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The mechanism underlying fracture of many oriented semi-
crystalline polymers is hypothesized to be a thermally acti-
vated, stress-aided rate process in which the tie chains con-
necting crystalline units suffer thermomechanical dissociation.
Some previous numerical models based on this concept have
assumed a Gaussian distribution of tie chain contour lengths
which are ruptured progressively by successively higher spec-
imen strains, and have used electron spin resonance (ESR)
spectroscopy to obtain the numerical parameters of the distri-
bution. The distribution of tie chain lengths in the intercrystal-
line region is calculated theoretically in this paper, based on
minimization of free energy. Our results, although in basic
agreement with earlier models, suggest a reinterpretation of
some of the ESR findings with regard to molecular fracture

processes.

INTRODUCTION

Many highly drawn semicrystalline polymers
consist of alternating crystalline and amor-
phous regions making up a fibrillar microstructure.
The amorphous regions consist in turn of three
types of molecular chain segments: loops or folds
at the interface between crystalline and amorphous
blocks, chains which end within the amorphous
region (“cilia”), and tie chains bridging the amor-
phous region so as to connect adjacent crystalline
blocks. The tie chains are the principal load-bearing
elements within the fibrillar structure, and this pa-
per seeks to predict their length distribution. This
will be done by considering the free energies of tie
molecules of various lengths present in the inter-
crystalline space. The model will be developed
using the microstructure of drawn polyamide fibers
as a guide, and the numerical constants will be those
which apply to that system, but the results should
be applicable with some modification to other
drawn semicrystalline polymers as well.

One of the central problems in developing atom-
istic models for the fracture of solids is that of
specifying just how the applied stresses are distrib-
uted over the specimen’s internal microstructure.
For some polymers, it has been possible to provide
an experimental measure of this stress distribution
by using analytical chemical methods to monitor
the mechanochemical changes which accompany
fracture in these materials. Electron spin resonance

* Present address: S. C. Johnson & Sons, Racine, WI 53403.

spectroscopy (ESR) has been particularly valuable
in this regard, since it is able to monitor the free
radicals which are produced by homolytic scission
of the polymer molecule.

ESR has been used to monitor stress-induced
bond rupture in drawn polyamide fibers, and Fig. 1
shows a typical histogram giving the extent of bond
scission at various specimen strains (1, 2). Kausch
and DeVries (3) interpreted this histogram as rep-
resenting the distribution of contour lengths of the
tie chains connecting the crystalline segments of
the microfibrillar structure, and based their calcu-
lation of the internal stress distribution on this
assumption. However, this interpretation is contro-
versial, as other microstructural distributions can
also be hypothesized as leading to the observed
ESR histogram. The theoretical tie chain length
model to be developed in this paper will be used to
argue that the ESR histogram does not in fact reflect
the entire tie chain length distribution, and that in
most amorphous regions only the shortest 5 percent
of the tie chains are broken during the fracture
process.

THEORETICAL MODEL

We will obtain a theoretical estimate of the tie
chain length distribution by seeking a minimum in
the expression for the chain’s free energy. Our
treatment assumes a basic model of the semicrys-
talline polymer consisting of two crystalline blocks
and an amorphous region separating them (Fig. 2).
Of course, this represents only a small building
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Fig. 1. Histogram of free radical concentration obtained in step-
strain loading of polyamide fibers at room temperature (from

Ref. 2).

Fig. 2. Schematics of typical crystalline and amorphous regions
in drawn semicrystalline polymers.

block of the complex morphology present in drawn
polymer fibers. The block shown in Fig. 2 is re-
peated thousands of times along the microfibrillar
structure, and many microfibrils in turn are stacked
alongside one another to make up the small fibrils
which can be observed microscopically or some-
times with the unaided eye. However, the tie-chain
and block model has been used by many previous
researchers as containing the essential physics of
the fiber’s mechanical response, in that the tie chain
length distribution is argued to be the essential
feature governing strength and stiffness. This is the
assertion which will be explored in this paper.

