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The semiempirical tight-binding method was used to study the electronic structure of spherical PbS nanocrystals.
The effects of spin-orbit coupling were included, and the calculated band gaps were found to agree well
with previously published experimental values for PbS clusters. The size dependence of the band gaps was
studied for clusters containing as many as 912 atoms (35-Å diameter). Direct diagonalization was used for
small clusters, and Lanczos recursion was used to determine the band gaps and the eigenfunctions for the
larger clusters. Analysis of the eigenfunctions revealed that the HOMO and LUMO states were spread
throughout the cluster. Densities of states for the PbS nanoclusters converged to the bulk density of states,
and the joint densities of states were computed as an approximation to the absorption spectra of the nanoclusters.

1. Introduction

Semiconductor nanoclusters,1 i.e., particles with diameters
between 1 and 10 nm, have been the focus of numerous
investigations in the past few years. On the experimental side,
many research groups have been trying to synthesize nanoclus-
ters of well-defined sizes and have been investigating their
electronic and optical properties. A number of theoretical
studies2-6 of the electronic structure of the nanoclusters have
also been carried out in order to learn how the bulk properties
emerge as the size of the crystallite increases.
It has been observed experimentally that the band gap for

semiconductor nanoclusters is larger than the bulk crystal band
gap and increases with decreasing cluster size. Since the
theoretical methods used for the bulk crystals are not generally
valid for the nanocrystallites, which lack the translational
symmetry characteristic of an infinite crystal, the theoretical
study of the electronic structure of nanocrystallites constitutes
a relatively new and challenging area of research. The long-
term goal of such studies is to guide experimentalists in their
efforts to design novel materials.
The first attempts at explaining the observed blue shift of

the absorption spectrum of a semiconductor cluster utilized the
particle in a sphere and effective-mass models.7,8 In the
effective-mass approximation, the highest valence band and the
lowest conduction band are assumed to have the parabolic form
p2k2/(2m*) around their extrema, wherem* is the corresponding
effective mass. The effective mass associated with a band is
inversely proportional to the curvature of the energy band at
its extremum. The finite size of the cluster requires that only
certain k values inversely proportional to the radius of the
nanocrystal are allowed. This provides the simplest explanation
of the quantum size effect on the band gap.
A full wave-mechanical treatment of the problem was

reported by Brus.9 He retained the effective-mass approximation
for the kinetic energy of the electron-hole pair. The potential
energy term is due to dielectric solvation by atomic core
electrons. Brus obtained the following expression for the energy
E (defined to be the difference between the band gap of the
nanocrystal and the bulk band gap) by taking the solution for
the first excited state for a particle in a sphere and assuming

that the electron and the hole are uncorrelated:

In this case,k) π/R, whereR is the radius of the nanocrystallite.
This effective-mass approximation breaks down for largek (i.e.,
for smallR), since the assumption that the energy surfaces are
parabolic ink is valid only for smallk.
A few other theoretical methods have been introduced. Wang

et al.10 found that the electron-hole-in-a-box model with the
effective-mass approximation overestimated the band gap for
small PbS clusters. They included the effects of band non-
parabolicity and calculated the band gaps for PbS crystallites
using a two-band model, with a basis set consisting of sp3

pseudofunctions centered on the Pb and S atoms.
Lippens and Lannoo2,3 have used the semiempirical tight-

binding method to study the size dependence of the band gap
for CdS, ZnS, and CdSe crystallites. The authors used a 13
parameter sp3s* model, without the spin-orbit interaction. The
crystals studied had a symmetric shape, and dangling orbitals
were neglected. The semiempirical Hamiltonian matrix ele-
ments were obtained by fitting the bulk band structure, following
the approach of Vogl et al.11 These authors also concluded that
the calculations based on the effective-mass approximation
strongly overestimate the band gap for crystallites with the
smallest sizes.2 Tight-binding calculations of the band gap for
CdSe crystallites with radii between 15 and 20 Å were found
to agree well with experiments.3 The tight-binding method was
also successfully used by Ren and Dow19 to study the electronic
structures of surface-hydrogenated Si clusters. The authors used
group theory to simplify the diagonalization of their matrices.
These and other studies5,6,10demonstrate that the tight-binding
method gives useful information about semiconductor nano-
crystals.
Lead sulfide nanocrystals are the focus of this work. Lead

