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On the transition from nonadiabatic to adiabatic rate kernel: Schwinger’s
stationary variational principle and Pade ´ approximation

Minhaeng Cho
Department of Chemistry, Korea University, Seoul 136-701, Korea

Robert J. Silbey
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 6 August 1996; accepted 8 November 1996!

For a two state system coupled to each other by a nonzero matrix elementD and to the bath
arbitrarily, the generalized master equation is derived by applying the well-known projection
operator techniques to the quantum Liouville equation. The time-dependent rate kernel is expressed
by an infinite summation of the perturbative terms in Fourier–Laplace space. The Schwinger’s
stationary variation principle in Hilbert space is extended to Liouville space and then applied to the
resummation of the rate kernel. The Cini–Fubini-type trial state vector in Liouville space is used to
calculate the variational parameters. It is found that the resulting stationary value for the rate kernel
in Fourier–Laplace space is given by the@N,N21#–Pade´ approximants, in theN-dimensional
subspace constructed by theN perturbatively expanded Liouville space vectors. The~first-order!
simplest approximation satisfying the variational principle turns out to be equal to the@1,0# Padé
approximant instead of the second-order Fermi golden rule expression. Two well-known
approximations, the noninteracting blip approximation~NIBA ! and nonadiabatic approximation, are
discussed in the context of the@1,0# Padéapproximants, based on the variational principle. A
higher-order approximation,@2,1# Padéapproximant, is also briefly discussed. ©1997 American
Institute of Physics.@S0021-9606~97!50107-3#
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I. INTRODUCTION

The role of solvent dynamics in the electron trans
reaction in condensed phases has been studied extensive
using various models for the bath.1–12For example, the spin
boson model where the two-state system is linearly coup
to the bosonic bath was shown to be one of the most us
models in studying the effect of the dynamical properties
solvent on the electron transfer reaction~or tunneling process
in condensed phases!.8,10,11,13–15Usually the electron transfe
system is assumed to consist of two electronic states,
electron donor and acceptor, and the two states are cou
by the nonzero electron exchange matrix element,D. Fur-
thermore, the energy of each state fluctuates in time by
interactions between the two electronic states and the
degrees of freedom. Since the two energy levels are assu
to be coupled to a common bath, the fluctuation of the
ergy difference, instead of the fluctuation of each state
fully responsible for the dynamic effect of the bath on t
reaction rate. In this reaction, there are two important tim
cales determining the reaction rate which are the invers
the electron exchange matrix element and the correla
time of the bath fluctuation. If the coupling matrix elementD
is very small, the nonadiabatic electron transfer rate, tha
the Fermi golden rule expression, is quantitatively acce
able. However, the above statement is not entirely correc
general, because the timescale of the bath is another im
tant factor determining the adiabaticity of the reaction ra4

If the time scale of the bath is sufficiently fast, the wa
packet created on the curve crossing~or transition state! re-
gion, where the Franck–Condon factor becomes a maxim
can be quickly relaxed into an equilibrium state on the p
2654 J. Chem. Phys. 106 (7), 15 February 1997 0021-9606/
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tential energy surface of the product state. This means
the survival probability of the created wave packet on
transition state region is very small.6,7,12 In this case the
second-order Fermi golden rule can indeed be useful in
culating the reaction rate, and the rate is proportional to
square of the electron exchange matrix element. On the o
hand, if the bath correlation time is very slow, the reacti
rate is now determined by the solvation process. Con
quently, the rate does not depend on the electron excha
matrix element. Perhaps Zusman4 was the first one who ob
tained a theoretical expression connecting the nonadiab
and adiabatic reaction rate constants. Later, numerous w
ers generalized Zusman’s theory, although the essentia
pect of those results are virtually identical. The overall ele
tron transfer rate is given by the standard formula3

1/k51/ka11/kna , ~1!

