ik!,

I 1
aa5E

0

`

dkFe3~ ik!21

e3~ ik!11GaA~ ik!aB~ ik!, ~27!

I 2
aa5E

0

`

dkFe3~ ik!21

e3~ ik!11G2aA~ ik!aB~ ik!.

Equations ~26! with ~27! are exactly identical to
MacLachlan’s results8,34,37$note that the angles defining the
geometry @see Fig. 1~b!# are defined differently from
MacLachlan’s8%. In the definitions of three integrals, the su-
perscript, ‘‘aa,’’ denotes that the integrals involve the iso-
tropic polarizabilities in the integrand. The first term is just
the van der Waals interaction in the free space—London’s
result can be obtained by assuming that the molecular polar-
izability is determined by a single frequency, so that the
integration over the imaginary frequency can be performed
by using residue theorem. The second term represents the
vdW interaction when one of the two virtual photons is re-
flected by the surface. Because of the interference effect be-
tween the direct dipolar field and the reflected dipolar field,
the magnitude of the second term becomes strongly depen-
dent on the detailed geometry. For example when the two
molecules are located parallel to the surface and separated
far apart, the second term becomes positive so that the over-
all vdW interaction decreases compared to that in the free
space. The third term corresponds to the contribution from
the interaction between the induced dipole in the free space

FIG. 2. Six different contributions to the van der Waals interaction are
shown@see Eq.~23! and discussion below Eq.~25!#. Exchange of two vir-
tual photons are represented by arrows.~a!–~f! correspond to the first to the
sixth terms in Eq.~23!, respectively.
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and the inducedimagedipole created in the dielectric me-
dium. They are separated by the distanceRI . Usually the
third term is much smaller than the second one, except when
the two molecules are far apart as well as when they both are
close to the surface.

These results has been used in understanding lateral in-
teractions between adatoms,35–37where the two-dimensional
flat film is normally assumed. For example, Rauberet al.38

showed that the reduction in the potential well depth of
15%–20% from the free space values for the inert gas atoms
near graphite surface can be assigned to the additional~sec-
ond! term in Eq.~26!.

In order to obtain simpler results with retaining salient
features of a dielectric~metal! surface, we further use a free-
electron-like~Thomas–Fermi model! dielectric function39,40

e~ ik!511
vp
2

k2 , ~28!

wherevp is the plasma frequency, which is the characteristic
resonance frequency of absorption of the electrons in the
metal. For the sake of simplicity, if the two molecules are
identical and the molecular polarizability is determined by a
single transition frequency,v0, i.e.,

a~ ik!52umu2
v0

\~v0
21k2!

, ~29!

the three integrals defined in Eq.~37! can be calculated,
within these approximations to the dielectric function and the
molecular polarizabilities,

I 0
aa5

pv0a
2~0!

4
,

I 1
aa5

pv0a
2~0!

4 F g212g

~g11!2G , ~30!

I 2
aa5

pv0a
2~0!

4 Fg~g213g11!

~g11!3 G .
Hereg is the ratio of the surface-plasmon frequency to the
molecular transition frequency,

g5
vp /&

v0
. ~31!

If the ratio g becomes large, that is, the surface acts like a
good mirror, all three integrals given in Eqs.~30! become
identical. In this limit, the surface boundary effects will be
maximized. On the other hand, as the ratiog approaches
zero, the last two integrals,I 1

aa andI 2
aa , decreases to zero, so

that the boundary effects become negligible, as expected.
In the limiting case both when the two molecules are far

apart and located side by side~‘‘lateral’’ ! on the dielectric
surface ~c5x>p/2 and r>RI! and when the ratiog ap-
proaches a large number, the total vdW interaction energy
reduces to approximately two-thirds of that in the free space.
This is demonstrated by a numerical evaluation of Eq.~26!
with Eq. ~30! in Fig. 3~a!, where the ratio of the vdW inter-
action between two isotropic molecules near a surface to that

in the free space is calculated. Here the dielectric surface is
fully characterized by the ratiog that is assumed to be 2.The
distance between the molecule A and the surface is assumed
to be unity, and the distance between molecules is scaled by
this unit distance in the following calculations. As the two
molecules approaches to each other the surface boundary ef-
fect decreases since the additional terms@the second and
third terms in Eq.~26!# are negligibly small in this limit. If
one of the two molecules is on top of the other~‘‘vertical’’ !,
the intermolecular interaction becomes larger than that in the
free space as shown in Fig. 3~a!.