sulfide, because of its small effective mass, shows a large blue-
shift in its absorption edge with a small change in cluster size.
Bulk lead sulfide has an infrared band gap (0.41 eV)10 that shifts
to the visible region for the nanoclusters. As a result, lead
sulfide nanoclusters may be useful in electroluminescent devices
such as light-emitting diodes. In addition, lead sulfide nano-
clusters are expected to have exceptional third-order nonlinear
optical properties12 and may also be useful in optical devices
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such as optical switches. The semiempirical tight-binding
method has been used here to study the electronic structure of
lead sulfide nanocrystals.
Lead sulfide has the rock salt crystal structure. Its band

structure is complicated by large relativistic splittings. To apply
the semiempirical tight-binding theory to lead sulfide nano-
crystals, Hamiltonian matrix elements first need to be obtained
by fitting the bulk band structure. This has already been done
by Lent et al.,13 who used the semiempirical tight-binding
method to fit the orthogonalized plane wave band structures of
GeTe, SnTe, PbTe, PbSe, and PbS. Their HamiltonianH, which
includes the spin-orbit interactionHso, has the form (for one
electron)

whereV is the crystal potential andHso is given by

They constructed the nearest-neighbor tight-binding Hamil-
tonian

where h.c. means Hermitian conjugate, RB are the rock salt
lattice positions of the anion,i and j are the basis orbitals for
the anion and cation, respectively,σ is the spin (up or down),
a and c refer to the anion and cation, respectively, and dB is
the position of the cation relative to the anion in the RBth cell;
dB ) (aL/2)(1,0,0). The spin-orbit part,H ′so was expressed
as

Lent et al. used nine orbitals per atom in their basis, each with
spin up and down: s, px, py, pz, dx2-y2, d3z2-r2, dxy, dyz, and dxz.
They had to include all five d orbitals because of the importance
of the d bands near the bottom of the conduction band, at the
X point of the Brillouin zone.
Lent et al.13 obtained the matrix elements of the tight-binding

Hamiltonian by fitting the eigenvalues of the matrix to the
energy bands published by Herman et al.14 They used analytical
expressions for the eigenvalues at high-symmetry points to make
an initial guess for the parameters. A least-squares fit of the
parameters to the calculated energy bands was then performed.
The parameters used for PbS are listed in Table 1 (note the
large values of the spin-orbit coupling terms). It is quite
remarkable that the apparently complicated energy bands of
these semiconductors could be reproduced by a simple nearest-
neighbor tight-binding Hamiltonian. Once the matrix elements
are obtained by fitting the bulk band structure, they can be used
for other systems: for example, these authors used their
semiempirical matrix elements for PbTe, SnTe, and GeTe to
predict the band gaps of Pb1-xSnxTe, Sn1-yGeyTe, and Ge1-zPbzTe
alloys, as functions of compositionsx, y, and z. The tight-
binding parameterization of the IV-VI energy bands was found

to be adequate for reproducing chemical trends, including the
Dimmock band reversal phenomenon in Pb1-xSnxTe.
We have used the matrix elements of Lent et al.13 to study

PbS nanocrystallites as a function of size. The following section
contains details of the method used to calculate the energy levels
and the wave functions. This is followed by a discussion of
the results of the calculations.

