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Suppression and enhancement of van der Waals interactions

Minhaeng Cho® and Robert J. Silbey
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 18 January 1996; accepted 12 February)1996

The van der Waals interaction of a pair of anisotropic molecules near planar dielectric surfaces is
studied by using the linear response formalism. The spatial correlation furi@ieen function of

the vacuum electric field in the presence of dielectric surfaces is obtained by using suitable Fresnel
mode functions of the quantized electric field. In the short-distance limit, it is observed that the
long-range interaction potential is significantly modified by the dielectric surfaces and strongly
depends on the geometry of the two molecules near dielectric surfaces. When the two molecules are
anisotropic, depending on the molecular alignments with respect to the surfaces, the van der Waals
interaction is enhanced or suppressed by the existence of the surfaces. When the two molecules are
in between two dielectric surfaces, the overall magnitude of the van der Waals interaction is
suppressed in comparison to that in the free space because the vacuum electromagnetic field
intensity is reduced by the transmissivities that are generally less than unityt99® American
Institute of Physicg.S0021-960606)00219-§

I. INTRODUCTION interaction of a pair of molecules can be very large so that
the van der Waals interaction could be suppressed or en-
Boundary effects on various quantum phenomena, suchanced dramatically. Although this case was theoretically
as level shifts of an atom in various types of cavities, enstudied by Imura and Okarfothe clear physical interpreta-
hancement or suppression of spontaneous emission rate, akns and implications of these results were not fully ex-
citation transfer etc., are of current interests both theoretiplored in their paper.
cally and experimentally. The modifications by the In this paper, we focus on the more general situation
boundary conditions are the manifestation of the changes iwhen two molecules are located in a planar microcagge
mode structures of electromagnetic fields near boundariegig. 1). Particularly, the distance between the two surfaces is
For example, the spontaneous emission rate of an excita@luch shorter than the most important wavelength of the sys-
atom near a dielectric surface can be enhanced or suppresse¢h, that is, the wavelength of the optical transition fre-
depending on the distance from the surfacéBased on the quency of the molecules or dielectric media. Noting that usu-
Fermi Golden rule, the spontaneous emission rate is propokly the optical transition wavelength is order of hundreds of
tional to the mean square fluctuation amplitude of the quannanometer, the short distance limit we shall consider is the
tum vacuum field:"® In the vicinity of a dielectric surfacé, case when both the intermolecular distance and intersurface
the spatial variation of the field fluctuation amplitude differs distance are smaller than this length scale. If a pair of mol-
from that of the free space, which in turn cause modulationgcules are located in a planar microcaviabry—Perot cav-
of spontaneous emission rate as a function of distance fromy), one can expect that the van der Waals interaction is
the surface. In this paper, we shall show how these changesmilarly but more strongly modified by the two planar di-
in modal structures near planar surfaces modify the van deslectric surfaces, though there are distinctive differences in
Waals interaction between two polarizable molecules. modal structures in comparison to the case of a single sur-
It was perhaps MacLachlmwho first showed that the face. A related problem, the properties of liquid confined by
van der Waals interaction between two neutral polarizablewo dielectric surfaces, has been extensively studied by mea-
molecules can be significantly altered by the existence of theuring normal and shear forces between the two surfaces as a
dielectric surface compared to that of the free space. Heunction of distance between the two surfal®g?This case
showed that the van der Waals interaction potential of a paiis found to be very important in the surface sciences of liquid
of molecules in the vicinity of a dielectric surface dependslubricants, adhesion and wear propertiesetting and dew-
on the detailed geometry. If the two molecules are locate@tting of surfaces? liquid films,® etc. Despite of the exten-
side by side parallel to the dielectric surface, the intermosive theoretical studies using Lifshitz's thebhand molecu-
lecular interaction decreases in comparison to that in the fregrr dynamics simulations as well as experimental studies,
space. In contrast, when one is on top of the other, the intefundamental aspect of the intermolecular interaction between
action potential increases. In case when the anisotropy of théolecules in a plane-confined geometry has not been stud-
molecular polarizability is large, this boundary effect, in- jed.
duced by a single dielectric surface, on the van der Waals |n this paper, we shall focus on the van der Waals inter-
action between two nonpolar molecules when they are in

dpresent address: Department of Chemistry, Korea University, SeouF,:Iose proxi.mity to the surface;, treating the surfaces in a
Korea. macroscopic manner. There exist however numerous effects
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of the dielectric surface. Thus, although the results given in

(a) this paper will suffer from the lack of a realistic quantum

/ description of the solid surface, they should be useful in
understanding fundamental aspects of the boundary effects

: and in developing proper intermolecular potential functions
2 d used in molecular dynamics simulation studies.
|
=X
Type 1l

Typel dielectric 1

JGicloctic 3 This paper is organized as follows. In Sec. ll, the effec-
x tive Hamiltonian of nonpolar polarizable molecules is dis-
:9' cussed. The van der Waals interaction between general an-
I isotropic molecules in a planar cavity is considered in Sec.
[ll. Two limiting cases of a single dielectric surface and two
dielectric surfaces are discussed in Secs. IV and V, respec-
tively. Finally we summarize the results in Sec. VI.