whereka andkna are the adiabatic and nonadiabatic react
rates, respectively. The nonadiabatic reaction rate is pro
tional to the square of the electron exchange matrix elem
whereas the adiabatic rate is not and instead depends o
relaxation rate~survival time! as 1/t. One can understand thi
crossover behavior as following. Suppose that the initial s
is in thermal equilibrium with the electron donor state. T
fluctuation of the bath degrees of freedom can create
nuclear wave packet at the curve crossing region, where
potential energy surfaces are constructed by the solv
nuclear degrees of freedom. The second-order action of
coupling potential can induce the transition from the donor
the acceptor electronic states. If the solvation dynamics
the acceptor state is sufficiently fast, that is, the survival ti
97/106(7)/2654/8/$10.00 © 1997 American Institute of Physics
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2655M. Cho and R. J. Silbey: The transition from nonadiabatic to adiabatic rate kernel
of the reactive state around the transition state region is v
short, the rate is mainly determined by the second-order
cess, that is, the nonadiabatic reaction rate.7 On the other
hand, if the solvation is very slow~long survival time!, the
recrossing of the wave packet back to the donor state, w
this recrossing process is associated with the higher-o
terms with respect toD, becomes possible so that the ra
determining process is now the solvation dynamics. Con
quently, the adiabatic reaction rate issolvent controlled.
Sparpaglione and Mukamel5 presented a formal derivation o
the generalized rate equation by using the projection oper
techniques. Expanding the generalized rate kernel pertu
tively and invoking static approximation, they were able
exactly perform the resummation of the perturbatively e
panded rate kernel. This is identical to the resummation
the expansion of the rate kernel by considering the first
terms, which are the second-order and the fourth-order
kernels, and using the@1,0#–Pade´ approximant,5

k5k~2!1k~4!1•••>
k~2!

12k~4!/k~2! . ~2!

When the zero-frequency component is considered to be
rate constantand the characteristic solvent timescale is pro
erly considered, Zusman’s result can be obtained from t
result.

The second resummation method is to utilize t
Landau–Zener theory.16–19 In this case the rate is express
by the exponential functional form. Since it is not our goal
compare the two procedures, we shall not discuss the
tailed aspect of the Landau–Zener-type resummation sch
studied by Frauenfelder and Wolynes.20

In this paper we shall reconsider the first scheme,
resummation of the perturbatively expanded rate kernel
using Schwinger’s stationary variational principle in Lio
ville space. Defining the perturbation operatorsymmetrically
and using the Cini–Fubini-type trial function in Liouvill
space, the stationary rate kernel, which is an approxima
rate kernel, is determined variationally. In Sec. II derivatio
of the generalized master equation with properly defined
kernels are summarized by closely following Sparpaglio
and Mukamel. Schwinger’s stationary variation principle
applied to the calculation of the electron transfer rate ker
in Sec. III. Discussions on the noninteracting blip appro
mation and nonadiabatic approximations are given in
context of the Pade´ approximants in Sec. IV. The results a
summarized in Sec. V.

II. GENERALIZED RATE EQUATION AND
FREQUENCY-DEPENDENT RATE KERNEL

We consider a two-state electron transfer system
solved in a condensed medium. Instead of considering a
cific bath model, by using the Liouville space projection o
erator used by Mukamel and co-workers,5,12 we summarize
the generalized rate equation where the rate is determine
the time-dependent rate kernels.

The electron donor and acceptor states are denote
ud& and ua&, respectively. The two states are coupled via
J. Chem. Phys., Vol. 106, N
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nonadiabatic couplingD, the electron exchange matrix ele
ment. For the sake of simplicity, we assume that the elec
exchange matrix element is not affected by the dynam
aspect of the bath, that is to say,D does not depend on th
bath degrees of freedom. This is similar in spirit to the cla
sical Condon approximation in the optical transition proce
where the electric dipole matrix element does not depend
the nuclear degrees of freedom. The solvent Hamiltonia
when the electron transfer systems are in statesud& and ua&,
are denoted byhd(Q) andha(Q), respectively. HereQ rep-
resents the nuclear degrees of freedom of the bath tha
coupled to the electron transfer process. Note that the
tramolecular nuclear degrees of freedom are not explic
included in this paper. However, it is a straightforward pr
cedure to include the intramolecular vibrational mod
Throughout this paper we will ignore the effect of the so
vent electronic degrees of freedom, since they are extrem
fast in comparison to the timescale of the nuclear degree
freedom so that they quickly adjust themselves to the cha
distribution of the electron transfer system. Perhaps, the
ergetics of the two-state system could be changed when
polarizability of the solvent molecules is included in the c
culation.