2. Method of Calculation

In the tight-binding method, the energy levels and wave
functions are, respectively, the eigenvalues and the eigenvectors
of the Hamiltonian matrixH. For lead sulfide, the matrix is
composed of 18× 18 block matrices, describing the interaction
between orbitals on the same atom or between orbitals on an
atom and on its nearest neighbor. For a lead sulfide cluster
containingN atoms, the Hamiltonian is a 18N × 18N matrix.
For a spherical crystallite with a diameter of 35 Å,N ) 912,
and we have to diagonalize a 16 416× 16 416 matrix. Inclusion
of spin-orbit coupling introduces complex numbers in the
matrix. Diagonalization of such large, complex, Hermitian
matrices is both time and memory intensive and is a challenging
numerical problem.
The computations were carried out on a Silicon Graphics

Indigo 2 workstation. Direct diagonalization was used for
clusters containing up to 160 atoms. All of the eigenvalues
and eigenvectors were computed for these clusters. In order to
store all the matrix elements, a 300-Mbyte partition on the hard
disk was used as swap space. Swapping to disk increased the
time required for the computations considerably.
Some of the C++ codes for calculations on CdS nanocrystals

written by Joffre (M. Joffre and R. Silbey, to be published) were
modified and used for the PbS calculations. One of the
programs builds a PbS nanocrystallite of the desired size and
shape and creates an output file containing the coordinates of
each atom, its atomic number, and the number of nearest
neighbors for each atom. Another program generates the
corresponding hamiltonian matrix and computes its eigenvalues
and eigenvectors, using the subroutine ZHEEV from the matrix
library LAPACK (which can be obtained from the netlib ftp
site). Subroutine ZHEEV calls subroutine ZHETRD, which
reduces the complex Hermitian Hamiltonian matrix to the real
symmetric tridiagonal matrixT by a unitary transformation.
Subroutine ZSTEQR then computes all the eigenvalues, and
the eigenvectors ofT using the implicit QL or QR method.
This method worked well for clusters containing up to 160

atoms but started running into time and memory problems above
that matrix size. A different method was therefore required for
larger clusters. The problem with direct diagonalization is that
it did not utilize the special features of the Hamiltonian matrix
H. Since the matrix is large but contained mostly zeroes, a
sparse matrix algorithm was required to compute the eigenvalues
and selected eigenvectors of the larger matrices.
Lanczos recursion15 was used for the larger matrices. The

Fortran source code obtained from the Lanczos library at the

TABLE 1: Tight-Binding Parameters for PbS (Lent et al.13)

parameter value, eV parameter value, eV

Es,c -6.546 Vp,s 0.186
Es,a -13.827 Vp,p 2.073
Ep,c 3.486 Vp,pπ -0.281
Ep,a -1.153 Vp,d -1.142
Ed,c 9.27 Vp,dπ 1.16
Ed,a 10.38 Vd,p -1.54
λc 1.559 Vd,pπ 0.517
λa -0.211 Vd,d -1.67
Vs,s -0.364 Vd,dδ 0.659
Vs,p 0.936

H ) p2

2m
+ V+ Hso+ p2∇2V

8m2c2
- p4

8m3c2
(1-1)

Hso) pσb‚
(∇V× pb)

4m2c2
(1-2)

H0 ) ∑
RB,σb,i

[|a,i,σ,RB〉Ei,a〈a,i,σ,RB| +

|c,i,σ,RB + dB〉Ei,c〈c,i,σ,RB + dB|] +

∑
RB,RB′,σ,i, j

[|a,i,σ,RB〉Vi, j〈c,j,σ,RB′ + dB| + h.c.]+ H′so (1-3)

H′so) ∑
RB,σ,σ′i

[|c,i,σ,RB + dB〉λcLBc‚σbc〈c,i,σ′,RB + dB|] +

∑
RB,σ,σ′j

[|a,j,σ,RB〉λaLBa‚σba〈a,j,σ′,RB|] (1-4)
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netlib ftp site was written by Cullum and Willoughby16 and uses
Lanczos tridiagonalization. Lanczos vectors are generated from
the complex starting vectorv1 using the following recursion (i
) 1, ...,m):

