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On the transition from nonadiabatic to adiabatic rate kernel: Schwinger’s
stationary variational principle and Pade ~ approximation
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For a two state system coupled to each other by a nonzero matrix elémant to the bath
arbitrarily, the generalized master equation is derived by applying the well-known projection
operator techniques to the quantum Liouville equation. The time-dependent rate kernel is expressed
by an infinite summation of the perturbative terms in Fourier—Laplace space. The Schwinger’'s
stationary variation principle in Hilbert space is extended to Liouville space and then applied to the
resummation of the rate kernel. The Cini—Fubini-type trial state vector in Liouville space is used to
calculate the variational parameters. It is found that the resulting stationary value for the rate kernel
in Fourier—Laplace space is given by thd,N—1]-Padeapproximants, in theN-dimensional
subspace constructed by theperturbatively expanded Liouville space vectors. Thiest-orde)
simplest approximation satisfying the variational principle turns out to be equal td lePade
approximant instead of the second-order Fermi golden rule expression. Two well-known
approximations, the noninteracting blip approximatibiiBA ) and nonadiabatic approximation, are
discussed in the context of tH¢,0] Padeapproximants, based on the variational principle. A
higher-order approximation2,1] Padeapproximant, is also briefly discussed. 97 American
Institute of Physicg.S0021-960807)50107-3

I. INTRODUCTION tential energy surface of the product state. This means that
the survival probability of the created wave packet on the
t(r)ansition state region is very smé&if:'? In this case the
S¥cond-order Fermi golden rule can indeed be useful in cal-
8ulating the reaction rate, and the rate is proportional to the
Square of the electron exchange matrix element. On the other
;1!1and, if the bath correlation time is very slow, the reaction
rate is now determined by the solvation process. Conse-

solvent on the electron transfer reacti@n tunneling process
in condensed phasgs®1113-19syally the electron transfer quently, the rate does not depend on the electron exchange
matrix element. Perhaps Zusnfamas the first one who ob-

system is assumed to consist of two electronic states, i.e

tained a theoretical expression connecting the nonadiabatic
electron donor and acceptor, and the two states are couplée . . .
) and adiabatic reaction rate constants. Later, numerous work-
by the nonzero electron exchange matrix eleméntfur-

o ers generalized Zusman'’s theory, although the essential as-
thermore, the energy of each state fluctuates in time by thé : ; .
ect of those results are virtually identical. The overall elec-

interactions between the two electronic states and the ba S Al

degrees of freedom. Since the two energy levels are assumed" transfer rate is given by the standard formula

to be coupled to a common bath, the fluctuation of the en- -

ergy difference, instead of the fluctuation of each state, is =1t Lena, W

fully responsible for the dynamic effect of the bath on thewherek, andk,,, are the adiabatic and nonadiabatic reaction
reaction rate. In this reaction, there are two important timesrates, respectively. The nonadiabatic reaction rate is propor-
cales determining the reaction rate which are the inverse dfonal to the square of the electron exchange matrix element,
the electron exchange matrix element and the correlatiowhereas the adiabatic rate is not and instead depends on the
time of the bath fluctuation. If the coupling matrix elemént relaxation ratésurvival timg as 1f. One can understand this

is very small, the nonadiabatic electron transfer rate, that issrossover behavior as following. Suppose that the initial state
the Fermi golden rule expression, is quantitatively acceptis in thermal equilibrium with the electron donor state. The
able. However, the above statement is not entirely correct, ifluctuation of the bath degrees of freedom can create the
general, because the timescale of the bath is another imponuclear wave packet at the curve crossing region, where the
tant factor determining the adiabaticity of the reaction fate. potential energy surfaces are constructed by the solvent
If the time scale of the bath is sufficiently fast, the wavenuclear degrees of freedom. The second-order action of the
packet created on the curve crossiiog transition statere-  coupling potential can induce the transition from the donor to
gion, where the Franck—Condon factor becomes a maximunthe acceptor electronic states. If the solvation dynamics on
can be quickly relaxed into an equilibrium state on the po-the acceptor state is sufficiently fast, that is, the survival time