In the morphological model of Fig. 2, the tie
molecule is viewed as a chain which traverses a
cubic lattice between two crystallite surfaces. The
free energy of the element consists of the energy
contribution from the crystalline blocks, the amor-
phous region, and the interfacial region between
them. This free energy F can be written as:

F - [M - EVNN]F,‘ + EVNFL(N)
+ kT Y In (vy/v) + 2v0 + o’

where the summations are over all tie chains vy and
the other symbols are defined as:

M = Total number of model units present in the
element of Fig. 2.

F. = Energy of a model unit length in the crystal-
line block.

Fi(N) = Energy of a tie chain of N units and

length L.

vy = Number of tie chains of N units.

v = Total number of tie chains present in the
element.

o = Surface energy per tie chain.

o’ = Total surface energy of chain loops.

The tie chain distribution function G(N) is ob-
tained by minimizing the free energy F subject to
the condition that v = Yvy = constant. Using Eq. 1
and setting 6F = 0 gives the distribution function:

G<N)=(VN/V) (2
= exp[—AFL(N)/kT|/{Zexp|—AFL(N)/kT}}

where AF (N) = F.(N) — NF. The free energy
AF;(N) consists of an enthalpy and an entropy term,
AF;, = AH;, — TAS;, where T is the equilibrium
thermodynamic temperature at which the fibrillar
structure is formed. This is taken as the drawing
temperature, typically some value less than the
crystalline melting temperature.

The enthalpy term AH.(N) is the enthalpy of
melting for N crystalline units, plus a term due to
chains in the interfacial zone. Chain segments in
the interfacial zone experience additional con-
straint due to the proximity of their neighbors, and
the enthalpy of such segments is different than that
of crystalline or amorphous segments:

AHL(N) = NAH® + ~° (3)

Here AH°® is the melt enthalpy of a unit length of
crystalline chain and v° is the interfacial constraint
energy. We assume that all the tie chain constraints
are confined to a small interfacial zone as shown in
Fig. 3, and that the interfacial constraint energy for
each tie chain is independent of its length.

The entropy SL(N) of a tie chain of length L and
N units differs from that of a chain of the same
length in the amorphous polymer melt, since the
ends of the tie chain are fixed at the crystal and the
tie chains are confined to the volume between the
two crystalline blocks. We write:

S.(N, r) = S'(N) + k In|Z°(N, r)] (4)

where $’ is the entropy contribution arising from
inner vibrations of the chain, and the second term
accounts for the number of tie chain configurations
Z*(N, r) in the amorphous region.

Zachman and Peterlin (4) give the configuration
function Z°*(N, r) of a chain fixed at two ends as:

Z°(N,r)=W(N+1,r)Z'(N+ 1)a®> (5)

- o= o @ 1—--——-— X = A

Xa. Ya. 2p)

. Y. 29 _ _

x=d

Fig. 3. Schematic drawing of a tie molecule in an amorphous
region. Interfacial zone boundary is indicated by dashed lines at
x = A and x = d-\. Solid lines at x = 0 and x = d represent
crystalline faces.
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where W(N + 1, r)a® is the probability that the end
of the model chain is enclosed in a volume a® at a
distance r from the other chain end. Z'(N + 1) is
the number of configurations of a chain of N + 1
units with both ends free (as in the melt); for a
cubic lattice it is equal to 6" (5).

For calculation purposes, the interfacial zone has
been chosen to be of width 2a (4.92A°) and the
chain has only one possible configuration in this
region. Therefore the shortened chain of N — 2
units connecting points 1 and 2 in the amorphous
region shown in Fig. 3 has the same number of
configurations as the entire tie chain of N + 2 units:

Z°(N+2,r)=2'(N- 1) P(N, r)

The probability P(N, r) of a given configuration
with end-to-end distance r for a chain of N — 2 units
in the volume limited by the crystal faces is the
probability of chain configuration in infinite space
minus the probability for those configurations
which partly touch, or cross either or both of the
crystal faces (4, 6, 7), and is given as

PN, r)=a® ¥ [W(x —x2— 2md, y, z)