(b)
|
| RII dielectric 1
! Il. EFFECTIVE INTERACTION HAMILTONIAN
r B The usual minimal coupling Hamiltonidhcontains two
interaction terms that are linearly and quadratically propor-
A % . tional to the vector potential of the quantized field. By using
| ree space the Power—Zienau—Wooley transformatfdnZ®one can ob-
| dielectric 3 tain the multipolar Hamiltonian,
|
R, H=Hyor+ He+H. &

The molecular Hamiltonian is, in the second quantized form,

FIG. 1. (a) Two types of modes are shown. Type | modes are associated |  — 5O BT.B .+ 277_[ drlP=(r)12
with the incident modes propagating downward from the dielectric 1 to the mol % sa(Em) me=mg=me ; [Pr(rI%.

interface between the dielectric 1 and the free space, whereas type || modes 2)
are associated with the incident modes propagating upward from the dielec-

tric 3 to the interface between the dielectric 3 and the free sgagée- The subscriptsm and ¢ denote themth molecule and/th
tailed geometry of the two molecules with respect to the two surfaces ar ; ; it
drawn. Two close circles represent the two real molecules in the free spa%tate of the mth molecule, respectlvelymg is the transition
region, whereas the two circles in the dielectric media are pictorial repre; requency betweeAn the ground St@ém» and thegth_State
sentations of the image molecules of the B-molecule. 1£(m)). BrT]g and B, are transition operators defined by

Bne=|£(m)){(g(m)| and By,.=|g(m))(&(m)|, respectively.
) ) The transition operators obey the usual commutation rela-
that cannot be taken into account by using the macroscopigons,

picture of a solid surface with the phenomenological Max- A L
well’'s equations. For example, the nonlocality of the dielec-  [Bmg, By e 1= (1= 2B Bimg) Sy O - €)

tric function near a surfac& **may play a crucial role when V\fe assumed that the overlap between molecules is ignored.

the distance between the molecules and a surface is order Bne of the notable difference of the multipolar Hamiltonian

that between atoms of the solid. Second, the surface cafn - : . .
) . . : rom the minimal coupling form is that the intermolecular
induce a permanent dipole moment by distorting the ground

state wave function of the molecutThe magnitude of the interaction in the multipolar .form is purely determined by the
retarded exchange of the virtual transverse photons, whereas

induced permanent dipole moment increases as the molecugﬁ o . A . o )
: .~ the minimal coupling Hamiltonian contains additional in-
approaches the surface. Besides of the two complications : . .
; ) . . . Stantaneous intermolecular interaction tef.
mentioned above, there exist various mechanisms causing . : e
L : . The quantized field Hamiltonian is as usfal,
deviations from the van der Waals interaction. In order to
remedy the effect of the nonlocality of the dielectric func- A on
tion, Zaremba and KoHf used the jellium model as an ap- HF:% how(agan+1/2), 4)
proximate microscopic model for a metal surface. They _ o
showed, when studying the interaction of a single atom withvhere th§+ph0t09 creation and annihilation operators are de-
a metal surface, that the referengiynamical imageplane  noted bya,, anday, . The interaction Hamiltoniahi, in Eq.
position has to be calculated by taking into account the mi{1) is
croscopic nature of the metal surface. Thus the effective dis- A A
tance between the molecule and the surface differs from the H,= —J drP(r)-D(r). 5)
distance between the molecule and the jellium surface. How-
ever, the basic theories developed by Lifshitz are still approHere the polarization operator, that is associated with the
priate in describing key aspects of physisorption and the roléransitions between states of a given molecule, is defined as
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- ~ a second-order perturbation theory with respect to this effec-
P(r):% pm8(r—=Rp), (6) tive interaction Hamiltonian to obtain the interaction poten-

A tial of a pair of nonpolar polarizable molecules.
where the dipole operatqr,, is

Ill. VAN DER WAALS INTERACTION

fm= 2 me(BrogtBrry). Y | . .
Mg e e T The van der Waals interaction of a pair of molecules has
M_mg is the electric dipole transition matrix elemeﬁx(r) in been a subject of extensive studies since the seminal paper of

. . . . . . 29 :
the interaction Hamiltonian is thezansversedisplacement London™ Recently Power and Thirunamachandvan

field operator, that is the conjugate momentum of the vectophowed that the van der Waals—Casimir interaction can be
potential in the multipolar Hamiltonian calculated by considering two induced dipoles at the centers

of the two molecules and then the two induced dipoles inter-
f)(r)=i2 (ZWﬁwk act through the well-known retarded dipole—dipole interac-
o Y, tion tensor obtained by McLone and PowéiFor a pair of
molecules A and B, the interaction energy is thus given by
the vacuum expectation value,

12
{fo(Dan — i (Nag ), (8)

and the vector potential is

. 2mhc?
An=3 ( Vo

kn

1/2
tfa(Daa+fia(Naal. AE=3 (k) V(K (k) v (12
3N

fin(r) are the normalized mode functions satisfying the coryyhere theeffectiveinduced dipole operators are defined as
responding Helmholtz equations with the proper boundary

conditions® et (K, N) = y) - Dyn (Rey).- 13

The interactions between nonpolar polarizable moleculeshjs result, Eq.(12), can also be obtained by using the
can be described by the second-order or fourth-order pertuecond-order perturbation theory with respect to the effective
bation theories depending on the situation. For example, thﬁlteraction Hamiltonian given in Eq10). Inserting the dis-

attractive interaction between a molecule and a dielectrigiacement field operator given in terms of mode functions in
wall is a second-order problem, i.e., quadratic Stark $h#, Eqg. (8) into Egs.(12) and (13) gives