The total Hamiltonian for the electron transfer system
then

H5H01H1 , ~3!

where the zeroth-order Hamiltonian is

H05ud&$Ed1hd~Q!%^du1ua&$Ea1ha~Q!%^au ~4!

and the interaction Hamiltonian is

H15ud&D^au1ua&D* ^du. ~5!

Ed (Ea) is the energy of the isolated donor~acceptor! state.
D is the electron exchange matrix element. Throughout
paper,\ will be assumed to be a unity. By specifying th
solvent Hamiltonians, one can study the dynamical effec
the solvent on the electron transfer reaction. We instead c
sider an arbitrary bath in this paper.

Before we present the formal derivation of the rate eq
tion, it is useful to discuss the initial condition of the electro
transfer reaction. Usually the initial state is assumed to b
thermal equilibrium state on the donor state. However, thi
not likely the case if the initial state is created by an ultraf
laser pulse, a photoinduced electron transfer. A small por
of the electronic ground state population is photoexcited
create the initial state on the electron donor~electronic ex-
cited state! surface, which has to be a nonequilibrium sta
on the potential energy surface of the donor state. Then
nonequilibrium state relaxes to the quasi-equilibrium state
the donor surface as time progresses. During the relaxa
process, the continuous leakage of the donor populatio
the acceptor state progresses. Therefore, a complete des
tion of the photoinduced electron transfer should include t
nonequilibrium nature of the initial preparation.21 This was
presented by the authors in Ref. 22. Although it is rath
straightforward to include the nonequilibrium effect di
cussed above in this paper, for the sake of simplicity we s
o. 7, 15 February 1997
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2656 M. Cho and R. J. Silbey: The transition from nonadiabatic to adiabatic rate kernel
focus on the conventional case that the initial state is
thermal equilibrium state on the electron donor potential s
face.

The rate equations can be obtained by solving the Li
ville equation

dr~ t !

dt
52 iLr~ t !, ~6!

where the Liouville operators are defined as commutator

LA5~L01LI !A[@H01HI ,A#5@H0 ,A#1@HI ,A#. ~7!

For the sake of simplicity we shall denote the Liouville spa
vector by u•••&&, and the scalar product of two Hilbert spa
operators is denoted as

^^AuB&&vTr@A1B#. ~8!

Here the trace is over the complete Hilbert space includ
the system and the solvent. By following Sparpaglione a
Mukamel5 closely, the Liouville space projection operatorP̂
is defined as

P̂[uD̂rd&&^^D̂u1uÂra&&^^Âu, ~9!

where the donor and acceptor operators in the Hilbert sp
are denoted byD̂[ud&^du and Â[ua&^au, respectively, and
the two density operators associated with the donor and
acceptor,rd andra , are, respectively

rd5
exp~2Hd /kBT!

Tr@exp~2Hd /kBT!#
,

~10!

ra5
exp~2Ha /kBT!

Tr@exp~2Ha /kBT!#
.

The complimentary operatorQ̂ is

Q̂512 P̂. ~11!

By using the standard projection operator techniques,
reduced equation of motion for the populations can be
tained,

dpd
dt

52E
0

t

dt@kda~ t2t!pd~r !2kad~ t2t!pa~t!#,

~12!
dpa
dt

5E
0

t

dt@kda~ t2t!pd~t!2kad~ t2t!pa~r !#,

where the populations of the donor and the acceptor are

pd~ t !5Tr@D̂r~ t !#
~13!

pa~ t !5Tr@Âr~ t !#.

The time-dependent rate kernelkda(t) [kad(t)] describes the
transition rate from donor~acceptor! to acceptor~donor! and
is given as

kda~ t ![^^D̂uL exp~2 iQ̂Lt !Q̂LuD̂rd&&,

kad~ t ![^^ÂuL exp~2 iQ̂Lt !Q̂LuÂra&&. ~14!
J. Chem. Phys., Vol. 106, N
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Equation~12! with the time-dependent rate kernels, Eq.~14!,
is formally exact, since the full Liouville operatorL instead
of L0 was used in Eq.~14!.

It turns out that the Fourier–Laplace transform of t
generalized rate equation is useful in the following deriv
tion of the resummed rate kernel. By denoting the Fourie
Laplace transform of an arbitrary time-dependent funct
f (t) asF~v!

F~v!5E
0

`

dt exp~ ivt ! f ~ t ! ~15!

with its inverse transform

f ~ t !5~2p!21E
2`

`

dv exp~2 ivt !F~v!, ~16!

the generalized rate equations, Eqs.~12!, can be written as

ivFPd~v!