- W(x, + x2 — 2md, y, 2)]

where (x1, y1, z1) and (x2, yo, €2) are the coordinates
of the chain ends, y = y1 — y2, z = 21 — 22, d is the
width of the amorphous region, and W is the statis-
tical distribution function. The computation of
P(N, r) using a Gaussian distribution for W is given
in an appendix to this paper. The entropy term is
then:

ASL(N + 2) = (N + 2)AS°
+kInP(N,r)—3kIn6

Using Egs 3 and 7, the free energy AFL(N + 2) of
a tie chain of N + 2 units is

AF,(N + 2) = (N + 2)AH®
— TN + 2)AS°® + k In P(N, r) — 3k In 6]

Factoring and using the thermodynamic relation
AS° = AH° /T, (T, being the equilibrium crystalline
melting temperature), this becomes:

AF (N +2) = (N + 2)AH° AT
— kT{ln P(N, r) — 3 In 6}

where AT = (T,, — T)/T..

Now knowing AF.(N) and using the values of
various parameters given in Table 1, Eq 2 gives the
tie chain length distribution G(N). The model unit
length ‘@’ was taken as 2.46A°, based on a compar-
ison of the entropies of the model and real chains.

The tie chain length distribution function G(N)
of the crystalline structure of Fig. 2 is computed as
follows: Each of the crystalline/amorphous bound-
ary crossections is divided into 100 elements of
approximately equal area, and coordinates r, 6 are
assigned. Gy is calculated from Eq 2 for a chain of
end-to-end distance r;; between the ith element on
face 1 and the jth element on face 2 of the crystal-

lites. The G; values for all i and j are averaged to
obtain the tie chain length distribution function
G(N). A plot of G(L) vs. L is shown in Fig. 4 for
various temperatures T and distances L°, where L°
is the minimum tie chain length and is equal to the
thickness of the amorphous gap between two crys-
talline lamellar blocks.

DISCUSSION OF THEORETICAL APPROACH

Our treatment assumes equilibrium, although in
real polymers the molecular configurations in the
amorphous regions are probably dominated more
by kinetic than equilibrium considerations. We
hope such an equilibrium model is reasonable, even
if only to a first approximation.

Also, in the above calculation no consideration
for the effects of drawing on the distributions of tie
chain lengths has been taken into account. These
changes will be small for fibers obtained by cold
drawing a semicrystalline starting material, where
lamellae are fragmented and a partial melting-re-
crystallization occurs (8), establishing a new micro-
fibrillar structure. Since recrystallization occurs un-
der stress, the concentration of taut tie molecules
will be expected to be somewhat higher than pre-
dicted on the basis of the model presented above.

Itoyama (9) obtained a distribution of tie chain
lengths and the average tie chain length using a
partition-function calculation for stacked lamellae
of alternating crystalline and amorphous regions.
The generating functions for loops, tie chains, and
cilia were calculated using probabilities for random
walk on a body-centered cubic lattice in the pres-
ence of two parallel walls, and the length distribu-
tions of the various chain types were then obtained

Table 1. Numerical Parameters Used in Model

Item Value Source
Crystallinity 50.0% X-ray diffraction
“Hdbk. Polym.
Melting temperature (7m) 496K Sci.”
Processing temperature (T) 428K Park (18)
Crystalline block length 60A Park (18)
Amorphous block length (d) 30A Park (18)

van Krevelen

Enthalpy of fusion (AH°) 22.7 kJ/mole  (19)
Fibril diameter 80A Prevorsek (20)
0.12
0.10
0.08
s

0'0030 70 110 150 190 230 270 310 350 390
L(A®)

Fig. 4. Density distribution function G(L) vs. tie chain length.
Curve A ( ):d = 30A, T=350K. Curve B (- - -): d =30A, T
= 400K. Curve C (00®): d = 30A, T = 428K. Curve D (— —):
d = 30A, T = 486K. Curve E (—-@-@-): d = 60A, T = 428K.

830 POLYMER ENGINEERING AND SCIENCE, SEPTEMBER, 1985, Vol. 25, No. 13



Thermodynamic Prediction of Tie Chain Length Distribution

from the partition functions. The Itoyama calcula-
tion constrains only the total number of segments
present in the system, whereas the thermodynamic
equilibrium calculation described in this paper ad-
ditionally requires minimization of free energy.
This results in considerable simplicity in mathemat-
ical evaluation of the density distribution for the tie
chain lengths.