that is, the interaction potential is linearly proportional to the
molecular polarizability. The interaction of a pair of mol-
ecules can be, as shown by LondSmbtained by using the
fourth-order perturbation theory, where the energy shift is (14
proportional to both polarizabilities of the two molecules. , hare the dipole—dipole interaction tengo(n() and its Hil-
Therefore we find that it is useful to derive an effective transform,E(k), can be written in terms of classical
Hamiltonian by eliminating a one-photon vertex in the Feyn-
man diagram$® By using the Heisenberg equations of mo- 1
tion of the transition operators and introducing the ~ . .3 "
Weisskopf—Wigner approximation (Adiabatic Flk=-k RE{E f dQ; fa(Ra)Ta(Re) |,
approximation,* the effective interaction Hamiltonian can

fc (= ~ VIR E
AE=——f dk T aa( @) V(K) ag(wF (k)]
m Jo

mode functions

[ _ 4 k/2
be obtained as V(k)= v Re D K2 fin (Ra)fery (Rg)
A A k'
Hfﬁz_zm: % a(@):Di(Rm) [D(Rp), (10 2 (= k"~
= |, o e P (19

where the term in the square bracket in EXf) is the effec-
tive induced dipole operator and the molecular polarizabilityThe expression for the dipole—dipole interaction

operators are defined as tensor,V(k), was derived in Appendix AdQ =sin 6d6dd.
1 . 20 Since the two tensorg; (k) and V(k), are related to each
am(wy) = 7 > [1—Wm§(0)]m§m1§( Qz__mgz) other by the Kramers—Kronig relationship, one can in prin-
£(m) mé— @k ciple calculateV(k) by obtainingF (k) and vice versa. As

) ) o (1) can be seen in the definition &f(k) in Eq. (15), F(k) con-

Wi, is the population 0peraton§=ZBrT1§Bm§. The spon- tains information on the spatial correlation of displacement
taneous emission contribution to the effective dipole operatofield operatoD,, (Ra)D, (Rg))vac- Equation(14) involves

was neglected, since we focus on the molecular interactioboth the elastic scattering of the fluctuating vacuum field by
between two molecules in the ground states. As expected, thmolecules and the inelastic virtual processes, such as the
effective interaction Hamiltonian given above involves two absorption and emission of the virtual photons. As a matter
photon processes. A vacuum field with wave vedtoand  of fact, the two tensord; (k) andV(K), are proportional to
polarization direction\ creates an induced dipole at the cen-the imaginary and real parts of the Green function of the
ter of themth molecule, and in turn this induced dipole in- fluctuating vacuum electric fietf;** where the Green func-
teracts with vacuum field at the same position. We shall uséon is defined by the Fourier component of the antisymme-
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trized time correlation function of the electric field operator. B. van der Waals interaction in short distance limit
A detailed qer|vat|on oF (k) bY using Eq.(15) with proper Using the proper mode functions of fully quantized elec-
mode functions of the quantized electromagnetic fields i,

) . . magnetic field near two planar surfaces, we calculated
?i\é)en in Appendix C. Thev(k) can be calculated from Eq. F(k) in Appendix C. In the short distance limit, as discussed

in Appendix C, the Fresnel reflection and transmission coef-
ficients are assumed to be independent on the incidence
_ _ _ angled and the contributions from multipkenore than once
G(k)=V(k)+iF(k), (16 reflections by the two surfaces are ignored. Moreover, the
retardation effects caused by the finite speed of light can be
ignored. In this limit, the Green functiorG(i«), in the
imaginary frequency domain can be approximately given as

In order to rewrite the van der Waals interaction energ
in Eq. (14), we define

to obtain

fic * ~ = G
AE=——|mf dk Tl aa(w) G(K) ag(w )G (K)].

2 0

17 G(i k)= GE*i k) + G k) + G k) + G2 )

We find that it is useful to rewrite Eq17), which is given by ~ ~ o~

an integral over the real frequency, as an integral over the =Cy(ix) |—3rr +Cy(ik) I"—3RR

imaginary frequenck—ix with x>0 so that we have 0 3 ! R,3

hc (= S SV T'—3RyR
AE:Z fo di Trlaa(ikc)G(ik)ag(ikc)G* (ik)]. +Cy(ik %, (21)

(18) 1]

HereG(i«) is proportional to the temperature Green's func-where the coefficients in the imaginary frequency domain are
tion, which is defined in terms of the Matsubara electromag-

netic field operatord$® As well-known, the temperature

: 2 . 2
Green's function is related to the retarded Green function by o ;) 1| 2Velix) e3(in)—1
using the analytic continuation procedure rotating the real 0 2 \|e(in)+1 e3(in)+1
frequency axis into the pure imaginary axis. We wish to ., , 9
emphasize that, even though we used a set of fully quantized { 2 V_E3(' K) Gl(f «)—1 )
electromagnetic fields, the van der Waals interaction poten- e3(in)+1 e(in)+1] |’
tial reduces to a problem of calculating the spatial correlation (22
function of the fields. Moreover those mode functions are wrer T
determined by theclassical Helmholtz equation with the Ciik)=— 2 _El(IK) 63(!'() 1 ,
proper boundary conditions. eic)+1] [es(in)+1

Cin)=— 2\es(ik) 2 €(in)—1
A. Anisotropic molecular polarizability O =" i)+ 1) |elin) +1]