The role of solvent dynamics in the electron transfer
reaction in condensed phases has been studied extensively
using various models for the bath? For example, the spin-
boson model where the two-state system is linearly couple
to the bosonic bath was shown to be one of the most usef
models in studying the effect of the dynamical properties o
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of the reactive state around the transition state region is vergonadiabatic couplind\, the electron exchange matrix ele-
short, the rate is mainly determined by the second-order pranent. For the sake of simplicity, we assume that the electron
cess, that is, the nonadiabatic reaction fa@n the other exchange matrix element is not affected by the dynamical
hand, if the solvation is very sloWlong survival timg, the  aspect of the bath, that is to say,does not depend on the
recrossing of the wave packet back to the donor state, wheilgath degrees of freedom. This is similar in spirit to the clas-
this recrossing process is associated with the higher-ordeical Condon approximation in the optical transition process,
terms with respect t@d, becomes possible so that the ratewhere the electric dipole matrix element does not depend on
determining process is now the solvation dynamics. Consehe nuclear degrees of freedom. The solvent Hamiltonians,
quently, the adiabatic reaction rate $®lvent controlled when the electron transfer systems are in stadesand|a),
Sparpaglione and Mukamgresented a formal derivation of are denoted bjr4(Q) andh,(Q), respectively. Her® rep-

the generalized rate equation by using the projection operatoesents the nuclear degrees of freedom of the bath that are
techniques. Expanding the generalized rate kernel perturb@oupled to the electron transfer process. Note that the in-
tively and invoking static approximation, they were able totramolecular nuclear degrees of freedom are not explicitly
exactly perform the resummation of the perturbatively ex-included in this paper. However, it is a straightforward pro-
panded rate kernel. This is identical to the resummation o€edure to include the intramolecular vibrational modes.
the expansion of the rate kernel by considering the first twalrhroughout this paper we will ignore the effect of the sol-
terms, which are the second-order and the fourth-order rateent electronic degrees of freedom, since they are extremely

kernels, and using thigl,0]-Padeapproximant, fast in comparison to the timescale of the nuclear degrees of
K2 freedom so that they quickly adjust themselves to the charge

k=k@+Kk® +...= — (2)  distribution of the electron transfer system. Perhaps, the en-
1=Kk ergetics of the two-state system could be changed when the

When the zero-frequency component is considered to be thieolarizability of the solvent molecules is included in the cal-
rate constanand the characteristic solvent timescale is prop-culation. o _
erly considered, Zusman'’s result can be obtained from their ~ The total Hamiltonian for the electron transfer system is
result. then

The second resummation method is to utilize the _

_19 . . H_H0+Hl! (3)

Landau—Zener theor§?~1%In this case the rate is expressed o
by the exponential functional form. Since it is not our goal towhere the zeroth-order Hamiltonian is

compare the two procedures, we shall not discuss the de- |, _ e 1 p dl+aME.+h a 4
tailed aspect of the Landau—Zener-type resummation scheme ~ ° [d){Eq+hg(Q)KdI +[){Ea+ha(Q)}(a| @
studied by Frauenfelder and Wolyr@s. and the interaction Hamiltonian is

In this paper we shall reconsider the first scheme, the Hy=|d)A(a|+|a)A*(d|. ()