Pa~v!G1Fpd~ t50!

pa~ t50!G5F Kda~v! 2Kad~v!

2Kda~v! Kad~v!
G

3FPd~v!

Pa~v!G , ~17!

where P~v! and K~v! correspond to the Fourier–Laplac
transforms ofp(t) and k(t), respectively. Likewise we de
fine the Liouville space advanced Green functions as

G~v!52 i E
0

`

dt exp~ ivt !exp~2 iLt !5
1

v2L
~18!

and

G0~v!52 i E
0

`

dt exp~ ivt !exp~2 iL 0t !5
1

v2L0
. ~19!

Thus, the Fourier–Laplace transform of the rate kernel,
example,Kda~v!, is given by

Kda~v!5 i ^^D̂uLI
1

v2Q̂L
Q̂LI uD̂rd&&. ~20!

From now on we shall focus onKda~v! only, since the cal-
culation ofKad~v! is precisely identical to that ofKda~v!.
Using the formal relation

Q̂L5L01Q̂L1 ~21!

and the identity23

1

v2Q̂L
5

1

v2Q̂L0
S I1 Q̂LI

v2Q̂L
D

5
1

v2Q̂L0
(
n50

` F Q̂LI 1

v2Q̂L0
G n, ~22!

one can obtain the formally exact perturbative expansion
the rate kernel
o. 7, 15 February 1997
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2657M. Cho and R. J. Silbey: The transition from nonadiabatic to adiabatic rate kernel
Kda~v!5 (
n51

`

Kda
~2n!~v!, ~23!

where the 2nth-order contribution to the rate kernel i
Fourier–Laplace space is

Kda
~2n!~v!5 i ^^D̂u@LIG0~v!LIG0~v!Q̂#~n21!

3LIG0~v!LI uD̂rd&&. ~24!

Note that the terms including the odd number of actions
theLI operator vanish since the diagonal matrix elements
taken, and the contribution,Kda

(2n)~v!, is order 2n in the
nonadiabatic couplingD. For example, the usual secon
order Fermi golden rule expression is the first term in E
~23!, that is,

Kda
~2!~v!5 i ^^D̂uLIG0~v!LI uD̂rd&&, ~25!

which is called thenonadiabatic rate kernelthroughout this
paper.

The calculation of the time-dependent population evo
tion is now reduced to that of the rate kernel in Fourie
Laplace space. There are numerous cases where the se
order expression for the rate kernel is quantitatively accu
enough to predict the rate. However, as briefly discusse
Sec. I, there are two important cases where the nonadia
rate does not correctly represent the reaction rate. The
obvious case is when the electron exchange matrix elem
is sufficiently large so that one cannot ignore the high
order terms in the perturbative expansion of the rate kerne
Eq. ~23!. The second is when the bath correlation time
very slow. In this case the solvation of the wave packet c
ated in the product state, e.g.,LIG0(v)LI uD̂rd&&, becomes
the predominant factor in the electron transfer process,
consequently the reaction rate does not depend on the
tron exchange matrix element. It is our goal in this paper
present a systematic method to calculate the generalized
kernel given in Eq.~23! by using Schwinger’s stationar
variational principle.24

III. VARIATIONAL PRINCIPLE AND PADE
APPROXIMATION

The generalized rate kernel was expanded in terms of
even-order perturbation terms. We now discuss the res
mation of Eq. ~23! based on the stationary variation
principle.24 From now on, we shall only focus on the ra
kernelKda~v! and omit the subscript ‘‘da.’’

In order to rewrite the perturbational expansion of t
rate kernel, it is useful to define the zeroth-order st
uf0~v!&& and the new perturbation operatorv~v! in Liouville
space as

uf0~v!&&[G0
1/2~v!LI uD̂rd

1/2&&, ~26!

v~v![
G0
1/2~v!LIG0~v!Q̂LIG0

1/2~v!

uDu2
. ~27!

The rate kernel in Eq.~23! can be rewritten in terms o
uf0~v!&& andv~v! as
J. Chem. Phys., Vol. 106, N
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K~v!5 i ^^f0ux~v!&&, ~28!

where

ux~v!&&[ (
n50

`

@ uDu2v~v!#nuf0~v!&&

5 (
n50

`

uDu2nufn~v!&&. ~29!