B. Anisotropic molecules

In case when the two molecules near a surface are an-
isotropic, one needs to consider the complicated geometrical
factors given in Eqs.~23!. Since it is very tedious to rewrite
the geometrical factors in terms of angles of the two mol-
ecules with respect to the surfaces, we instead present nu-

FIG. 3. The ratios of the van der Waals interaction between two isotropic
molecules~a! or two anisotropic molecules~b! near asingledielectric sur-
face to that in thefree space are plotted. The ratio of the surface-plasmon
frequency to the optical transition frequency,g, is assumed to be 2@see Eq.
~31!#. ai~v!/a'~v!53. The distance between the molecule A and the surface
is assumed to be unity, and the distance between molecules is scaled by this
unit distance.
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merical calculations to survey the general trends. To this end,
we assume that the surface and molecular polarizabilities are
given by the forms in Eqs.~28! and~29!, respectively, except
that the ratio of the parallel polarizabilityai~v! to the per-
pendicular componenta'~v! is assumed to be 3. The ratiog
defined in Eq.~31! equals 2.

In Fig. 3~b!, the ratios of the vdW interactions near a
surface to those in the free space are shown, where we con-
sider three different cases when the molecular principal axes
lie along three different axes in the laboratory coordinate
space. Again it should be noted that the two molecules are in
they–z plane~see Fig. 1!. When the two molecular axes are
parallel to either thex- or y-axis, the vdW interaction de-
creases compared to that in the free space. In contrast, the
z–z interaction is enhanced by the existence of the surface.
This can be understood by using the image picture. Suppose
the two molecular axes lie along thez-axis—that is, the prin-
cipal axes are perpendicular to the surface plane. Then the
instantaneous induced dipole at the center of a molecule is
more likely to be aligned to be perpendicular to the surface
plane, because the parallel component of the polarizability is
larger than the perpendicular one. The image dipole thus
induced in the dielectric medium is oriented with the same
direction with the induced dipole of the molecule A. There-
fore, the magnitude of the combined dipole moment is larger
than that in the free space, which will be shown up as an
increased vdW interaction energy when the two molecules
are well separated. However when they are in close proxim-
ity, the overall interaction is not monotonic as can be seen in
Fig. 3~b!. Similar discussions with the image picture are ap-
plicable to the other two cases,x–x and y–y interactions,
though in these cases the cancellation between the induced
dipole of a real molecule and the inducedimagedipole will
make the overall vdW interactions decrease in comparison to
those in the free space.

In comparison to the vdW interaction between twoiso-
tropic molecules, one of the most distinctive features in the
interaction betweenanisotropicmolecules is that the align-
ment of the two molecules is very important factor in deter-
mining the role of the dielectric surface. Depending on the
molecular alignments, the surface enhances or suppresses the
vdW interaction in the vicinity of a dielectric surface—note
that a similar observation was also made in studies on the
spontaneous emission rate near a dielectric surface.1–3

V. TWO DIELECTRIC SURFACES

When the two molecules are located in between two sur-
faces, one can expect that the boundary effects induced by a
single surface discussed above would perhaps be enhanced.
Indeed as we show in Figs. 4~a! and 4~b!, there are strong
modifications of the vdW interaction strength. For example,
when two isotropic molecules are located exactly in between
the two surfaces with their intermolecular axis parallel to the
surfaces~lying along thex-axis!, the ratio of the vdW inter-
action to that in the free space is shown in Fig. 4~a!. Here we
assume that the two dielectric media are identical. The trend
observed in Fig. 4~a! is identical to the case when two iso-

tropic molecules are near a single surface@see Fig. 3~a! ‘‘lat-
eral’’#. Similarly, we calculated the vdW interaction between
two anisotropic molecules in a planar cavity in Fig. 4~b!.
Since we assumed that the geometry is symmetric—the two
dielectrics are identical and distances between each surface
and the two molecules are also identical, the quantitative
trends of enhancement or suppression are found to be iden-
tical to Fig. 3~b!.