resummation of the perturbatively expanded rate kernel, by
using Schwinger’s stationary variational principle in Liou- Ey4 (E,) is the energy of the isolated don@cceptor state.
ville space. Defining the perturbation operasgmmetrically A is the electron exchange matrix element. Throughout this
and using the Cini—Fubini-type trial function in Liouville paper,# will be assumed to be a unity. By specifying the
space, the stationary rate kernel, which is an approximatesolvent Hamiltonians, one can study the dynamical effect of
rate kernel, is determined variationally. In Sec. Il derivationsthe solvent on the electron transfer reaction. We instead con-
of the generalized master equation with properly defined ratsider an arbitrary bath in this paper.
kernels are summarized by closely following Sparpaglione  Before we present the formal derivation of the rate equa-
and Mukamel. Schwinger's stationary variation principle istion, it is useful to discuss the initial condition of the electron
applied to the calculation of the electron transfer rate kernefransfer reaction. Usually the initial state is assumed to be a
in Sec. lll. Discussions on the noninteracting blip approxi-thermal equilibrium state on the donor state. However, this is
mation and nonadiabatic approximations are given in thaot likely the case if the initial state is created by an ultrafast
context of the Padapproximants in Sec. V. The results are laser pulse, a photoinduced electron transfer. A small portion
summarized in Sec. V. of the electronic ground state population is photoexcited to
create the initial state on the electron dottelectronic ex-
cited state surface, which has to be a nonequilibrium state
on the potential energy surface of the donor state. Then this
nonequilibrium state relaxes to the quasi-equilibrium state on
We consider a two-state electron transfer system disthe donor surface as time progresses. During the relaxation
solved in a condensed medium. Instead of considering a spgrocess, the continuous leakage of the donor population to
cific bath model, by using the Liouville space projection op-the acceptor state progresses. Therefore, a complete descrip-
erator used by Mukamel and co-workéré,we summarize tion of the photoinduced electron transfer should include this
the generalized rate equation where the rate is determined monequilibrium nature of the initial preparatiéhThis was
the time-dependent rate kernels. presented by the authors in Ref. 22. Although it is rather
The electron donor and acceptor states are denoted kstraightforward to include the nonequilibrium effect dis-
|d) and |a), respectively. The two states are coupled via acussed above in this paper, for the sake of simplicity we shall

Il. GENERALIZED RATE EQUATION AND
FREQUENCY-DEPENDENT RATE KERNEL

J. Chem. Phys., Vol. 106, No. 7, 15 February 1997
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focus on the conventional case that the initial state is thé&quation(12) with the time-dependent rate kernels, Etd),
thermal equilibrium state on the electron donor potential suris formally exact, since the full Liouville operatdr instead

face. of Ly was used in Eq(14).
The rate equations can be obtained by solving the Liou- It turns out that the Fourier—Laplace transform of the
ville equation generalized rate equation is useful in the following deriva-
tion of the resummed rate kernel. By denoting the Fourier—
M: —iLp(t) (6) Laplace transform of an arbitrary time-dependent function
dt ’ f(t) asF(w)

where the Liouville operators are defined as commutators

LA=(Lo+L)A=[Ho+H, Al=[Ho,Al+[H,.Al. (7) F("’):fo dt expiwt)f(t) (15

For the sake of simplicity we shall denote the Liouville spaceyjith its inverse transform
vector by|---)), and the scalar product of two Hilbert space
operators is denoted as

((AIB))=Ti[A"B]. 8

Here the trace is over the complete Hilbert space includinghe generalized rate equations, E(f2), can be written as
the system and the solvent. By following Sparpaglione and

f(t)=(271')7lfjc do exp—iwt)F(w), (16)

MukameP closely, the Liouville space projection operafr © Pa(w) [pd(t=0) _ Kga(@)  —Kaqg(w)
is defined as Pa(w)| | Pa(t=0)| | —Kya(w) Kag(w)
P=[Dpa))((DI+|Apa))((Al, © Pa(®) an
Pa(w) |’

where the donor and acceptor operators in the Hilbert space

are denoted bfp=[d)(d| andA=|a)(a|, respectively, and \yhere P(w) and K(w) correspond to the Fourier—Laplace
the two density operators associated with the donor and th@ansforms ofp(t) andk(t), respectively. Likewise we de-

acceptorpy andp,, are, respectively fine the Liouville space advanced Green functions as
_ eX[i - Hd /kBT) 0 1
Pd Tilexp(—Hq/ksT)]’ G(w)z—if0 dt exp(iwt)exp(—iLt)zﬁ (18
(10)

exp(—Ha/kgT)
Pa Tiiexg —H,/kgT)]"