Instead of considering an arbitrary polarizability, we A .
shall focus on the symmetric top molecules. The polarizabiin Eq. (21), T, R, andR,, are the unit vectors af, R,, and
ity tensor for a symmetric top molecule can be expressedR| , respectivelyl’ andR’ are defined in Eq(C4). It should
most generally as be noted that the dielectric functions in the above equations
- ~ ~ _aa are evaluated in the imaginary frequency so that they are
(w) = a(w)l = (w)(I =3u0), (19 monotonously decreasing function with respect to the imagi-
where U denotes the unit vector which lies along the prin- nary frequency. The first term in E€R1) represents the con-
ciple axis of the symmetric top molecule. By designatingtributions from direct interaction without involving any re-
ay(w) anda, (w) as the polarizabilities of the molecule along flection of a virtual photon by the surfaces, whereas the
the symmetry axis and along any axis perpendiculatito second and third terms correspond to those involving a single
respectively, we defined the isotropic and anisotropic parts ofeflection by the lower surface and that by the upper surface,

the molecular polarizability as respectively. Inserting the two polarizability tensors defined
1 in Eq. (19) and the Green functions in E1) into Eq.(18)
a(w)= 3 {a)(0)+2a, (o)}, gives the van der Waals interaction,
1 20 hc (= C3A00 CoCiAg; CoCyA
(w):_ a(w)_a (w) . __ = 0430,0 o~ 1420, o~I£x0,l1
B 3 { Il 1 } AE 27T o K r6 r3R|3 r3Rﬁ

It should be noted that the polarizability tensor given in Eq. C2A C2A C.CiA
(19) is symmetric and that the anisotropic part, proportional il 6"' L 6“'“ il ]
to B(w), is traceless. R Ry RIRi

(23)

J. Chem. Phys., Vol. 104, No. 21, 1 June 1996
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FIG. 2. Six different contributions to the van der Waals interaction are

shown[see Eq(23) and discussion below E¢25)]. Exchange of two vir-
tual photons are represented by arro¢es—(f) correspond to the first to the
sixth terms in Eq(23), respectively.
where, form, n=0,1,lI,

Amm(ik)= Tr{anasTmlm— @aBeTm7eTm

~ T T+ ~ T ~ T+
—BaasTaATm T+ BaBeTaTm8 T m}
; T TroTF T T =T+
Am,n(I K)= Tr{aAaB(Tan + TnTm) - aAIBB(TmTBTn

+Tn7BT$ - BAa’B(FA?mTrT +7ATnT|:;1)

+ BaBe(TaTmTeTn + 7aTnTe T m) (24)
with
Ta— 30U, ,
Fo=1— 3050,
To=T—3FF, (25)
T=I"-3RR/,
:Fu =1~ 3§||§|’| :

M. Cho and R. J. Silbey: Enhancement of van der Waals interactions

straightforward to rewrite them in terms of angles and dis-
tances defined in Fig. (). Instead of discussing E@23)
more in detail, we shall consider several limiting cases that
should be found useful in practical calculations. Since the
van der Waals interaction between either isotropic or aniso-
tropic molecules in vacuum has been studied extensively, we
shall not consider those cases in the following sections.

IV. SINGLE DIELECTRIC SURFACE

We shall consider, in this section, the case when the two
molecules are in the vicinity of a single dielectric surface.
Let us assume that the upper dielectric medium is replaced
with an infinite vacuum. In this case, the dielectric function
€(ix) equals to 1, that is the transmission coefficiept
becomes unity whereais,;=0. Then the third, fifth, and sixth
terms on the right-hand side of E@®3) vanish.

A. Isotropic molecules

If the two molecular polarizabilities are isotropic, from
Eq. (23) we find

3f .. P(2—=3cosdP—3cos%k) .
AE=-Trslo"t 271 R g
3 15 26
7T_R|6 2 ( )
where
|6w=J drap(ix)ag(ik),
0
I’“’—focd eling-1] ,
1=, KW“A("()QBUK), (27)
I e(ic)—11% .
|2 —Jl) dx m CZA(IK)CYB(IK).
Equations (26) with (27) are exactly identical to

Equations(23) with (24) and(25) are the main results in this MacLachlan’s resulfs**3’{note that the angles defining the
section, and show complex dependence on the distances bgeometry [see Fig. 1b)] are defined differently from

tween real molecules as well as between real and image maMacLachlan’g}. In the definitions of three integrals, the su-
ecules. Only the first term is inversely proportional to theperscript, “aa,” denotes that the integrals involve the iso-
sixth power of the direct intermolecular distance. Thereforefropic polarizabilities in the integrand. The first term is just

the first term is the largest one since bdth and R, are

the van der Waals interaction in the free space—London’s

always larger than the direct distance through the free spaceesult can be obtained by assuming that the molecular polar-
The physical meaning of each term can be understood bizability is determined by a single frequency, so that the
considering the exchange process of a couple of virtual phdntegration over the imaginary frequency can be performed
tons. As shown in Fig. @), the first term on the right-hand by using residue theorem. The second term represents the
side of Eq.(23) corresponds to the case when the two virtualvdW interaction when one of the two virtual photons is re-
photons are exchanged via free space. On the other hand, tfiected by the surface. Because of the interference effect be-

second and third termgrigs. 2b) and 4c), respectively

tween the direct dipolar field and the reflected dipolar field,

involve a single reflection by the lower and upper surfacesthe magnitude of the second term becomes strongly depen-

respectively. The fourth and fifth ternpBigs. 2d) and 2e)]

dent on the detailed geometry. For example when the two

involve two reflections by the same surface, whereas thenolecules are located parallel to the surface and separated
sixth term[Fig. 2(f)] does two reflections—once by each far apart, the second term becomes positive so that the over-

surface.
The general expression given in Eg3) is very compli-

all vdW interaction decreases compared to that in the free
space. The third term corresponds to the contribution from

cated because of the geometrical factors, though it is quitthe interaction between the induced dipole in the free space

J. Chem. Phys., Vol. 104, No. 21, 1 June 1996
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and the inducedmage dipole created in the dielectric me- 18 : : ; : : : : : :
dium. They are separated by the distafite Usually the (2)
third term is much smaller than the second one, except when ||
the two molecules are far apart as well as when they both are
close to the surface.