Although the boundary effect induced by two surfaces is
qualitatively identical to that by a single surface, the overall
magnitude of the vdW interaction energy in a planar cavity is
suppressed in comparison to those in vacuum or in the pres-
ence of a single dielectric surface, and also strongly depends
on the dielectric properties of the two media. In order to
show this tendency, we numerically calculate Eq.~23! when
the intermolecular distance between two isotropic molecules
is much smaller than the distances between molecules and
surfaces—this is the short-intermolecular-distance limit in

FIG. 4. The ratios of the van der Waals interaction between two isotropic
molecules~a! or two anisotropic molecules~b! in betweentwo dielectric
surfacesto that in the free space are plotted. The ratio of the surface-
plasmon frequency to the optical transition frequency,g, is assumed to be 2.
ai~v!/a'~v!53. The two molecules are located exactly in between the two
surfaces so that the lateral intermolecular interaction is only considered in
this figure.
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Fig. 4~a!. Here the Thomas–Fermi model@see Eq.~28!# and
Eq. ~29! are used for the dielectric functions and polarizabil-
ities, respectively. The two dielectrics are identical. In this
limit, the first term in Eq.~23! dominates. The ratio of the
vdW interaction energy in between two surfaces to that in
the vacuum space as a function ofg~5vp/&v0! is plotted in
Fig. 5. As the transmissivity decreases, that is,g increases,
the vdW interaction in between two dielectrics decreases.
For instance, the vdW interaction energy of two isotropic
molecules is about one-fifth of that in the free space, when
we assume that the ratio~g! of the surface-plasmon fre-
quency to that of the molecular transition frequency@see Eq.
~31!# equals to 2. This behavior can be understood as follow-
ing. When there is asinglesurface, the amplitude of the field
mode around the surface is identical to that in the free space,
though the mean square fluctuation amplitude of the electro-
magnetic field in the vicinity of the surface dramatically dif-
fers from that in the free space. In order to illustrate this
point, let us consider the temperature Green functions, Eqs.
~21! and ~22!, in the cases of both the free space
[ e1( ik)5e3( ik)51] and the single dielectric surface
@e1( ik)51 ande3( ik).1#, which are, respectively,

G̃0~ ik!5
Ĩ23r̂ r̂

r 3

and

G̃s.s.~ ik!5
Ĩ23r̂ r̂

r 3
2Fe3~ ik!21

e3~ ik!11G Ĩ 823R̂IR̂I8

RI
3 .

In both cases, the leading term is the usual dipole–dipole
interaction tensor in the free space. However, in the case
when the vacuum space is confined by two dielectric media,
the intensity of the mode in the vacuum region becomes
proportional to the square of the transmission coefficients,
which appears in Eqs.~22! as

t12
2 5F 2Ae1~ ik!

e1~ ik!11G
2

and t32
2 5F 2Ae3~ ik!

e3~ ik!11G
2

,

which are always less than or equal to unity. Thus,in the
short distance limit, the magnitude of the van der Waals
interaction can be suppressed by the two dielectric surfaces
with a large dielectric function. Here we should emphasize
again that, because Eq.~21! was obtained in the short-
distance limit, contributions from multiple reflections were
ignored. If the reflectivity of the two dielectric media be-
comes close to one~that is the transmissivity from the dielec-
tric to the free space region is equal to zero!, one has to take
into account the multiple reflection effects. In particular,
these effects will be important when the two molecules are
far apart and the distances between molecules and surfaces
are comparatively small.

VI. SUMMARY

Using the mode functions of the quantized electromag-
netic field, the Green function, in the imaginary frequency, in
a planar cavity was calculated in the short-distance limit. The
van der Waals interaction between two isotropic or aniso-
tropic molecules are calculated by considering the dipole–
dipole interaction between two vacuum-field-induced di-
poles. When a pair of molecules are in the vicinity of
surfaces, the interference effects between the dipolar field
and the reflected dipolar field are found to be important. In
particular, when the two molecules are anisotropic, the sur-
face can enhance or suppress the van der Waals interaction
depending on the molecular alignments. A simple image pic-
ture was used to describe these effects. It was shown that, in
case of two planar surfaces, the general trends are found to
be identical to the case of a single surface. However, since
the mode intensity between two dielectric media is decreased
relative to that near a single surface, the absolute magnitude
of the van der Waals interaction in a planar cavity is smaller
than those in the free space or near a single surface. Conse-
quently, the estimate of the van der Waals interaction be-
tween atoms or molecules in the confined geometry by using
the parameters obtained from the gas-phase experiment is
likely to be strongly deviated from the actual value in this
circumstance.
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APPENDIX A: CALCULATION OF THE
DIPOLE–DIPOLE INTERACTION TENSOR

In this appendix we derive an expression for the general
dipole–dipole interaction tensor, which is valid for any arbi-
trary boundary conditions. McLone and Power32 considered
the resonance interaction of a pair of dipoles including the
retardation effect in thefreespace. We generalize their result
for arbitrary planar boundary conditions imposed by the
macroscopic dielectric surfaces. In order to obtain the
dipole–dipole potential tensor we need to use second-order