The complimentary operatdfp is Go(w)= —if dt exp(iwt)exp(—iLqt)=
~ - 0
Q=1-P. 1D

and

oL 19

] o ] Thus, the Fourier—Laplace transform of the rate kernel, for
By using the standard projection operator techniques, th@xample K 4o(®), is given by

reduced equation of motion for the populations can be ob-
tained, - 1
Kda(w):i<<D|Ll =

QL |Dpg)). (20

d t e

%:_fdT[kda(t_T)pd(r)_kad(t_T)pa(T)]v oo
0

From now on we shall focus oKy,(w) only, since the cal-

dp, ¢ 12 culation of K,q(w) is precisely identical to that oK ,(w).
- f d7{Kga(t— 7)pga(7) —Kag(t—7)pa(r)], Using the formal relation
0
where the populations of the donor and the acceptor are QL=Lo+QL4 (22)
pg() =T Dp(1)] and the identit$®
- 13 2
Pa(t) =Tr[Ap(D)]. "+ t 1 ( LY )
The time-dependent rate kerrgl,(t) [koq(t)] describes the »=QL  »=Qlo »=QL
transition rate from donofacceptoy to acceptordonon and 1 [ 1 n
is given as =——— > |QL, ——|, (22
R " e o—QLg n=0 0—QLg
kga(t)=((D|L exp(—iQL1)QL|Dpq)), _ , ,
~ o one can obtain the formally exact perturbative expansion of
Kag(t)={((A|L exp(—iQLt)QL|Ap,)). (14  the rate kernel

J. Chem. Phys., Vol. 106, No. 7, 15 February 1997

Downloaded 28 Oct 2012 to 18.111.117.123. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



M. Cho and R. J. Silbey: The transition from nonadiabatic to adiabatic rate kernel 2657

x k()= ’ (28
Kga(w)= > KZM(w), 23 (@) =i{{¢o|x(w)))
" where
where the ath-order contribution to the rate kernel in o
o aplace space © (@)=, [AFo(@) o)
K" (@) =i((DI[LiGo( @)L Go(@) Q1™ x
X L,Go(@)L;|Dpg)). (24) =3 |algn(w)). 29

Note that the terms including the odd number of actions of

theL, operator vanish since the diagonal matrix elements arlere thenth-order state vector is naturally defined as above,
taken, and the contributiork2"(w), is order & in the thatis,[¢n(w)))=[v(w)]"|¢o(w))). The physical meaning
nonadiabatic couplingh. For example, the usual second- Of Ed. (29) is thatthe Liouville state vectofy(w))) is given

order Fermi golden rule expression is the first term in EqPY @ linear combination of¢n(w)))'s, where the expansion

(23), that is, coefficient of the th term is given byA[|*". Therefore, a set
2 . R of {|¢,(w)))} is a complete basis set in this case, and the
KiZ (@) =i((D|L;Go(w)L{|Dpg)), (25 Liouville space is completely spanned by this basis set.
which is called thenonadiabatic rate kernethroughout this From the definition ofx(«w))), one can find the relation,
baps’ [X(@)))=]bo(@))) A0 (w) x(w))) (30

The calculation of the time-dependent population evolu-
tion is now reduced to that of the rate kernel in Fourier—which corresponds to the Lippman—Schwinger-type equation
Laplace space. There are numerous cases where the secordtended toLiouville space We next apply Schwinger's
order expression for the rate kernel is quantitatively accuratgariational principle to find the variational functiondf(w),
enough to predict the rate. However, as briefly discussed in ) )
Sec. ? therg are two important cases where thye nonadiabatic K (@) =i{{¢o(@)|xT(0))) +i{{(xT(®)|do(®)))
rate does not _Correctly represent the reaction rate. The first —i{(xT()|1= A% ()| xT(w))), (31)
obvious case is when the electron exchange matrix element
is sufficiently large so that one cannot ignore the higherwhich is assumed to betationaryfor small variations of the
order terms in the perturbative expansion of the rate kernel iffial state|x'(w))) about|x(w))), which means thathe sta-
Eq. (23). The second is when the bath correlation time istionary value of K(w) is K (w). This is proved in the Appen-
very slow. In this case the solvation of the wave packet credix. There exist several attempts using the variational ap-
ated in the product state, e.d.,Go(w)L,|Dpg)), becomes Pproaches to calculate the rate constant. Most of them concern
the predominant factor in the electron transfer process, andie energy of the transition state or the position of the divid-
consequently the reaction rate does not depend on the elei)d surface and utilize the minimum-energy variational prin-
tron exchange matrix element. It is our goal in this paper tcciple. Unlike those approaches, here the rate kernel itself is
present a systematic method to calculate the generalized rdifee objective of the variational procedure, instead of the en-