We have replotted Itoyama’s results for the tie
chain length distibution in Fig. 5. Figures 4 and 5
exhibit the same general features: Firstly, with in-
creasing value of the crystallization temperature T
in the calculation, the maxima in the distribution of
tie chain lengths shifts to larger values and the
distribution also becomes broader. This is shown
by plots A, B, C, and D in Fig. 4 and plots B and C
in Fig. 5. Secondly, if the width of the amorphous
gap (the length ‘d’) is increased for a constant
temperature T, the tie chain distribution maxima
again shifts to greater lengths shown by plots C and
E in Fig. 4 and plots A and B in Fig. 5. Therefore,
although the detailed descriptions for obtaining the
tie chain length distribution for the two models are
different, the general features predicted are the
same.

CONSEQUENCES FOR FRACTURE
BEHAVIOR

Fracture is an extremely complicated phenome-
non, undoubtedly involving the rupture or motion
of several distributions of load-bearing structural
elements of widely different sizes. But in the case
of drawn polyamide fibers the evidence seems to
support a two-part concept in which the tie chains
are distributed in length as described in this paper.
The amorphous regions containing these tie chains
are also “distributed” in that they respond to the
applied specimen strain to varying degrees. How-
ever, it appears that this latter distribution can be
described simply as a bimodal one in which most
amorphous regions are “moderately” strained dur-
ing fracture so as to experience scission of only the

0.032
0.028
0.024
0.020 4
0.016
6M
0.012
0.008

0.004 -

0.000
0 40 80 120 160 200 240 280 320 :

L (NUMBER OF SEGMENTS)

Fig. 5. Density distribution function G(L) vs. tie chain length
caleulated by TItoyama (Ref. 9) Curve A: ( ) d = 16 units,
T = 373K. Curve B (- - ~): d = 40 units, T = 373K. Curve C
(-@-@-): d = 40 units, T = 393K.

shorter members of their tie chain populations. A
much smaller number of amorphous regions—per-
haps those near microfibril ends or other defect
sites—are so highly strained that all their tie chains
are ruptured during the fracture process. Forma-
tion of submicrovoids observed using small-angle
X-ray scattering (10) supports the existence of these
critically situated amorphous regions.

Kausch (11) notes specifically that the buildup of
large elastic strains in fibers or films—as evidenced
by chain scission (12) and the appearance of dis-
torted infrared spectroscopic bands (13-15)—oc-
curs simultaneously with submicrocrack formation
which apparently leads to relief of local stress
through retraction of microfibril ends. Kausch feels
these processes must therefore occur independ-
ently of each other. Such an independence of stress-
induced effects can only result from a distribution
of stress criticality among various amorphous re-
gions.

A plot of cumulative tie chain distribution func-
tion Q(L) vs. L/L° is shown in Fig. 6, and we can
use this function to estimate the fraction of tie
chains which will be broken when the specimen is
strained to failure. The macroscopic strain to break
for polyamide fibers is 15 percent, and at fracture
the strain in the amorphous region will be nearly
double this. (The crystallinity in the polyamide
fiber is 50 percent, and most of the strain occurs in
the amorphous phase.) Therefore assuming that all
the tie chains of length L/L° less than 1.3 will be
ruptured during specimen fracture, a concentration
of approximately 5 percent for these “taut” tie
chains of the total tie chain population is predicted.

This taut tie chain concentration of approxi-
mately 5 percent of the total tie chains present in
polyamide fibers as estimated above is in reasonable
agreement with other observations: Peterlin (16)
indicated a taut tie molecular fraction of 1 to 4

99.99p

0.1

'l 'l A A

1.0 3.0 5.0 7.0 9.0
Ly

Fig. 6. Cumulative percentage of tie chains Q(L) vs. L/L, at
various temperatures.
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percent based on models of the elastic modulus,
and Nagou (17) has obtained from results on highly
drawn polypropylene a concentration of taut tie
molecules of 2 percent in a total concentration for
the amorphous phase of 25 percent.