where

andA is the Hermitian matrix whose eigenvalues and eigen-
vectors need to be computed. Each Lanczos matrix generated
by this recursive procedure is a real symmetric tridiagonal matrix
T. Its diagonal entriesRi are the Rayleigh quotients of the
matrixA. The off-diagonal elementsâi+1 are real by construc-
tion. The Lanczos method involves application of the Ray-
leigh-Ritz procedure on the sequence of Krylov subspaces. The
eigenvalues ofT are approximations to the eigenvalues ofA.
The main advantage of the Lanczos method is that storage of
all the matrix elements is not required. One only needs a
subroutine that computes the productAx, whereA is the user-
specified matrix andx is any vector.
The Lanczos library program HLEVAL is the main program

for the eigenvalue computations. It calls subroutine BISEC to
compute eigenvalues of the tridiagonal matrixT on user-
specified intervals. BISEC uses the bisection method and makes
use of the Sturm sequencing property of real symmetric matrices.
BISEC computes theT eigenvalues with their multiplicities and
sorts the computed eigenvalues into two classes: the “good”
eigenvalues are accepted as approximations to eigenvalues of
the matrix A, and the “spurious” eigenvalues, which occur
because of the effect of finite precision arithmetic, are rejected.
The accuracy of the goodT eigenvalues as eigenvalues ofA is
then estimated by inverse iteration, using the subroutine
INVERR. Once accurate eigenvalues have been obtained, the
main program HLEVEC can be used to obtain desired eigen-
vectors.
These programs were used to obtain the eigenvalues and

eigenvectors of the HamiltonianH. For PbS clusters containing
160 atoms and clusters of smaller sizes, all the eigenvalues were

obtained and were identical to the eigenvalues obtained by direct
diagonalization using the LAPACK library subroutine ZHEEV.
For larger matrices, the starting vector was chosen to have a
large projection on states near the gap. The eigenvalues were
determined in a small region around the gap. The eigenvectors
for the HOMO and LUMO states were determined using
program HLEVEC.

3. Energy States of the Nanocrystallites

The PbS crystals considered in this work were spherical and
stoichiometric. The origin was chosen to lie between an anion
and a cation. Since all of the eigenvalues were computed for
the smaller crystallites, the densities of states were calculated.
Figure 1 compares the densities of states for spherical PbS
crystals with that for bulk PbS. The density of states for the
bulk PbS crystal was obtained by sampling the Brillouin zone
and diagonalizing the 36× 36 Hamiltonian for each chosen
wave vectork. It is evident from the figure that as the number
of atoms in a cluster increases, the gaps begin to fill in, and the
density of states smoothly approaches the bulk density of states.
For nanoclusters, the band gap is defined to be the difference

between the energies of the HOMO and LUMO states. Table
2 shows the calculated band gaps for spherical stoichiometric
PbS nanoclusters; Figure 2 compares the calculated band gap
for the spherical PbS nanoclusters with the experimental results
of Wang et al.10 The measurements were made at room
temperature, whereas the calculations for PbS are based on the
band gap of 0.286 eV measured at 4.2 K.17 The band gap for
bulk PbS increases with temperature to a value of 0.410 eV at
300 K.10 If we assume that the variation of the gap with

Figure 1. Calculated densities of states (T ) 4.2 K) for (a) 8-atom
PbS cluster, (b) 32-atom PbS cluster, (c) 56-atom PbS cluster, (d) 88-
atom PbS cluster, and (e) bulk PbS, broadened with Gaussians (σ )
0.5 eV).

âi+1vi+1 ) Av i - Rivi - âivi-1 (2-1)

Ri ≡ vi
HAv i and âi+1 ) ||Av i - Rivi - âivi-1|| (2-2)

Figure 2. Band gap for PbS clusters. Black diamonds represent the
temperature-adjusted calculations. Circles represent the experimental
data of Wang et al.9

TABLE 2: Calculated Band Gaps for Spherical PbS
Nanoclusters

no. of atoms diameter, Å
band gap (eV)

w/o temp adjustment

8 5.2 3.654
32 9.9 2.393
56 12.9 2.240
88 15.4 1.862
160 19.5 1.552
208 21.2 1.538
280 22.8 1.439
552 29.5 1.145
912 35.0 1.015