These results has been used in understanding lateral in-
teractions between adatori?s3’ where the two-dimensional 9
flat film is normally assumed. For example, Raubeal® 27
showed that the reduction in the potential well depth of
15%-20% from the free space values for the inert gas atoms T
near graphite surface can be assigned to the additiseat
ond) term in Eq.(26). o8}

In order to obtain simpler results with retaining salient

VERTICAL

LATERAL

features of a dielectrimeta) surface, we further use a free- 06 N .
electron-like(ThomaS—Fermi mod)aneIeCtric fl,lnCtiOﬁg’40 0 ! 2 DlgTANCE“(LATEF?ALAND VERT|gAL) ° 10
2
e(in)y=1+ %, (29) e
(b)
wherewy, is the plasma frequency, which is the characteristic 2t RS ]
resonance frequency of absorption of the electrons in the e

metal. For the sake of simplicity, if the two molecules are
identical and the molecular polarizability is determined by a
single transition frequencyy,, i.e.,

a(ix)=2|ul? (29

]
h(wi+x?)’
the three integrals defined in Eq37) can be calculated,
within these approximations to the dielectric function and the
molecular polarizabilities,

X=X Interaction
L h )

. s L L L 1
0 1 2 3 4 5 6 7 8 9 10

wa Twoa®(0) DISTANCE (LATERAL)
I 0o — 4 )
FIG. 3. The ratios of the van der Waals interaction between two isotropic
71.(000(2(0) 7,2_,_ 2y molecules(a) or two anisotropic moleculefb) near asingle dielectric sur-
Z‘a: 5| (30 face to that in thdree space are plotted. The ratio of the surface-plasmon
4 (y+ 1) frequency to the optical transition frequenay,is assumed to be [3ee Eqg.
) ) (3D)]. ¢y(w)/a, (w)=3. The distance between the molecule A and the surface
wa_ TWOQ (0) | y(y*+3vy+1) is assumed to be unity, and the distance between molecules is scaled by this
2 4 (y+ 1)3 unit distance.

Here v is the ratio of the surface-plasmon frequency to the _ ) ) )
molecular transition frequency, in the free space is calculated. Here the dielectric surface is

fully characterized by the ratig that is assumed to be Zhe

_ wp V2 31 distance between the molecule A and the surface is assumed
Y= wy 31 to be unity and the distance between molecules is scaled by
this unit distance in the following calculations. As the two
qmolecules approaches to each other the surface boundary ef-
fect decreases since the additional terftie second and
third terms in Eq.(26)] are negligibly small in this limit. If

one of the two molecules is on top of the otlievertical” ),

the intermolecular interaction becomes larger than that in the

rfree space as shown in Fig(a3.

If the ratio v becomes large, that is, the surface acts like
good mirror, all three integrals given in Eq&0) become
identical. In this limit, the surface boundary effects will be
maximized. On the other hand, as the ragicapproaches
zero, the last two integral$i® andl5“, decreases to zero, so
that the boundary effects become negligible, as expected.
In the limiting case both when the two molecules are fa
apart and located side by siddateral” ) on the dielectric
surface (y=y=m/2 andr=R,) and when the ratioy ap-
proaches a large number, the total vdW interaction energy In case when the two molecules near a surface are an-
reduces to approximately two-thirds of that in the free spaceisotropic, one needs to consider the complicated geometrical
This is demonstrated by a numerical evaluation of §)  factors given in Eqs(23). Since it is very tedious to rewrite
with Eqg. (30) in Fig. 3(a), where the ratio of the vdW inter- the geometrical factors in terms of angles of the two mol-
action between two isotropic molecules near a surface to thacules with respect to the surfaces, we instead present nu-

B. Anisotropic molecules
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merical calculations to survey the general trends. To this end,
we assume that the surface and molecular polarizabilities are
given by the forms in Eqg28) and(29), respectively, except
that the ratio of the parallel polarizability,(w) to the per-
pendicular component, (w) is assumed to be 3. The ratjo
defined in Eq(31) equals 2.

In Fig. 3(b), the ratios of the vdW interactions near a
surface to those in the free space are shown, where we con-
sider three different cases when the molecular principal axes
lie along three different axes in the laboratory coordinate
space. Again it should be noted that the two molecules are in
they—z plane(see Fig. L When the two molecular axes are
parallel to either thex- or y-axis, the vdW interaction de-
creases compared to that in the free space. In contrast, the
Z—z interaction is enhanced by the existence of the surface.
This can be understood by using the image picture. Suppose

RATIO

the two molecular axes lie along tkeaxis—that is, the prin- 035 ' ' ' ' - ' ' - '
cipal axes are perpendicular to the surface plane. Then the )
instantaneous induced dipole at the center of a molecule is %% e 1
more likely to be aligned to be perpendicular to the surface e

plane, because the parallel component of the polarizability is ~ **[ o7 R nteraction 1
larger than the perpendicular one. The image dipole thus ool ]

induced in the dielectric medium is oriented with the same
direction with the induced dipole of the molecule A. There-
fore, the magnitude of the combined dipole moment is larger
than that in the free space, which will be shown up as an .|
increased vdW interaction energy when the two molecules

RATIO

are well separated. However when they are in close proxim- s co . Y{YInteracton _

ity, the overall interaction is not monotonic as can be seen in RET—

Fig. 3(b). Similar discussions with the image picture are ap- %
plicable to the other two cases-x andy-y interactions, DISTANGE (LATERAL)

though in these cases the cancellation between the induced

dipole of a real molecule and the induciedagedipole will FIG. 4. The ratios of the van der Waals interaction between two isotropic

make the overall vdW interactions decrease in comparison tepolecules(a) or two anisotropic molecule#) in betweentwo dielectric
those in the free space. surfacesto that in thefree space are_plotted. The 'rat|o of the surface-
. . . . plasmon frequency to the optical transition frequengyis assumed to be 2.