The predicted distribution of chain lengths cal-
culated above shows a variation of the L/L° ratio
from one to between five and ten, depending upon
the drawing temperature T (see Fig. 4). In compar-
ison, Kausch (1) and DeVries (2, 3) calculated an
L/L° ratio varying from 1.0 to 1.2, assuming the
ESR histogram to reflect the tie chain length distri-
bution. Thus a large difference exists in the widths
of tie chain length distribution obtained from the
calculation in this manuscript and the models of
Kausch and DeVries.

The initial portion of the chain length distribution
from the calculation derived here and the Kausch-
DeVries results are compared in Fig. 7. The ordinate
(cumulative number of tie chains) has been scaled
so that the total cumulative number of tie chains
are the same (taken as unity here) for the theoretical
model and the Kausch model at (L/L°) of 1.18. This
value of (L/L°) in Kausch’s model corresponds to
the macroscopic fracture of the specimen.

These results suggest that the Kausch-DeVries
distribution does not represent the distribution of
all the tie chains, but may reflect only a contribution
from the short taut tie chains. The observed free
radicals result from rupture of taut tie molecules
(L/L° < 1.3) which have been stretched to their
breaking strain in the amorphous regions through-
out the specimen, as well as the rupture of essen-
tially all tie molecules in some more critically situ-
ated amorphous regions which may then open up
as microcracks. Only approximately 5 percent of
the tie chains have been damaged during straining
of the specimen to failure, and the fragments left
by that failure can be expected to have essentially
the same stress-strain curve and failure point as the
virgin specimen.
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Fig. 7. Cumulative fraction of tie chains vs. log (L/L,) between
L/L, = 1.06 and 1.18. (—-@—@-) is this calculation; (-@-@-) is
from Kausch (Ref. 1). Graphs scaled to make cumulative fraction
equal to one at L/L, = 1.18.

APPENDIX I—CALCULATION FOR P(N, R)*

PN, r) = Z:_’ [W(N — 1, r(m))
— W(N - 1, R(m))]-a*
Define P’(N, r) = P(N, r)/a®

[WIN -1, (xa —2md, y, z))

I'l [Ng R

— W(N—1, (xa+ A~ 2md, y, 2))]
Using gaussian statistics for tie chain lengths
W(r) = [3/2x(r®)]**-exp(=3r?/2(r?),)
where r® = x? + y? + 22
Let RSQR = y* + 2
P’(N, r) = (3/2x(r?),)** exp(— 3(RSQR + \%)/
2(r?),).

z

Y exp(—=3(xa — 2md)*/2(r?),)

m=—zx

-2sinh(3\ (x4 — 2md)/{r?),)

—2C 3 exp(=3(xa ~ 2md)?/2(r2),)

-sinh(3\(xa — 2md)/{(r?),)
where C = (3/2x(r?),)**.exp(—3(RSQR + \?)/
2(r?),)

Consider the summation
z -1 z
¥ =3 +PNN 1)/m=o+ 2
m=-z m=-z m=1
Changing variable in one of the summation above
we obtain

P’'(N, r) = 2 C exp(—3x4%/2(r?),) -sinh(3\xa/(r?),)

+

i D n

1 lexp(—=3(xa — 2md)?/2(r?),)

-sinh(3\(xa — 2md)(r?),)
—exp(—3(xa + 2md)?/2(r?),)-sinh(3X\ (x4 + 2md)/
(r*)o)l

Higher order terms in the summation decrease
rapidly, therefore keeping only the zeroth and first
order terms in the expansion above, using A= 2a
and for gaussian statistics (r?), = (N — 1)a’, we get

log,P(N, r) = —0.4158 — 1.5 log.(N — 1) — 1.5(RSQR
+ 4a*) /(N - 1)a®
+ log.[exp(—3(d — 2a)*/2(N — 1)a?)-sinh(6(d — 2a)/

(N=1)a)
—exp(=3(d + 2a)%*/2(N — 1)a?)-sinh(6(d + 2a)/
(N —1)a)]

a) For detailed calculation see reference 21.
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