Reprinted from TEXTILE RESEARCH JOURNAL, Vol. 47, No. 10, October 1977
Printed in U. S. A.

Ballistics of Transversely Impacted Fibers

Davibp ROYLANCE

Department of Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, M assachusells 02139, U. S. A.

ABSTRACT

The rate-independent theory of transverse impact of textile fibers is reviewed and cast in a form that provides convenient

preliminary guidance to designers of impact-resistant textile structures.

It is shown that energy-absorption rate increases

monotonically with fiber modulus, but that decreased ductility at high modulus may result in an optimum fiber stiffness
for transverse critical velocity. A reaction-rate fraction model is suggested as a means of rationalizing the observed

variation in experimental transverse critical velocities.

Introduction

Although impact of single fibers or fiber assemblies
is an important subject in its own right, being relevant
to climbing ropes, aircraft carrier arrest cables, high-
speed weaving, etc., the principal developments in this
area have been made by workers whose major interests
have been in the impact resistance of woven or non-
woven textile structures. The most notable of these
structures have been the lightweight armor vests used
by police and military personnel, but among other
important applications can be listed aircraft engine
containment shrouds, flak blankets, and vehicle seat
belts. Ballistic nylon has been used successfully for
these vests since the second world war, although current
developments have emphasized the Du Pont aramid
fiber marketed as Kevlar!. Although, as will be shown
below, excellent single-fiber ballistic response does not
necessarily guarantee a superior vest, any understand-
ing of textile structure ballistics must be preceeded by
an understanding of single-fiber response.

A strong motive for discussing fibers is that single-
fiber tests are often used as screening tests for ballistic
protection materials. As an example, one often en-
counters tabulations of “transverse critical velocity,”
that ballistic velocity at which a transversely impacted
yarn experiences nearly instantaneous failure. Typical
data is shown below [1].

Transverse critical velocities of textile fibers.

Ver, m/sec
Nylon 616
Polyester 472
Nomex 442
Fiberglass 274
Kevlar 29 570

! Trademark of E. I. du Pont de Nemours & Co., Inc.

Such tests are often indicative of relative ballistic re-
sistance, but perfect correlations cannot be guaranteed;
in the above tabulation Kevlar 29 proves to be the
best ballistic material when woven into a panel, in
spite of its having a lower transverse critical velocity
than nylon.

Longitudinal Wave Propagation

Wave propagation phenomena in fibers and thin rods
are considerably less complicated than in a general
medium, since the possibility of unrestrained transverse
contraction in fibers eliminates (to a good approxima-
tion) the simultaneous propagation of independent di-
latational and distortional waves which are present in

general. The equation of motion for fibers or rods is
simply [4]:
u K du
— =, ()
or p 9x?

where # is the longitudinal particle displacement, p is
the material density, E is the longitudinal Young’s
modulus, and x and ¢ are the space and time coordi-
nates. This is the well-known wave equation, whose
solution represents a disturbance traveling at a velocity

¢c=vE/p . @

Conventional textile units employing stiffness per unit
linear density are very convenient in wave propagation
analyses, since the factor p is included implicitly in the
modulus. For modulus expressed in grams per denier
and wavespeed in meters per second, Equation 3
becomes:

¢ = VkE 3)

where k& = 88 260 is the necessary units-conversion
factor. In these equations, as well as those to follow,
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the modulus is taken to be the “dynamic” stiffness
relevant to the high strain rates corresponding to wave
propagation tests. The development of such dynamic
constitutive relations from experimental fiber-impact
data has been described elsewhere [9].

Consider a fiber fixed at one end whose free end is
suddenly subjected to a constant outward velocity V
in the longitudinal (fiber) direction. After a time ¢
the strain wave will have propagated into the fiber a
distance ¢t, while the free end will have displaced out-
ward an amount Vi The strain resulting from the
impact is then the displacement V¢ divided by the
affected length ct:

Vi VoV
e=== @)
o ¢ RE

The corresponding stress is

VJE (3)
c=FEe=V, [— . 5
k

The above relations have assumed a linear elastic
material whose stiffness E is independent of the strain.
In this case the wavefront will propagate as a sharp
discontinuity (a shock wave) at which the strain rises
instantaneously from zero to the value given by Equa-
tion 4. Many ballistic fibers are nonlinear, however,
and the effect of material nonlinearity leads to some
complication of the above description. A nonlinear
fiber can be characterized as having a strain-dependent
modulus £ = E(e), so that Equation 3 becomes:

¢ =c(e) = VEE(e) . (6)

The shape of the wavefront is now dependent on the
shape of the dynamic stress-strain curve. If the curve
is concave toward the strain axis, so that the modulus
decreases monotonically with strain, each succeeding
increment of strain in the propagating wave travels
more slowly than the previous increment. The wave
is then dispersive and broadens as it travels. If on
the other hand portions of the stress-strain curve are
concave away from the strain axis, then portions of the
strain wave will overtake more slowly propagating in-
crements of lesser strain, and the wave will contain
shock components. In general, a wave may contain
both dispersive and shock components.

In the region behind the wave, material flows in the
direction of the imposed velocity with a “particle
velocity’” w. This motion is fed by the strain developed
in the propagating wave, and the particle velocity is
related to the wave speed by:

w==/mdaﬁ==/wVHﬂ5de, (N
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where ¢ is the ultimate value of strain generated by
the impact. Since the particle velocity must match
the imposed velocity, we have:

V=[NE@«. (8)

The strain ¢ developed by longitudinal impact is found
by solving Equation 8, perhaps numerically.

Transverse Impact of Fibers

As the transverse impact of single fibers seems intui-
tively germane to impact of woven textile panels, the
technical community interested in lightweight ballistic
protection has devoted intensive effort to this problem
since World War II. Following the pioneering works
of Taylor [8] and von Karman [5] during the war,
valuable contributions have been made by Petterson
et al. [6], Shultz et al. [7], Wilde et al. [9], among
others, but by far the most prolific of these efforts has
been that of Jack C. Smith and his colleagues at the
National Bureau of Standards. Reference [3] pro-
vides a review of most of this work, which contains a
wealth of experimental and theoretical contributions
ranging over a period of approximately ten years in the
fifties and sixties.

The rate-independent theory of transverse fiber im-
pact as developed by Smith can be stated with reference
to Figure 1. This illustrates a fiber, originally straight
in the horizontal direction, which has been impacted
by a projectile traveling vertically upward. Upon im-
pact, longitudinal waves of the type described in the
previous section are propagated outward from the point
of impact. Behind these waves material flows inward
toward the point of impact at a constant velocity w,
strain €, and tension g,. In addition to the longi-
tudinal waves, transverse ‘‘kink” waves are also propa-
gated outward from the impact point. At the trans-
verse wavefront the inward material flow ceases
abruptly and is replaced by a transverse particle veloc-
ity equal in magnitude and direction to that of the
projectile. The strain and tension are unchanged
across the transverse wavefront, but both the longi-
tudinal and transverse particle velocities experience
discontinuities there; in this sense the transverse wave
is a geometrical shock. The apparently unbalanced
tensions on either side of the transverse wavefront are
compensated by the change in particle momentum as
the wave propagates. Behind the transverse wave-
front all particle velocities are equal in magnitude and
direction to the projectile velocity, and the fiber con-
figuration is a straight line at a constant inclination
from the longitudinal direction. ‘

The inward particle velocity is found, as in the
longitudinal case, as
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PARTICLE VELOCITIES:
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I'1c. 1. Wave propagation in a transversely impacted fiber.

w = /eoc(e)de = /60 VEE(e) de . (9)

The final strain ¢ is unknown as yet, but of course
E(e) is known as the slope of the stress-strain curve.
The outward velocity U of the transverse kink wave,
measured relative to a Lagrangian frame attached to
and extending with the fiber, is

U= NO’ok/(l + fO) y

where gy is the ultimate value of tension (in g/den for
k = 88,260) induced by the impact. To a fixed ob-
server the transverse wave appears to propagate in a
“laboratory’ frame of reference at:

U= (14U —w

(10)

(11)
Finally, the above variables are related to the impact
velocity V through the relation:

V=V + erU? —U? (12)

Equations 9-12 constitute four relations between V, w0,
€, o0, U, and U. The material dynamic stress-strain
curve relates a¢ and ¢, so that once one of the param-
eters (say V) is specified, the other four independent
parameters (w, e, U, U) can be found. For nonlinear
stress-strain curves, numerical solutions will likely be
more convenient.