kernel given in Eq.(23) by using Schwinger’s stationary ergy. Therefore, we found this approach is perhaps a more
variational principle®* direct way to calculate the rate kernel in general.

We now introduce a trial state vectdy,' (w))), as

lll. VARIATIONAL PRINCIPLE AND PADE h

APPROXIMATION Ix"(w)))= go Cn| Pn(w))), (32

The generalized rate kernel was expanded in ter:ms ofthGherec, are the variational parameters. Note that the trial
evep-order perturbation terms. We now_dlscuss t € resuMsate s expressed as a linear combinatioridgfw))) (for
mation 22 Eq. (23) based on the stationary variational n=0toN—1), that is, the trial statfy'(w))) is expanded in a
principle=* From now on, we sha_II only focus on the rate subspace constructed i, (w))) (for n=0 to N—1). This
kermelK gq(w) and omit the subscript g‘a_ . type of trial state vector is known as the Cini—Fubini trial

In order to rewrite the perturbational expansion of thefunction,25 where the trial function is given by a linear com-

rate kerne(lj, k|1t is useful tg ‘?'ef'”e the zerpth—prdglrl stat§)ination of a finite set ofp,(w)))'s instead of infinite basis
| #o(«))) and the new perturbation operatefw) in Liouville functions. One can prove that the stationary variational func-

Space as tional KS(w) becomes identical to the true rate kerkek)
| po(w)))=GEA C,,)|_|||f)pé/2>>, (26)  When the trial vectofy'(w))) equals the correct ong(w)))
R by inserting Eq.(30) into (31) and using the expanded form
G5 (@)L Go(®)QLG A ) of [x(w))) in Eq. (29).
v(w)= |A]? . 27 For the sake of notational simplicity, we now define the

) ) ) inner product in Liouville space constructed [ay,(w)))’'s as
The rate kernel in Eq(23) can be rewritten in terms of

|o(@))) andv (w) as bi(@)=({¢o(®)|pi(®))). (33
J. Chem. Phys., Vol. 106, No. 7, 15 February 1997
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It should be noted that the second-order Fermi golden rule  9KS(N,w) .
formula, Eq.(25), is identical toiby(w), which is propor- —e —0 foralli
tional to A%, andi|A|?"b,(w) represents thé2n+2)-order '

(with respect to the electron exchange matrix elemént

contributions to the rate kernek®"*2)(w). Inserting Eq. and find that

(32 into the variational functional, Eq31), gives

. N—1 , N-1 c=M"1b. (36)
—iK (N.w)=—,20 cici{bj+;—[A] bi+j+1}+2i:20 Cib;

L=

Finally, the stationary valu&kS(N,®) is found to be

=—c'Mc+2c'b, (34)
wherec and b are the column vectors whose elements are S S Tag—1
K>(N,w)=ib'M~*b. 3
{c;} and{b;}, respectively, and (N.w)=i 37
[MT;j=bi.;—[A[?bi 1. (39