FIG. 5. The ratio of the van der Waals interaction energy between two
isotropic molecules in between two dielectric surfaces to that in the free
space is plotted as a function ofg in the short-intermolecular-distance limit.
The two dielectrics are identical. The dielectric functions and polarizabilities
are assumed to be described by Eqs.~28! and ~29!, respectively.
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perturbation theory with respect to the original interaction
Hamiltonian, H I52m̂A•D~RA!2m̂B•D~RB!. From the
second-order perturbation theory, the dipole coupling inter-
action is

M5(
I

^ f uH IuI &^I uH Iu i &
EI2Em

, ~A1!

where the initial and final states are product states given by

u i &5ueA,gB;$0%&,
~A2!u f &5ugA,eB;$0%&.

Here, for example,gA andeB denote the ground state of the
A molecule and the excited state of the B molecule, respec-
tively. $0% denotes the vacuum state of the field. For initial
and final states given above, there are two possible interme-
diate states,

uI &5ueA,eB;1k& and uI &5ugA,gB;1k&. ~A3!

The former intermediate state involves two excited states of
both A and B molecules and one excitation of thekth field.
The latter one involves two ground states of A and B mol-
ecules and one excitation of thekth field. Although we con-
sidered vacuum states for the both initial and final field
states, we found that the dipole coupling interactionM de-
fined in Eq.~A1! does not depend on the initial photon num-
bers as long as the final field state is identical to that of the
initial state.

Inserting the electric displacement field operator given in
Eq. ~8! and electric dipole operators in Eq.~7!, we find the
dipole coupling interaction is

M5m̄A•Ṽ~kp!•m̄B , ~A4!

wherem̄ is the electric dipole matrix element, and the gen-
eral dipole–dipole interaction tensor can be defined as

Ṽ~kp5vp /c![(
kl

2p\vk

V F fkl~RA!fkl* ~RB!

2\vp2\vk

1
fkl* ~RA!fkl~RB!

\vp2\vk
G . ~A5!

This expression is valid regardless of the macroscopic
boundary conditions. Herevp is the transition frequency of
the dipole assuming that the transition frequencies of the two
dipoles are identical. In case when the two molecules are in
the free space, the mode functions are given by exp~ikr !.
Then after summing over~k,l!, we can recover the result
obtained by McLone and Power.32

The dipole–dipole potential tensor in Eq.~A5! is deter-
mined by the spatial correlation, such asfkl(RA)fkl* (RB). We
separate the real and imaginary parts offkl(RA)fkl* (RB) and
use the fact that the term containing imaginary part of
fkl(RA)fkl* (RB) vanishes when the summation over~k,l! is
performed. Finally the dipole–dipole potential tensor be-
comes

Ṽ~kp![
4p

V
Re(

kl

k2

kp
22k2

fkl~RA!fkl* ~RB!. ~A6!

This is Eq.~15! used in Sec. III. The authors presented the
theoretical derivation of the dipole–dipole interaction tensor
in the presence of a single dielectric surface in Ref. 41.

APPENDIX B: SPATIAL MODE FUNCTIONS IN
PLANAR MICROCAVITY

In this appendix, we summarize the well-known mode
functions of the quantized electromagnetic field in a planar
microcavity~Fabry–Perot cavity!.6,42The geometrical details
of the interfaces and spatial coordinates were given in Fig. 1,
where the origin of thez-axis is taken at the boundary be-
tween the upper dielectric medium and the intermediate free
space. Thex andy axes lie within the upper interfaces. We
choose the coordinate system to make the two molecules lie
within thex–z plane@see Fig. 1~b!#. There are two classes of
modes, one is originated from the transmitted incident field
propagating downward and the other from that propagating
upward. Each triplet consists of the incident, reflected, and
transmitted modes in the free space between the two dielec-
tric media. Here the reflected and transmitted fields could be
created by multiple reflections inside of the cavity. Instead of
presenting detailed expressions of the various modes, in this
appendix we summarize the type I mode functions, which
will be used in the next appendix to calculate spatial corre-
lation function of the electric field. For detailed discussions
on the quantization of Fresnel modes as well as a complete
list of the mode functions near two planar surfaces, the read-
ers may refer to Khosravi and Loudon6 and De Martini
et al.42

The type I Fresnel mode functions associated with the
initially downward incident field in the free space can be
recast in the form

fkl
I ~R!5êkl

i exp~ ik1•R!1êkl
r exp~ ik2•R!, ~B1!

wherek1 and k2 are the wave vectors of the incident and
reflected modes, that are propagating downward and upward,
respectively,

k15k~sin u cosf,sin u sin f,cosu!,
~B2!k25k~sin u cosf,sin u sin f,2cosu!.