Certain limitations to the Smith analysis described
above must be mentioned. First, it is rate-indepen-
dent. Most polymeric fibers exhibit strong rate de-
pendencies, and these effects are beyond the capacity
of this analysis to describe. Perhaps a more severe
limitation is that the Smith analysis is not applicable
to late-time effects in the wave propagation process.
In real situations the outgoing longitudinal wave soon
collides with an obstacle: a clamp, in the case of single-

fiber tests, or a fiber crossover, in the case of impact
in woven textile panels. Upon such a collision a re-
flected wave is propagated from the collision point in
the direction opposite that of the original wave. This
reflected wave in turn soon collides with the outward-
traveling transverse wave, and this collision generates
another two waves which travel away from the collision
point. These waves in turn eventually collide with
the clamps, or the projectile, or other waves. The
result of these wave reflections and interactions is a
situation which becomes intractable by closed-form
mathematical methods, and this late-time intractability
Is a principal reason for the development of numerical
computer solutions.

Use of the Rate-Independent Theory
in Preliminary Design

In spite of the limitations of the Smith theory out-
lined above, the rate-independent analysis provides a
highly useful means of assessing approximate relations
between fiber material properties and ballistic response.
These relations are of considerable value in performing
preliminary design steps in development of textile
ballistic-protection devices.

Assuming the material to be linear in stress-strain
response (E = constant), the Smith analysis can be
cast in the simple form:

V = Ve E[2Veo(1 + €0) — €] (13)

which provides a relation for the strain ¢, developed by
impact at a velocity V in terms of the fiber modulus.
This relation can be solved numerically if one wishes
to compute ¢ for a given V, or it can be used directly
to plot € versus V for the purpose of developing design
curves (see Fig. 2). Once ¢ is known, then oo, U, U,
and w can be found from either the stress-strain relation



682

Impact-Induced Strain, %

1500

Impact Velocity, m/sec

FiG. 2. Predicted impact strain for linear

rate-independent fibers.

or Equations 9-12. Figure 3 shows such a plot of
tension oo versus V with modulus as a parameter.

Since the above curves rise monotonically with veloc-
ity, one can observe the influence of modulus more
easily by plotting ballistic response at a constant
velocity, and Figure 4 shows such a plot at ¥V = 400
m/sec. Here are plotted the strain and tension from
the above methods, along with the strain energy
v = 3o¢€o developed behind the wave and the rate of
energy absorption yc¢ of the fiber. (The term ~c¢ is
shown in mixed units, but it could be converted to
joules/sec once the density and denier of the fiber are
specified.) The rate of energy absorption at the wave-
front must equal the rate at which the fiber extracts
kinetic energy from the projectile, and it is a reasonable
measure of ballistic efficiency. Note that this energy-
absorption rate rises monotonically with fiber modulus,
although with less dramatic improvements after ap-
proximately 500 g/den.
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Fic. 4. Effect of fiber stiffness on ballistic response; 10 = 10
g/den for tension, 109, for strain, 0.03 g/den for strain energy,
and 900 g m/den sec for energy absorption rate.

Of course, one cannot improve ballistic efficiency
indefinitely by continuing to seek stiffer fibers. In
general, increases in stiffness are accompanied by de--
creases in breaking strain, and a point may well be
reached where this reduced ductility overshadows the
beneficial reduction in impact-genreated strain shown
in Figure 2. This effect may be quantified by means
of Equation 13, where one may calculate the critical
transverse velocity by determining the velocity which
just generates the dynamic breaking strain on impact.
If one knows the variation of breaking strain with
stiffness, these calculations may be used to select ap-
proximately an optimum fiber stiffness for ballistic effi-
ciency. This process is carried through for illustrative
purposes in Figure 5.

The dashed line in this figure is the relation between
dynamic stiffness and breaking strains as determined
from fiber-impact tests on a series of nylon yarns that
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F16. 3. Predicted impact tension for linear rate-independent fibers.
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Fi16. 5. Prediction of optimum stiffness for nylon fibers.

had been subjected to various drawing treatments by
the manufacturer [9]. The solid line is then the cal-
culated transverse critical velocity, considering the
effect of stiffness on both impact-induced strain and
on breaking strain. An optimum is observed near 60
g/den, which is in fair agreement with experimental
observation. All this is a quantification of the often-
quoted guideline in armor design that one seeks the
highest possible modulus in order to spread the impact
over a wide area vig increased wavespeed, but that the
process must not be carried so far as to induce excessive
brittleness. In hard armor this reasoning has led to
the use of ceramic faceplates to give high wavespeed,
backed by a fiberglass laminate to provide the needed
toughness.