Here thenth-order state vector is naturally defined as abo
that is,ufn(v)&&[[v(v)] nuf0(v)&&. The physical meaning
of Eq. ~29! is that the Liouville state vectorux~v!&& is given
by a linear combination ofufn~v!&&’s, where the expansion
coefficient of the nth term is given byuDu2n. Therefore, a set
of $ufn~v!&&% is a complete basis set in this case, and
Liouville space is completely spanned by this basis set.

From the definition ofux~v!&&, one can find the relation

ux~v!&&5uf0~v!&&1uDu2v~v!ux~v!&& ~30!

which corresponds to the Lippman–Schwinger-type equa
extended toLiouville space. We next apply Schwinger’s
variational principle to find the variational functionalKS~v!,

KS~v!5 i ^^f0~v!uxT~v!&&1 i ^^xT~v!uf0~v!&&

2 i ^^xT~v!u12D2v~v!uxT~v!&&, ~31!

which is assumed to bestationaryfor small variations of the
trial stateuxT~v!&& about ux~v!&&, which means thatthe sta-
tionary value of KS(v) is K(v). This is proved in the Appen-
dix. There exist several attempts using the variational
proaches to calculate the rate constant. Most of them con
the energy of the transition state or the position of the div
ing surface and utilize the minimum-energy variational pr
ciple. Unlike those approaches, here the rate kernel itse
the objective of the variational procedure, instead of the
ergy. Therefore, we found this approach is perhaps a m
direct way to calculate the rate kernel in general.

We now introduce a trial state vector,uxT~v!&&, as

uxT~v!&&5 (
n50

N21

cnufn~v!&&, ~32!

wherecn are the variational parameters. Note that the tr
state is expressed as a linear combination ofufn~v!&& ~for
n50 toN21!, that is, the trial stateuxT~v!&& is expanded in a
subspace constructed byufn~v!&& ~for n50 to N21!. This
type of trial state vector is known as the Cini–Fubini tri
function,25 where the trial function is given by a linear com
bination of a finite set ofufn~v!&&’s instead of infinite basis
functions. One can prove that the stationary variational fu
tional KS~v! becomes identical to the true rate kernelK~v!
when the trial vectoruxT~v!&& equals the correct oneux~v!&&
by inserting Eq.~30! into ~31! and using the expanded form
of ux~v!&& in Eq. ~29!.

For the sake of notational simplicity, we now define t
inner product in Liouville space constructed byufn~v!&&’s as

bi~v!5^^f0~v!uf i~v!&&. ~33!
o. 7, 15 February 1997
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2658 M. Cho and R. J. Silbey: The transition from nonadiabatic to adiabatic rate kernel
It should be noted that the second-order Fermi golden
formula, Eq. ~25!, is identical to ib0~v!, which is propor-
tional to uDu2, and i uDu2nbn(v) represents the~2n12!-order
~with respect to the electron exchange matrix elementD!
contributions to the rate kernel,K (2n12)~v!. Inserting Eq.
~32! into the variational functional, Eq.~31!, gives

2 iKS~N,v!52 (
i , j50

N21

cicj$bi1 j2uDu2bi1 j11%12(
i50

N21

cibi

52cTMc12cTb, ~34!

wherec and b are the column vectors whose elements
$ci% and$bi%, respectively, and

@M # i j5bi1 j2uDu2bi1 j11 . ~35!

Note that the stationary variational functional,KS(N,v), is
determined by theN perturbative expansion terms. In ord
to determine the variational parameters,$ci%, we solve the
linear equation,
d

o
n
th
r-

as

m
i–

J. Chem. Phys., Vol. 106, N
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]KS~N,v!

]ci
50 for all i

and find that

c5M21b. ~36!

Finally, the stationary valueKS(N,v) is found to be

KS~N,v!5 ibTM21b. ~37!