Herek5vk/c. The transverse field includes two orthogonal
components that are normal~l5'! and parallel~l5i! to the
incident plane. Then the unit vectors of the incident and re-
flected modes are

êk'
i 5

t12
'

D'

~sin f,2cosf,0!,

êki
i 5

t12
i

D i
~cosu cosf,cosu sin f,2sin u!,

~B3!

êk'
r 5

t12
' r 23

'

D'

~sin f,2cosf,0!,

êki
r 52

t12
i r 23

i

D i
~cosu cosf,cosu sin f,sin u!,

where
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Dl[12r 21
l r 23

l exp~2ikd cosu!. ~B4!

By defining the Lifshitz variables as

p5cosu,

s15Ae1~v!211p2, ~B5!

s35Ae3~v!211p2,

the Fresnel reflection and transmission coefficients for the
normal and parallel transverse modes are written as,43

~i! reflection coefficients forn51 or 3,

r 2n
' 52r n2

' 5
p2sn
p1sn

,

~B6!

r 2n
i

52r n2
i

5
enp2sn
enp1sn

;

~ii ! transmission coefficients forn51 or 3,

tn2
' 5

2sn
p1sn

,

t2n
' 5

2p

p1sn
,

~B7!

tn2
i

5
2Aensn
enp1sn

,

t2n
i

5
2Aenp

enp1sn
.

It should be noted that the reflection coefficients are fre-
quency dependent via the frequency dependent dielectric
constant,e~vk!. By expanding 1/Dl in a geometrical series, it
is clear that the mode function between the two planar sur-
faces includes multiple reflection contributions.

APPENDIX C: CALCULATIONS OF F̃(k ) AND D̃(ik ) IN
SHORT DISTANCE LIMIT

Using the mode functions, given in Appendix~B!, in the
planar microcavity, we calculateF̃(k) first. From the defini-
tion of F̃(k) given in Eq. ~15! and mode function in Eq.
~B1!, we find

F̃ I~k!5F̃ I
even~k!1F̃ I

odd~k!, ~C1!

where

F̃ I
even~k![2

v3

4pc3
Re E dV(

l
@ êkl

i ~ êkl
i !* eik1•~rA2rB!

1êkl
r ~ êkl

r !* eik1•~rA2rB!#,

F̃ I
odd~k![2

v3

4pc3
Re E dV(

l
@ êkl

i ~ êkl
r !*

3eik1•rA2 ik2•rB22ikd cosu

1êkl
r ~ êkl

i !* eik2•rA2 ik1•rB12ikd cosu. ~C2!

HeredV5sinududf. The first term in Eq.~C1!, F̃ I
even(k),

contains even number of reflections, whereasF̃ I
odd(k) does

odd number of reflections. This can be seen by expanding the
Airy function, 1/uDlu2, as a geometrical series. In the follow-
ing derivation we assumezA.zB . Inserting the polarization
vectors listed in Eqs.~D3! into Eq. ~C2! and evaluating in-
tegrals overf, we find, after some algebra,

F̃ I
even~k!5

v3

2c3
Re E

G
dpS ut12

i u2

uD iu2
~11ur 23

i u2!H Ĩ F f ~u!

1
1

u

d f~u!

du G2 r̂ r̂ F1u d f~u!

du
2
d2f ~u!

du2 G J
1
1

2 F ut12
' u2

uD'u2 ~11ur 23
' u2!2

ut12
i u2

uD iu2
~11ur 23

i u2!G
3M̃ ~n!exp~ ikp cosc! D ~ for zA.zB!,

~C3!

F̃ I
odd~k!52

v3

c3
Re E

G
dpS ut12

i u2~r 23
i

!*

uD iu2 H Ĩ 8F f ~U !

1
1

U

d f~U !

dU G2R̂IR̂I8F 1U d f~U !

dU
2
d2f ~U !

dU2 G J
2
1

2 F ut12
' u2~r 23

' !*

uD'u2
1

ut12
i u2~r 23

i
!*

uD iu2
GM̃ ~V!