In comparison to the vdW interaction between ti0- 4 (w)/a, (w)=3. The two molecules are located exactly in between the two
tropic molecules, one of the most distinctive features in thesurfaces so that the lateral intermolecular interaction is only considered in
interaction betweemnisotropicmolecules is that the align- this figure.
ment of the two molecules is very important factor in deter-
mining the role of the dielectric surface. Depending on the
molecular alignments, the surface enhances or suppresses thgpic molecules are near a single surffeee Fig. 8) “lat-
vdW interaction in the vicinity of a dielectric surface—note eral”]. Similarly, we calculated the vdW interaction between
that a similar observation was also made in studies on thgyvo anisotropic molecules in a planar cavity in Figbhy
spontaneous emission rate near a dielectric surfate. Since we assumed that the geometry is symmetric—the two
dielectrics are identical and distances between each surface
and the two molecules are also identical, the quantitative
trends of enhancement or suppression are found to be iden-

When the two molecules are located in between two surtical to Fig. 3b).
faces, one can expect that the boundary effects induced by a Although the boundary effect induced by two surfaces is
single surface discussed above would perhaps be enhanceplalitatively identical to that by a single surface, the overall
Indeed as we show in Figs(a&} and 4b), there are strong magnitude of the vdW interaction energy in a planar cavity is
modifications of the vdW interaction strength. For example suppressed in comparison to those in vacuum or in the pres-
when two isotropic molecules are located exactly in betweemnce of a single dielectric surface, and also strongly depends
the two surfaces with their intermolecular axis parallel to theon the dielectric properties of the two media. In order to
surfaceqlying along thex-axis), the ratio of the vdW inter- show this tendency, we numerically calculate E28) when
action to that in the free space is shown in Figal4Here we the intermolecular distance between two isotropic molecules
assume that the two dielectric media are identical. The trents much smaller than the distances between molecules and
observed in Fig. @) is identical to the case when two iso- surfaces—this is the short-intermolecular-distance limit in

V. TWO DIELECTRIC SURFACES
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1 , [ 2Velin ? g 2| 2Vesli®) ?

osf 1 2 e (i)+1 82 eg(in)+1]

o8r 1 which are always less than or equal to unity. Thimsthe

o7t 1 short distance limit, the magnitude of the van der Waals

interaction can be suppressed by the two dielectric surfaces
° with a large dielectric functionHere we should emphasize
209 | again that, because E@21) was obtained in the short-
04t . distance limit, contributions from multiple reflections were
ignored. If the reflectivity of the two dielectric media be-
comes close to onghat is the transmissivity from the dielec-
tric to the free space region is equal to 2eane has to take

o1t ] into account the multiple reflection effects. In particular,
these effects will be important when the two molecules are
far apart and the distances between molecules and surfaces
are comparatively small.

0 0.5 1 15 2
GAMMA

FIG. 5. The ratio of the van der Waals interaction energy between twi
isotropic molecules in between two dielectric surfaces to that in the fre

V1. SUMMARY
space is plotted as a function ¢fin the short-intermolecular-distance limit. : . . _
The two dielectrics are identical. The dielectric functions and polarizabilities Using the mode functions of the quantlzed eleCtromag

are assumed to be described by E@8) and (29), respectively. netic field, the Green function, in the imaginary frequency, in
a planar cavity was calculated in the short-distance limit. The
van der Waals interaction between two isotropic or aniso-

Fig. 4(@). Here the Thomas—Fermi modalee Eq(28)] and trppic molecule; are calculated by conside'ring. the dipolg—
Eq. (29) are used for the dielectric functions and polarizabil-dipole interaction between two vacuum-field-induced di-
ities, respectively. The two dielectrics are identical. In thisPoles. When a pair of molecules are in the vicinity of
limit, the first term in Eq.(23) dominates. The ratio of the Surfaces, the mterf_erence_ effects between the_ dipolar field
vdW interaction energy in between two surfaces to that inand_the reflected dipolar field are found to be important. In
the vacuum space as a functionf=w,/v2ay) is plotted in particular, when the two molecules are anisotropic, the sur-
Fig. 5. As the transmissivity decreases, thatyisncreases, faceé can enhance or suppress the van der Waals interaction

the vdW interaction in between two dielectrics decreasesdepending on the molecular alignments. A simple image pic-
For instance, the vdW interaction energy of two isotropicture Was used to describe these effects. It was shown that, in

molecules is about one-fifth of that in the free space, whef§ase Of two planar surfaces, the general trends are found to
we assume that the ratioy) of the surface-plasmon fre- D€ identical to the case of a single surface. However, since
quency to that of the molecular transition frequefsse Eq. the mode intensity betw_een two dielectric media is decrez_ised
(31)] equals to 2. This behavior can be understood as follow!€lative to that near a single surface, the absolute magnitude
ing. When there is ainglesurface, the amplitude of the field Of the van der Waals interaction in a planar cavity is smaller
mode around the surface is identical to that in the free spacd)an those in the free space or near a single surface. Conse-
though the mean square fluctuation amplitude of the electrgduéntly, the estimate of the van der Waals interaction be-
magnetic field in the vicinity of the surface dramatically dif- tWeen atoms or molecules in the confined geometry by using
fers from that in the free space. In order to illustrate thisth® parameters obtained from the gas-phase experiment is
point, let us consider the temperature Green functions, Eqékely to be strongly deviated from the actual value in this
(21) and (22), in the cases of both the free spaceCircumstance.