The functional form of Eq.~37! was found to be equal to th
@N,N21#–Pade´ approximants and the Nuttall’s identity ca
be used to obtain a more compact formula.26 The general
[N,M ] –Padéapproximant can be written by the ratio of th
two determinants as
@N,M #5

U TM2N11 TM2N12 ••• TM11

A A A

TM TM11 ••• TM1N

( j5N
M Tj2Nl j ( j5N21

M Tj2N11l
j ••• ( j50

M Tjl
j

U
UTM2N11 TM2N12 ••• TM11

A A A

TM TM11 ••• TM1N

lN lN21 ••• 1

U
,

fre-

n-

er-

er-
on-
y

Eq.

ic
where T-matrix elements are equal to those ofb, and l
equals touDu2 in our case. HereTj50 if j,0. Equations~37!
with ~33! and ~35! are the main results in this section an
will be discussed for some limiting cases.

IV. RESULTS AND DISCUSSION

It was found that the stationary valueKS(N,v) is ap-
proximately equal to the generalized rate kernel based
Schwinger’s stationary variational principle. The variatio
ally determined rate kernel was shown to be equal to
@N,N21#–Pade´ approximants, which is completely dete
mined byN matrix elementsbn~v! ~for n50,1,..,N21! in
the subspace constructed by theN perturbatively expanded
states.

A. One-dimensional case ( N51): [1,0]–Padé
approximant

First consider the simplest case of all, that is the c
whenN51. The trial function is given by

uxT~v!&&5c0uf0~v!&&,

wherec0 is the only variational parameter determined fro
the stationary variational principle. In this case, the Cin
n
-
e

e

Fubini subspace is constructed byuf0~v!&&. Then one finds
that the variationally determined trial function becomes

uxT~v!&&5
b0~v!

b0~v!2uDu2b1~v!
uf0~v!&&. ~38!

Note that the variational parameter thus determined is
quency dependent. Here, from the definitions,ib0~v! and
i uDu2b1(v) are identical to the second- and fourth-order co
tributions to the rate kernel, which areK ~2!~v! andK ~4!~v!,
respectively. Therefore, the stationary value for the rate k
nel is

KS~N51,v!5
@K ~2!~v!#2

K ~2!~v!2K ~4!~v!
. ~39!

Now, if we take the zero-frequency components of the p
turbative rate kernels that are the corresponding rate c
stants, we recover Eq.~2! from Sec. I. Since the frequenc
dependence of the rate kernels in Eq.~39! is fully retained,
Eq. ~39! should be considered as an improved version of
~2!.

Equation~39! can be rewritten in terms of a geometr
series,
o. 7, 15 February 1997
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KS~N51,v!5K ~2!~v!2uK ~4!~v!u1
@K ~4!~v!#2

K ~2!~v!
1...,

~40!

where we emphasized that the magnitude ofK ~4!~v! is nega-
tive once it is evaluated with Eq.~24!.5 Thus, the approxi-
mated rate kernel in Eq.~39! is exact up to the fourth-orde
contribution to the rate kernel, but deviated from the ex
result after the sixth-order terms.

1. Frequency-dependent transmission coefficient

One can reinterprete the result, Eq.~39!, as

KS~N51,v!5x~1!~v!Kna~v!, ~41!

whereKna
(2)~v! is the nonadiabatic rate kernel equal to t

second-order Fermi golden rule expression, Eq.~25!, and
x~1!~v! denotes the frequency-dependent transmission co
cient calculated in the one-dimensional subspace and is
fined as

x~1!~v![
1

11Kna~v!t~v!
~42!

with

t~v!5uK ~4!~v!u/@Kna~v!#2. ~43!

Here t~v! is the frequency-dependent survival time and
related,not identical, to the bath correlation time. Note tha
the transmission coefficientx~1!~v!,1 for all frequencies. It
is also possible to interpret that the factorx~1!~v! describes
the renormalization effect on the coupling matrix elemenD
induced by the higher-order rate contribution and the b
fluctuation. The productKna~v!t~v! in Eq. ~41! is often in-
terpreted as the frequency-dependentadiabaticity parameter
since, ifKna~v!t~v!!1 for all frequencies, the rate is com
pletely determined by the second-order rate process~nona-
diabatic limit!, whereas ifKna~v!t~v!@1 for all frequencies
the reaction is governed by the~survival! time t~v! and does
not depend on the electron exchange matrix element, tha

KS~N51,v!5t21~v!.

This is the case of the adiabatic limit and is realized when
solvent bath correlation time is very slow so that the pro
ability of the recrossing, more precisely multiple actions
the transition operatorv~v!, become large.