The functional form of Eq(37) was found to be equal to the
Note that the stationary variational function&®(N,w), is  [N,N—1]-Padeapproximants and the Nuttall's identity can
determined by thé\ perturbative expansion terms. In order be used to obtain a more compact formtflalhe general

to determine the variational parametefs,}, we solve the [N,M]-Padeapproximant can be written by the ratio of the

linear equation, two determinants as
|
Tyv-N+1 Tyv-N+2 Tyt
Twm Tw+1 LEVERN
M j M j M j
[N M]: Ej:NijN)\J EJ:N,J_T]',N+1)\J Ej:OTj)\l
’ Tv-n+1 Tm-n+2 0 Tm+r ’
Tm LIVES o Tman
AN AN-1 1

where T-matrix elements are equal to those lof and A Fubini subspace is constructed pjy(w))). Then one finds
equals tdA[? in our case. Her@; =0 if j <0. Equationg37)  that the variationally determined trial function becomes
with (33) and (35) are the main results in this section and

will be discussed for some limiting cases. bo(w)

T = w .
|X (w)>> bo(w)—|A|2b1(w) |¢O( )>> (38)

IV. RESULTS AND DISCUSSION . . .
Note that the variational parameter thus determined is fre-

It was found that the stationary valu€(N,w) is ap-  quency dependent. Here, from the definitioisy(w) and
proximately equal to the generalized rate kernel based oA |?b,(w) are identical to the second- and fourth-order con-
Schwinger’s stationary variational principle. The variation-triputions to the rate kernel, which ake?(w) and K ¥(w),
ally determined rate kernel was shown to be equal to theespectively. Therefore, the stationary value for the rate ker-
[N,N—1]-Padeapproximants, which is completely deter- nel is
mined byN matrix elementd,(w) (for n=0,1,..N—1) in
the subspace constructed by tReperturbatively expanded
states.

[K?(w)]?
K(Z)(w) — K(4)(w) :

KS(N=1,w)= (39

A. One-dimensional case ( N=1): [1,0]-Pade Now, if we take the zero-frequency components of the per-

approximant turbative rate kernels that are the corresponding rate con-
First consider the simplest case of all, that is the casetants, we recover Eq2) from Sec. I. Since the frequency

whenN=1. The trial function is given by dependence of the rate kernels in E8P) is fully retained,
Eq. (39) should be considered as an improved version of Eq.
X (@)= ol (@), o P “

wherec, is the only variational parameter determined from Equation(39) can be rewritten in terms of a geometric
the stationary variational principle. In this case, the Cini—series,

J. Chem. Phys., Vol. 106, No. 7, 15 February 1997
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s , y [K@(w)]2 is determined by that of the cross correlation between the
K3(N=1,0)=K®(w)—|K! )(w)|+w+---, time-dependent transmission coefficient and second-order
(40) rate kernel. If the timescale of the second-order rate kernel is
) ) @ i fast compared to that of the transmission coefficient, i.e.,
where we emphasized that the magnitud&of(w) is nega- ¢ (7)~k _&(7), the time dependence of the rate kernel is

tive once it is evaluated with Eq24).> Thus, the approxi-  qetermined by that of the transmission coefficient so that
mated rate kernel in Eq39) is exact up to the fourth-order kS(t)~ kD(t)k,,. On the other hand, if the timescale of the
contribution to the rate kernel, but deviated from the exact,snsmission coefficient is much faster than that of the

result after the sixth-order terms. second-order rate kernel, i.e<P(t—r)~«{Ms(t— 1), the

rate kernel becomes™(t) = k{Vk,,4(t).
1. Frequency-dependent transmission coefficient

One can reinterprete the result, £Eg9), as

SN — — (1)

KAN=10)=x"(@)Kna(), “1 Next we consider the nonadiabatic limit more in detail.
where K{Z(w) is the nonadiabatic rate kernel equal to theThis limit is the case when the transmission coefficient
second-order Fermi golden rule expression, E2p), and  «(«w) is approximately equal to a unity. The nonadiabatic
x"() denotes the frequency-dependent transmission coefftondition, K ,,(w)(w)<1, can be met when the electron ex-
cient calculated in the one-dimensional subspace and is dehange matrix element is very small regardless of the char-
fined as acteristic solvent timescale. Usually the nonadiabatic limit

has been assumed by such a limit. However, there is another
T7K (@) (@) (42 possibility satisfying this inequality, that is, when the sur-
na vival timescale,{w), is much faster than the inverse of the
with second-order rate kernel. This limit is in spirit identical to the
(4 2 celebrated noninteracting blip approximation, where there is