7930 J. Phys. Chem., Vol. 100, No. 19, 1996 Kane et al.

+ +

+ +



temperature is the same for the clusters as for the bulk crystal,
then this difference of 0.124 eV needs to be added to the
calculated values of the band gap. These temperature-adjusted
calculated values are shown in Figure 2. The agreement with
experimental data is quite good, given that the experimental
values are obtained from samples with a large cluster size
distribution. For instance, for a 50-Å PbS sample, the largest
deviation in size was<(50%, with the average deviation being
<(20%.
It was interesting to determine the dependence of the

calculated band gap on the crystal diameterD. Figure 3 shows
that the calculated band gap for spherical PbS nanoclusters varies
linearly with 1/D. The crystal diameter can be related to the
wave vectork using the particle in a sphere picture. The
allowedk for a spherical cluster is then 2π/D. Since the band
gap occurs away from the center, at theL-point of the Brillouin
zone for bulk PbS, the allowedk would lie at a distance of
2π/D from theL point of the Brillouin zone. Figure 3 implies
that the band gap is linear ink. This is different from the
parabolic dependence predicted by effective-mass theory. To
explain this result, the variation of the band gap with the wave
vectork for bulk PbS was examined for small deviations from
theL point. The band gap for bulk PbS was also found to be
linear ink near theL point, which explained the observed 1/D
dependence of the band gap for the clusters. Of course, very
close tok ) 0, the band gap should be proportional to 1/D2.
However, because of the small bulk band gap and the small
effective mass, the dependence becomes linear ink at finite
values ofk.
The band gap of a nanocrystal determines the frequency above

which it absorbs light. The tight-binding theory can also be
used to predict the shape of the absorption spectrum. If it is
assumed that all electronic transitions have the same transition
moments, the absorption spectrum will be equal to the joint
density of states, which is plotted for spherical clusters contain-
ing 32, 56, 88, and 160 atoms in Figure 4. The figure
demonstrates that the absorption moves into the visible range
as the number of atoms in the cluster increases. The predictions
of the theory should be tested by comparing the predicted
absorption spectra to the UV-vis spectra for monodisperse PbS
nanoclusters.

4. Analysis of the Eigenvectors

Analysis of the eigenvectors provides additional information
about the gap states. Table 3 contains information about the

HOMO and LUMO eigenstates for the spherical PbS clusters.
In the table, Ss, Sp, Sd, Pbs, Pbp, and Pbd refer to the probability
of being in sulfur s, sulfur p, sulfur d, lead s, lead p, and lead
d states, respectively. The values for the clusters are compared
to the corresponding values for the bulk PbS crystal. As the
size of the crystal increases, these values approach the bulk
values. The bulk HOMO state is mainly composed of the p
state of sulfur; the bulk LUMO state is mainly composed of
the p state of lead, in agreement with chemical intuition. The
molecule of PbS can be considered to be formed by transferring
the two 6p electrons of lead to the 3p orbitals of sulfur. In that
case, the lowest excited state would mainly consist of the 6p
state of lead.
Finally, analysis of the eigenvectors provides information

about the surface character of the HOMO and LUMO states.

Figure 3. Dependence of the calculated band gap (T ) 4.2 K) on the
diameter for spherical PbS clusters. The line represents a linear fit to
the data: Band gap) 0.311+ 24.89/D; R2 ) 0.996.

Figure 4. Calculated joint density of states (T ) 4.2 K) for spherical
PbS clusters with (a) 160 atoms, (b) 88 atoms, (c) 56 atoms, and (d)
32 atoms, broadened with Gaussians (σ ) 0.06 eV).