2. Time-dependent transmission coefficient and rate
kernel

As can be seen in Eq.~41!, the generalized frequency
dependent rate kernel is given by a product of the frequen
dependent transmission coefficient and the second-order
kernel. Thus, the time-dependent rate kernel is given b
convolution, such as

kda
S ~ t !5E

2`

`

dtk~1!~ t2t!kna~t!, ~44!

wherek~1!(t) andkna(t) are the inverse Fourier transforms
k~v! andKna~v!, respectively. The rate kernel thus obtain
J. Chem. Phys., Vol. 106, N
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is determined by that of the cross correlation between
time-dependent transmission coefficient and second-o
rate kernel. If the timescale of the second-order rate kerne
fast compared to that of the transmission coefficient, i
kna(t)'knad(t), the time dependence of the rate kernel
determined by that of the transmission coefficient so t
kS(t)'k (1)(t)kna . On the other hand, if the timescale of th
transmission coefficient is much faster than that of
second-order rate kernel, i.e.,k (1)(t2r )'k0

(1)d(t2t), the
rate kernel becomeskS(t)5k0

(1)kna(t).

3. Nonadiabatic limit, k (1)(v)'1

Next we consider the nonadiabatic limit more in deta
This limit is the case when the transmission coefficie
k~1!~v! is approximately equal to a unity. The nonadiaba
condition,Kna~v!t~v!!1, can be met when the electron e
change matrix element is very small regardless of the ch
acteristic solvent timescale. Usually the nonadiabatic lim
has been assumed by such a limit. However, there is ano
possibility satisfying this inequality, that is, when the su
vival timescale,t~v!, is much faster than the inverse of th
second-order rate kernel. This limit is in spirit identical to t
celebrated noninteracting blip approximation, where there
no correlation between the two consecutive off-diagonal d
sity matrix evolutions~blips! separated by the diagonal de
sity matrix evolutions~sojourns!. This approximation is ap-
plicable when the bath correlation time is fast, that is to s
the memory of the bath fluctuation does not last long time27

These two cases,~i! small D and ~ii ! short bath memory
~short bath correlation time!, are apparently independent o
each other because the former depends on the intrinsic p
erties of the electron donor and acceptor states whereas
latter is determined by the dynamical aspect of the ba
However, if either the~i! or ~ii ! condition is satisfied, the rate
kernel is determined by the second-order expression,Kna~v!.
Finally, we find it interesting to note that,based on Schwing
er’s stationary variational principle, the first-order approxi
mation to the rate kernel equals Eq. (39), not Kna~v!.

B. Two-dimensional case ( N52): [2,1]–Padé
approximant

We now consider the next higher-order approximatio
that is the@2,1#–Pade´ approximant for the stationary rat
kernel. In this case the trial function is given by a line
combination of two basis vectors,uf0~v!&& and uf1~v!&&, as

uxT~v!&&5c0~v!uf0~v!&&1c1~v!uf1~v!&&,

wherec0~v! andc1~v! are the variational parameters. Usin
the stationary variational principle and from Eq.~36!, they
are

c0~v!5
12uDu2x~v!

12uDu2x~v!1uDu4y~v!
,

c1~v!5
uDu2

12uDu2x~v!1uDu4y~v!
,

where
o. 7, 15 February 1997
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x~v![
b0b32b1b2
b0b22b1

2 ,

y~v![
b1b32b2

2

b0b22b1
2 .

Then the approximated rate kernel in the two-dimensio
subspace constructed byuf0~v!&& and uf1~v!&& is

KS~N52,v!5 i
b02uDu2z~v!

12uDu2x~v!1uDu4y~v!
, ~45!

where

z~v![
b0
2b322b0b1b21b1

3

b0b22b1
2 .

Equation~45! can be recast in the form, like Eq.~41!,

KS~N52,v!5k~2!~v!Kna~v!,

where the transmission coefficient in this case is

k~2!~v!5
12uDu2z~v!/b0~v!

12uDu2x~v!1uDu4y~v!
.

Unfortunately, in this two-dimensional case, there does
appear any simple physical picture provided in the o
dimensional case above. Expanding Eq.~45! in terms of a
geometric series, we find

Kda
S ~N52,v!5Kda

~2!~v!1Kda
~4!~v!1Kda

~6!~v!1Kda
~8!~v!

1O~ uDu10!.