(@) =[K@(@)|/[Kna( @)1 (43 no correlation between tr?e t\/\?o crz)?wsecutive off-diagonal den-
Here 7(w) is the frequency-dependent survival time and issity matrix evolutiongblips) separated by the diagonal den-
related,not identical to the bath correlation time. Note that sity matrix evolutions(sojourns. This approximation is ap-
the transmission coefficient™(w)<1 for all frequencies. It plicable when the bath correlation time is fast, that is to say,
is also possible to interpret that the facygt(w) describes the memory of the bath fluctuation does not last long ifne.
the renormalization effect on the coupling matrix elem&nt These two casedj) small A and (i) short bath memory
induced by the higher-order rate contribution and the batl{short bath correlation timeare apparently independent of
fluctuation. The producK, (w)r(w) in Eq. (41) is often in-  each other because the former depends on the intrinsic prop-
terpreted as the frequency-dependaditibaticity parameter erties of the electron donor and acceptor states whereas the
since, ifK,,(w)7(w)<1 for all frequencies, the rate is com- latter is determined by the dynamical aspect of the bath.
pletely determined by the second-order rate pro¢essa- However, if either théi) or (ii) condition is satisfied, the rate
diabatic limif), whereas ifK ,,(w)(w)>1 for all frequencies kernel is determined by the second-order expres#iqp,w).
the reaction is governed by tlisurvival) time n(w) and does  Finally, we find it interesting to note thatased on Schwing-
not depend on the electron exchange matrix element, that igy’s stationary variational principle, the first-order approxi-

KS(N=1,0)= 7 X ). mation to the rate kernel equals Eq. (39), ngi k).

3. Nonadiabatic limit, «®(w)~1

xY(w)=

This is the case of the adiabatic limit and is realized when th&: TWo-dimensional case (- N=2): [2,1]-Pade

- . . approximant

solvent bath correlation time is very slow so that the prob-

ability of the recrossing, more precisely multiple actions of ~ We now consider the next higher-order approximation,

the transition operatar(w), become large. that is the[2,1]-Padeapproximant for the stationary rate
kernel. In this case the trial function is given by a linear

2. Time-dependent transmission coefficient and rate combination of two basis vectorghy(w))) and|¢y(w))), as

kernel |XT(@)))=Co(w)| o))+ Cy(w)|p1(w))),

As can be seen in Eq4l), the generalized frequency- \yherecy(w) andc,(w) are the variational parameters. Using
dependent rate kernel is given by a product of the frequencyne stationary variational principle and from E@6), they
dependent transmission coefficient and the second-order rajge

kernel. Thus, the time-dependent rate kernel is given by a

convolution, such as Colw) = 1-[A1*(w)
. O 1= AX(w) + Ay (o)
a0~ | et k(). (@4 A7

Ci(®)= —72 7 '
wherexW(t) andk,,(t) are the inverse Fourier transforms of 1-[A1*X(w) +[Al*y(w)
x(w) andK (), respectively. The rate kernel thus obtainedwhere
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bobs—b;b, variational principle, so that one has to be careful when the
X(w)EW, golden rule is used to describe the transition rate for the
ovz "1 reactions in condensed phases. The nonadiabatic limit was

bibs— b% found to be realized either when the coupling matrix element
y(w)= m- is very small or when the frequency-dependent survival time

_ _ _ ~ 1(w) defined in Eq.(43) is very short. The latter case is
Then the approximated rate kernel in the two-dimensionajdentical in spirit to the noninteracting blip approximation,

subspace constructed hyo(w))) and|¢y(w))) is although this was invoked in the theoretical studies on the
bo—|A|22(w) tunneling process in the quantum dissipative media by using
KS(N=2,w)=i (45  the path-integral method. If the Cini—Fubini-type trial func-