[e1(ik)=€3(ik)=1] and the single dielectric surface

[€(i k) =1 ande(i k) >1], which are, respectively, ACKNOWLEDGMENT
_ T=3ff Financial support by the National Science Foundation is
Go%ik)= 3 gratefully acknowledged.
and APPENDIX A: CALCULATION OF THE
- ) ~ .o DIPOLE-DIPOLE INTERACTION TENSOR
~ . I-3rr [es(in)—1] 1'-3RR, _ _ _ _
G>*(ik)= 3 (1)1 ng In this appendix we derive an expression for the general

dipole—dipole interaction tensor, which is valid for any arbi-
In both cases, the leading term is the usual dipole—dipolérary boundary conditions. McLone and Powfeconsidered
interaction tensor in the free space. However, in the casthe resonance interaction of a pair of dipoles including the
when the vacuum space is confined by two dielectric mediaretardation effect in théee space. We generalize their result
the intensity of the mode in the vacuum region becomedor arbitrary planar boundary conditions imposed by the
proportional to the square of the transmission coefficientsmacroscopic dielectric surfaces. In order to obtain the
which appears in Eq422) as dipole—dipole potential tensor we need to use second-order
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perturbation theory with respect to the original interactionThis is Eq.(15) used in Sec. Ill. The authors presented the
Hamiltonian, H,=—ua-D(Ra)—ug-D(Rg). From the theoretical derivation of the dipole—dipole interaction tensor
second-order perturbation theory, the dipole coupling interin the presence of a single dielectric surface in Ref. 41.
action is

APPENDIX B: SPATIAL MODE FUNCTIONS IN

(FIH[D(HH i)
- E_gF (A1) PLANAR MICROCAVITY

EI Em ,

—M

In this appendix, we summarize the well-known mode
ctions of the quantized electromagnetic field in a planar
microcavity (Fabry—Perot cavity®*? The geometrical details

where the initial and final states are product states given b¥un

li)=[e*,g%{0}), _ \ . cal aetal
A B (A2)  ofthe interfaces and spatial coordinates were given in Fig. 1,
[f)=lg"%{0}). where the origin of the-axis is taken at the boundary be-
Here, for exampleg” ande® denote the ground state of the tween the upper dielectric medium and the intermediate free
A molecule and the excited state of the B molecule, respecspace. Thec andy axes lie within the upper interfaces. We
tively. {0} denotes the vacuum state of the field. For initial choose the coordinate system to make the two molecules lie
and final states given above, there are two possible intermavithin thex—z plane[see Fig. 1b)]. There are two classes of
diate states, modes, one is originated from the transmitted incident field
A B A B, propagating downward and the other from that propagating
N=le*e% 19 and [I)=]g"g"% 1. (A3) upward. Each triplet consists of the incident, reflected, and
The former intermediate state involves two excited states offansmitted modes in the free space between the two dielec-
both A and B molecules and one excitation of #ta field.  tric media. Here the reflected and transmitted fields could be
The latter one involves two ground states of A and B mol-created by multiple reflections inside of the cavity. Instead of
ecules and one excitation of théh field. Although we con-  presenting detailed expressions of the various modes, in this
sidered vacuum states for the both initial and final fieldappendix we summarize the type | mode functions, which
states, we found that the dipole coupling interactidnde-  Will be used in the next appendix to calculate spatial corre-
fined in Eq.(A1) does not depend on the initial photon num- lation function of the electric field. For detailed discussions
bers as long as the final field state is identical to that of the@n the quantization of Fresnel modes as well as a complete
initial state. list of the mode functions near two planar surfaces, the read-
Inserting the electric displacement field operator given inérs may refer to Khosravi and Loudbmand De Martini
Eq. (8) and electric dipole operators in E(), we find the etal
dipole coupling interaction is The type | Fresnel mode functions associated with the
— ~ _ initially downward incident field in the free space can be
M = V(Kp) - g, (A4

recast in the form
Whergu is thg elec_tric dipple matrix element, apd the gen- fl,(R)=&l, exp(ik, -R)+&l, explik_-R), (B1)
eral dipole—dipole interaction tensor can be defined as o
wherek, andk_ are the wave vectors of the incident and

Uik — _ 2mh oy | fa(Ra) i (Re) reflected modes, that are propagating downward and upward,
Vikp=wplo) =2 —— | —7—— .
kKn wp—hoy respectively,
¥ (Ra)fio(Rg) ”s) k. =Kk(sin 8 cos ¢,sin 6 sin ¢,cos 6), .
ho,—ho, | k_=Kk(sin 0 cos ¢,sin 8 sin ¢,—cos ). (B2)

This expression is valid regardless of the macroscopi¢ierek=w,/c. The transverse field includes two orthogonal
boundary conditions. Here, is the transition frequency of components that are norm@l=_1) and paralle(A=l) to the

the dipole assuming that the transition frequencies of the twincident plane. Then the unit vectors of the incident and re-
dipoles are identical. In case when the two molecules are iflected modes are

the free space, the mode functions are given by(id&xp.
Then after summing ovetk,\), we can recover the result
obtained by McLone and Pow#.