Note that the approximated expression for the rate ke
given in Eq.~45! is exact up to the eighth-order~with respect
to D! contribution to the rate kernel. Therefore, one can
pect that Eq.~45! would provide more accurate result
comparison to the@1,0# Padéapproximant. However, one ha
to pay the price that the higher-order perturbative term
often they are much involved in comparison to the seco
or fourth-order contributions to the rate kernel—should
calculated. Therefore, it is desirable to use simpler trial fu
tions instead ofufn~v!&&’s in Eq. ~31!.

V. SUMMARY

In this paper we considered the generalized rate ke
describing the transition process between two electro
states in the condensed phases. Using the well-known
jection operator method, the generalized rate kernel was
panded in terms of the perturbative contributions in Fourie
Laplace space. The resummation of the rate kernel
carried out by using Schwinger’s stationary variational pr
ciple in Liouville space. The Cini–Fubini-type trial functio
was used to variationally determine the generalized rate
nel. For the one-dimensional subspace constructed b
single vector defined asuf0~v!&& in Eq. ~26!, we recover the
standard formula for the rate kernel, Eq.~39!, where the
corresponding survival timet~v! is frequency dependent. I
is interesting to note that the second-order golden rule
pression is not the first-order approximation satisfying
J. Chem. Phys., Vol. 106, N
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variational principle, so that one has to be careful when
golden rule is used to describe the transition rate for
reactions in condensed phases. The nonadiabatic limit
found to be realized either when the coupling matrix elem
is very small or when the frequency-dependent survival ti
t~v! defined in Eq.~43! is very short. The latter case i
identical in spirit to the noninteracting blip approximatio
although this was invoked in the theoretical studies on
tunneling process in the quantum dissipative media by us
the path-integral method. If the Cini–Fubini-type trial fun
tion constructed in the two-dimensional subspace is used
variationally determined rate kernel is given by Eq.~45!,
where the result is exact up to the eighth-order contribut
to the rate kernel. Thus, we found that Schwinger’s stati
ary variation principle can be used to systematically cal
late the rate kernel.

It will be interesting to numerically test the result pr
sented in this paper by using a simple bath model such
spin-boson Hamiltonian or even simpler one. For instan
the frequency-dependent expression for the rate ke
Kna~N51, v! in the one-dimensional subspace could sh
the nonexponential decaying pattern if the frequen
dependent survival time is significantly deviated from a co
stant, that is, its time-dependent analog cannot be appr
mated as a delta function. In other words, one may be abl
find the case satisfying neither conditionKna~v!t~v!!1 nor
Kna~v!t~v!@1 for all frequenciesv. Perhaps the activation
less process is likely to be the case because the times
separation between the reaction rate and the characte
solvent time is not always acceptable and therefore
frequency-dependent rate kernel instead of the ze
frequency rate constant has to be taken into account. N
the higher-order approximation to the rate kernel based
the variational principle was found to be equal to the@2,1#–
Padéapproximant. By calculating this two-dimensional r
sult, the@2,1#–Pade´ approximant, for a given bath, one cou
show the validity of the one-dimensional result, the@1,0#–
Padéapproximant to the rate kernel. Finally, it will be inte
esting to find some simple trial function that can be appl
to the variational principle discussed in this paper. These
all under investigation and will be presented in the future
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APPENDIX

In this Appendix we prove that Schwinger’s variation
functionalKda

S ~v! in Eq. ~31! is stationary for small varia-
tions of uxT~v!&& about ux~v!&&. First let’s replace the trial
stateuxT~v!&& with ux~v!&&1udx~v!&& in the variational func-
tional and collect terms which are first-order with respect
udx~v!&&,
o. 7, 15 February 1997
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dKda
S ~v!5 i ^^f0~v!udx~v!&&1 i ^^dx~v!uf0~v!&&

2 i ^^dx~v!u12uDu2v~v!ux~v!&&2 i ^^x~v!u1

2uDu2v~v!udx~v!&&

5 i $^^f0~v!u2^^x~v!u1^^x~v!uv~v!uDu2%

3udx~v!&&1 i ^^dx~v!u$uf0~v!&&2ux~v!&&

1uDu2v~v!ux~v!&&%. ~A1!

By inserting Eq.~28! into the above equation~A1!, we find
that the above equation is indeed zero. Consequently,
stationary value ofKda

S ~v! is Kda~v!.
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