_ 2 4 )
1= Ax(@) + Ay (w) tion constructed in the two-dimensional subspace is used, the

where variationally determined rate kernel is given by Hg5),
b2ba— 2bb-bo -t b3 where the result is exact up to the eighth-order contribution
)= T2 L to the rate kernel. Thus, we found that Schwinger’s station-

bob,— b3 ' ary variation principle can be used to systematically calcu-
Equation(45) can be recast in the form, like E¢41), late the rate kernel. .
ol 2 It will be interesting to numerically test the result pre-
KEIN=2,0) =k “(0)Kpa(w), sented in this paper by using a simple bath model such as
where the transmission coefficient in this case is spin-boson Hamiltonian or even simpler one. For instance,
1-|A]? /b the frequenc'y-dependent. exprgssion for the rate kernel
k()= Z(w)/bo(w) K,a(N=1, w) in the one-dimensional subspace could show

1-[A]PX(w) +[A]*y(w) the nonexponential decaying pattern if the frequency-
Unfortunately, in this two-dimensional case, there does nofi€Pendent survival time is significantly deviated from a con-
appear any simple physical picture provided in the oneStant, that is, its t|me-ldependent analog cannot be approxi-
dimensional case above. Expanding E45) in terms of a mated asa delta.fun_cnon. !n otherwqrds, one may be able to
geometric series, we find find the case satisfying nenhqr cond|t|ma(w)7(w)<_1 nor
K,a(w)w)>1 for all frequenciesv. Perhaps the activation-
K3a(N=2,0)=KZ (o) + K (@) + KR (o) + K (w) less process is likely to be the case because the timescale
+O(|A9) separatio'n bereen the reaction rate and the characteristic
' solvent time is not always acceptable and therefore the
Note that the approximated expression for the rate kernerequency-dependent rate kernel instead of the zero-
given in Eq.(45) is exact up to the eighth-ordéwith respect  frequency rate constant has to be taken into account. Next,
to A) contribution to the rate kernel. Therefore, one can exthe higher-order approximation to the rate kernel based on
pect that Eq.(45 would provide more accurate result in the variational principle was found to be equal to [Ael]-
comparison to thgl,0] Padeapproximant. However, one has Padeapproximant. By calculating this two-dimensional re-
to pay the price that the higher-order perturbative terms—sult, the[2,1]-Padeapproximant, for a given bath, one could
often they are much involved in comparison to the secondshow the validity of the one-dimensional result, {lie0]—
or fourth-order contributions to the rate kernel—should bePadeapproximant to the rate kernel. Finally, it will be inter-
calculated. Therefore, it is desirable to use simpler trial funcesting to find some simple trial function that can be applied
tions instead of¢,(w)))’s in Eq. (31). to the variational principle discussed in this paper. These are
all under investigation and will be presented in the future.

V. SUMMARY

In this paper we considered the generalized rate kernddCKNOWLEDGMENTS
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Laplace space. The resummation of the rate kernel was
carried out by using Schwinger’s stationary variational prin-
ciple in Liouville space. The Cini—Fubini-type trial function AppenpIx

was used to variationally determine the generalized rate ker-

nel. For the one-dimensional subspace constructed by a In this Appendix we prove that Schwinger’s variational
single vector defined dgy(w))) in Eq. (26), we recover the functional dea(w) in Eq. (31 is stationary for small varia-
standard formula for the rate kernel, EQ9), where the tions of |y"(w))) about|x(w))). First let's replace the trial
corresponding survival time(w) is frequency dependent. It state|y'(w))) with [x(w)))+|8x(w))) in the variational func-

is interesting to note that the second-order golden rule extional and collect terms which are first-order with respect to
pression is not the first-order approximation satisfying thedy(w))),
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K Gal @) =1{{ ol @)| Sx(@))) +{(Sx(w)| bo(®)))
—i{((8x(@)|1=]AlPv(@)[x(@))) —i{({(x()]1
—|AJPv(@)]8x(w)))

=i{{{¢o(@)| = ({x(@)|+{({x(@)]v(w)|A%}
X|8x(w))) +i{(Sx(@)[{[po(®))) —|x(w)))
+]APv(@)|x()))} (A1)

By inserting Eq.(28) into the above equatiofAl), we find
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