The dipole—dipole potential tensor in E@5) is deter-
mined by the spatial correlation, suchfag Ra)f, (Rg). We
separate the real and imaginary part$,QfR,)fx, (Rg) and

use the fact that the term containing imaginary part of

fia(Ra)fi\ (Rg) vanishes when the summation ov&n\) is

performed. Finally the dipole—dipole potential tensor be-

comes

V(ky) Re% e a(RaFG(Re).  (A6)

J_

K= A (S|n¢—cos¢0)
I

oot
&= Aiz (cos 6 cos ¢,cos  sin ¢, —sin 6),
I

1L (B3)
. t12r23
e, = (sin ¢,—cos ¢,0),

0l
&= %3 (cos 6 cos ¢,cos @ sin ¢,sin 6),
Il

where
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Ay=1-rr, exp(2ikd cos6). (B4)  HeredQ=sin#dede. The first term in Eq(CJ), Eevek),
o o ) contains even number of reflections, Wher§#§d(k) does
By defining the Lifshitz variables as odd number of reflections. This can be seen by expanding the
p=cos 6, Airy function, 1/A,|?, as a geometrical series. In the follow-
ing derivation we assume,>zg. Inserting the polarization
$1= Ve (w)—1+p?, (B5  vectors listed in Eqs(D3) into Eq. (C2) and evaluating in-
Sy= Vealw) =1+ P2, tegrals overg, we find, after some algebra,

the Fresnel reflection and transmission coefficients for the,:evertk)_ 13 ReJ dp f(u)

normal and parallel transverse modes are writtef? as,

|t ~
|—2(1+|r |

(i) reflection coefficients fon=1 or 3, 1 df(u) M{l df(u) d2f(u) ]
+— rr————>
n pP—=s;, u du u du du
fon= "=y g 2 2
n
(B6) Litd +|r54?) - s (1+(rks
R _€nP~Sn, 2|A, 27 A2
2n n2 an+5n'

(i) transmission coefficients far=1 or 3, XM(v)exp(ikp cos W) (for zx>27p),

2 (C3
th = Sn ~od | ~
n2 p+sn, F? d(k) —gReJdp(TIF— I’ f(U)
2
t$n=+—ps, 1df(U)] . [1dfU) d*(U)
P U du_ U qu ~ du?
2\ens 7
o= _:Sn , L 1[|td?(r* N |t %(r ) M(V)
P 2| 1A A,
. 2\ep
N epts, Xexp —ikp cosx)> (for zpy>1zp),
It should be noted that the reflection coefficients are fre-
where the auxiliary functions are defined as
guency dependent via the frequency dependent dielectrit
constante(wy). By expanding 14, in a geometrical series, it u=Kr,
is clear that the mode function between the two planar sur- —k
faces includes multiple reflection contributions. U=kR,,
v=uy1—p? sin ¢,
APPENDIX C: CALCULATIONS OF F(k) AND D(ik) IN V=Uyl=p®siny, s
SHORT DISTANCE LIMIT F(u) = exg{iup cos ¥}Jo(v), (C4
Using the mode functions, given in AppendR), in the f(U)=exp{—iUp cos x}Jo(V),
planar microcavity, we calculaté(k) first. From the defini- . A .
tion of F(k) given in Eq.(15) and mode function in Eq. R/ =(R/,RY,—R}),
(B1), we find 1 0 0
Fi(k)=F&®Tk) + Fo%9k), (C1) T=lo 1 ol
where 00 -1
. (1)3 ) ) ) Jo(a)+J2(Cl’) 0 0
FfveTk)E—mRede; [ (8l * e+ (Ta~re) M ()= 0 Jo(@)—Jp(a) O].
0 0 0

+&, (8, ¥ e+ (a7re)],

_ w3 o ments ofr 5 is denoted agx, ,yA,zA) r and R, are the unit
Foddk)=— ypmm ReJ' dﬂg (€ (E)* vectors ofr=r,—rg andR,=r,—Rk, respectively. Her®}

J,(x) are thenth-order Bessel functions. The vector ele-

is the position of the image molecule in the lower dielectric

% glK+ Ta—ik_-rg—2ikd cos ¢ medium[see Fig. 1b)]. In Egs.(C3), the integration contour
I'is from 1 to O on the real axis gf and from O toi on the

Ar (Al \* qik_-rp—ik, -rg+2ikd cos 6 . . . . . .
e (g ) e~ TatTe . (C2 pure imaginary axis. The integration over the real axis, from
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1 to O, represents the contribution from the propagatingAlso one can immediately find that the corresponding tensors
modes with real wave vector, whereas that over the purassociated with the type Il modes are
imaginary axis corresponds to the evanescent mode contri-

<12 . 2y =~ An
bution to the spatial correlation function, particularly, the éﬁverti,()g} 2 .63(“() {lJr 61(!")_1 ] l_":’”,
imaginary part of the Green function. Detailed discussions 2 | eg(in)+1 €(in)+1 r
on the integration contour has been given by Lifshffand 12 SN A1 T _ab B
Tikochinsky and Spructiin the contexts of the vdW inter-  Godq(j )= — 2 _63(' <) El(fk) L] 3?"R” (o)
actions between two macroscopic dielectric surfaces and be- e3(in)+1] [ein)+1 Ri

tween an atom and a dielectric Sl.Jrface,. respectively. Equations(C7) and(C8) are the main results, Eq1), used
Although the general expressions given in E@3) are i sec. 111

lengthy and cumbersome, in the short distance limit, one
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