TABLE 3: Character of the HOMO and LUMO States of
PbS

no. of
atoms

diameter,
Å Ss Sp Sd Pbs Pbp Pbd

HOMO
8 5.15 0 0.76 0.01 0.08 0.15 0.01
32 9.85 0 0.79 0.01 0.13 0.06 0.02
56 12.94 0 0.76 0.01 0.13 0.08 0.03
88 15.43 0 0.76 0.01 0.14 0.07 0.03
208 21.20 0 0.74 0.01 0.15 0.07 0.03
280 22.80 0 0.74 0.01 0.16 0.07 0.03
552 29.54 0 0.73 0.01 0.16 0.07 0.03
912 35.00 0 0.72 0.01 0.16 0.07 0.03

bulk PbS 0 0.77 0 0.19 0 0.03

LUMO
8 5.15 0 0.17 0.04 0 0.78 0
32 9.85 0 0.16 0.09 0 0.73 0.02
56 12.94 0 0.14 0.1 0 0.74 0.01
88 15.43 0 0.13 0.1 0 0.76 0.01
208 21.20 0 0.13 0.12 0.01 0.73 0.01
280 22.80 0 0.13 0.12 0.01 0.73 0.01
552 29.54 0 0.12 0.12 0.01 0.74 0.01
912 35.00 0 0.11 0.12 0.01 0.74 0.01

bulk PbS 0 0 0.15 0 0.85 0
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Figure 5 plots the cumulative probability distribution (the
probability of an electron being in an orbital located on an atom
within the radiusR) vsR for the HOMO and LUMO states of
a spherical PbS cluster containing 88 atoms. The plot is similar
to those for the PbS clusters of other sizes and shows that
eigenfunctions corresponding to the HOMO and LUMO states
extend throughout the cluster. This conclusion is reinforced
by Figure 6, in which the fraction of surface character is plotted
vs the fraction of surface atoms for the HOMO and LUMO
states of spherical PbS nanocrystallites. The plots indicate that
the orbitals localized on surface atoms do not dominate the
HOMO and LUMO states. Since the HOMO and LUMO states
are delocalized throughout the cluster, electron and hole
recombination should be facile in PbS nanoclusters, and the
lifetime of the excited state should therefore be short. This
prediction can be tested by fluorescence lifetime measurements
for PbS nanoclusters.
Similar delocalized gap states were obtained by Nair et al.5

from their tight-binding calculations for GaAs quantum dots.

We have not (like Nair et al.5 and unlike Lippens and Lannoo2,3)
removed any dangling orbitals from the basis. As Nair et al.
point out, their result is in agreement with the calculations of
Bachelet et al.18 For a cluster with a simple cubic lattice, using
a tight-binding model with uncoupled s-p orbitals and nearest-
neighbor interaction, Bachelet et al. found that surface states
were present only when the on-site energies of the surface atoms
and interior atoms differed by an amount greater than the
nearest-neighbor off-diagonal matrix element. Therefore, in this
case as well, the absence of surface states is due to the fact that
equal on-site energies have been chosen for all chemically
similar atoms. These on-site energies could be modified for
surface atoms to test the importance of surface effects.

5. Conclusions

We have demonstrated that the tight-binding method predicts
the size dependence of the band gap for PbS nanoclusters in
reasonable agreement with experimental data. The densities of
states for the nanoclusters approach the bulk density of states
with increasing cluster size. The s, p, and d character of the
HOMO and LUMO eigenstates also approaches that for the bulk
eigenstates as the cluster size increases. In PbS, surface states
do not dominate the HOMO and LUMO eigenstates, which are
spread throughout the cluster. Delocalized HOMO and LUMO
states should result in rapid electron-hole recombination and
short excited state lifetimes in PbS nanoclusters. The small
surface character of the gap states is a related to the assumption
of equal on-site energies for surface and bulk atoms. This
assumption could be modified to incorporate the effect of
interaction of the surface atoms with other atoms.
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Figure 5. Probability distribution for the gap states of an 88-atom
spherical PbS cluster. Circles represent values for the HOMO state,
and black diamonds represent values for the LUMO state.

Figure 6. Surface character of the gap states of spherical PbS clusters.
Circles represent values for the HOMO states, and black diamonds
represent values for the LUMO states.
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