3exp~2 ikp cosx! D ~ for zA.zB!,

where the auxiliary functions are defined as

u[kr,

U[kRI ,

n[uA12p2 sin c,

V[UA12p2 sin x,
~C4!

f ~u!5exp$ iup cosc%J0~n!,

f ~U !5exp$2 iUp cosx%J0~V!,

R̂I8[~R̂I
x ,R̂I

y ,2R̂I
z!,

Ĩ 8[F 10
0

0
1
0

0
0

21
G ,

M̃ ~a![F J0~a!1J2~a!

0
0

0
J0~a!2J2~a!

0

0
0
0
G .

Jn(x) are thenth-order Bessel functions. The vector ele-
ments ofrA is denoted as~xA ,yA ,zA!. r̂ and R̂I are the unit
vectors ofr5rA2rB andRI5rA2RB

I , respectively. HereRB
I

is the position of the image molecule in the lower dielectric
medium@see Fig. 1~b!#. In Eqs.~C3!, the integration contour
G is from 1 to 0 on the real axis ofp and from 0 toi` on the
pure imaginary axis. The integration over the real axis, from
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1 to 0, represents the contribution from the propagating
modes with real wave vector, whereas that over the pure
imaginary axis corresponds to the evanescent mode contri-
bution to the spatial correlation function, particularly, the
imaginary part of the Green function. Detailed discussions
on the integration contour has been given by Lifshiftz16 and
Tikochinsky and Spruch44 in the contexts of the vdW inter-
actions between two macroscopic dielectric surfaces and be-
tween an atom and a dielectric surface, respectively.

Although the general expressions given in Eqs.~C3! are
lengthy and cumbersome, in the short distance limit, one
may find very simplified results. Here the short distance limit
means that the distances between the two molecules as well
as between the two surfaces are much shorter than the most
important wavelength of the whole system. For instance the
wavelength of the dominant electronic transition of mol-
ecules or dielectric media is order of hundreds of nanometer.
Thus if the intermolecular and intersurface distance is shorter
than this length scale, the short distance approximation can
be invoked. In the calculation of the van der Waals interac-
tion defined in Eq.~14! or ~17!, the most important wave
vector is approximately equal to the inverse of intermolecu-
lar distance. In this high frequency region, the dielectric
function is close to unity, so that one can make the following
approximations:~i! sn>p for n51 and 3,~ii ! the Fresnel
reflection and transmission coefficients defined in Eqs.~B6!
and~B7! are independent onp~5cosu! as a consequence of
the first approximation~i!, finally ~iii ! we ignore multiple
reflection contributions, i.e., the denominatorDl>1 in Eqs.
~C3!. Particularly, the last approximation can be understood
by expanding 1/Dl as a geometrical series,

1

Dl
511 (

n51

`

~r 21
l r 23

l !n exp~2inkd cosu!. ~C5!

Inserting this expanded form into Eq.~C3! and using the
approximations~i! and ~ii !, we may findF̃(k) and Ṽ(k) are
given by sums overn. If one focuses on the terms inversely
proportional to the cubic of distance—here the distance rep-
resents the shortest distance that a virtual photon may travel
with multiple reflections by the two surfaces—thenth term
with nonzeron can be shown to be approximately equal to
1/(r1nd)3. Therefore, one can ignore terms withn>1. This
approximation means we ignore contributions from multiple
~more than once! reflections in calculatingF̃(k), Ṽ(k), and
G̃( ik). After some algebra, we finally find thatG̃I( ik),
which is associated with the type I mode contributions, is
given by

G̃I~ ik!5G̃I
even~ ik!1G̃I

odd~ ik!, ~C6!

where

G̃I
even~ ik!>

1

2 F 2Ae1~ ik!

e1~ ik!11G
2H 11Fe3~ ik!21

e3~ ik!11G
2J Ĩ23r̂ r̂

r 3
,

G̃I
odd~ ik!>2F 2Ae1~ ik!

e1~ ik!11G
2Fe3~ ik!21

e3~ ik!11G Ĩ 823R̂IR̂I8

RI
3 . ~C7!

Also one can immediately find that the corresponding tensors
associated with the type II modes are

G̃II
even~ ik!>

1

2 F 2Ae3~ ik!

e3~ ik!11G
2H 11Fe1~ ik!21

e1~ ik!11G
2J Ĩ23r̂ r̂

r 3
,

G̃II
odd~ ik!>2F 2Ae3~ ik!

e3~ ik!11G
2Fe1~ ik!21

e1~ ik!11G Ĩ 823R̂IIR̂II8

RII
3 . ~C8!

Equations~C7! and~C8! are the main results, Eq.~21!, used
in Sec. III.
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