Selection of a Failure Criterion

The use of a simple ultimate breaking strain as a
failure criterion in the above example is overly simplis-
tic, since it does not incorporate the strong temperature
and rate dependencies that are known to exist in
polymeric materials. A commonly encountered frac-
ture model which does incorporate these dependencies
and is still computationally convenient is that due to
Zhurkov [10], which states that the lifetime = of a
solid subjected to a uniaxial stress ¢ is of the form

[L,'* —_ ,Y*o.]
T =To€XP} ———— y
RT

(14)

where 7 is a pre-exponential factor with units of time,
U* is an apparent activation energy for the fracture
process, v* is a factor with units of volume, R is the
gas constant (1.987 X 10=% kcal/mole °K), and T is
the absolute temperature. For constant temperature,
Equation 14 reduces to

T = aexp(—pBas) , (15)
where
a = roexp(U*/RT)
8 =v*/RT (16)
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When stress and temperature vary during the loading
process, one can assume linear superposition and write
the Zhurkov criterion in the form:

/’ dt
0 [U* - 'y*a(t):|
To €X —_——
P RT(t)

In a constant-stress-rate experiment at constant tem-
perature, for instance,

=1 a7

a(t) = Ct

T ds
/o P exp(—BCtg -1
ep@en -1,
aBC
In (1 + aBC)
= P

To illustrate the order of rate dependency provided by
Zhurkov’s model, Figure 6 shows a plot of Equation 18
for the case of drawn nylon fibers. In this figure
a = 2.20 X 10¥ sec, and 8 = 5.13 (g/den)!; these are
the values obtained by Zhurkov [10] by fitting Equa-
tion 15 to creep-rupture data. Such a plot can be
used to depict the time-to-break for a fiber, and the
tenacity-at-break, as a function of the loading rate.

(18)

T

Drawn Nylon Fibers
L Constant Stress Rate
2 T =300 °K 072

LOG (STRESS RATE, gm/den-sec)

TENACITY, gm/den

F16. 6. Variation of breaking tenacity with
loading rate—Zhurkov model.

As a more direct example of the utilization of
Zhurkov’s model in fiber ballistics, the stress predicted
by the Smith theory for a given impact velocity and
fiber modulus can be used in Equation 14 to predict
the time after impact at which the fiber will rupture.
This analysis predicts that there is no unique critical
transverse velocity, but rather a range of velocities
over which the fiber will fail in experimentally observa-
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ble times. Figure 7 shows the predicted results for
drawn nylon fibers, using an assumed dynamic modulus
of 80 g/den with the same values of « and 8 used in
Figure 6. This figure shows that at velocities above
approximately 775 m/sec, rupture occurs in less than
fifty microseconds and would be counted in most high-
speed photographic records as having occurred instan-
taneously upon impact. The times-to-break become
exponentially longer at lower veclocitics, and failure
will occur at the clamp due to wave reflection at times
dependent on the wavespeed and fiber length. It is
the variation in what may be termed a critical velocity
for impact_which may make up a large part of the
scatter observed experimentally in determining critical
transverse velocities.
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Fic. 7. Variation in transverse critical velocity due
to fracture rate effects.

An important advantage to Zhurkov’s model is that
it is derivable in terms of basic reaction-rate fracture
analysis. As such, it provides a means whereby the
materials scientist can predict materials and processing
modifications so as to manipulate the fracture param-
eters and improve ballistic performance. A recent
review [2] describes the basic implications of reaction-
rate models such as Zhurkov’s, as well as their limita-
tions and experimental corroboration. Suffice it to say
that the development of these models is somewhat
controversial, with several quite divergent approaches
having strong advocates. Zhurkov’s model in particu-
ar is often criticized as being simplistic, but is conven-
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ient for use in impact analysis by virtue of its computa-
tional convenience and its ability to model a wide range
of materials behavior, if only phenomenologically.
Finally, it should be cautioned that the experiments
Zhurkov used in corroborating his model were no
faster than the millisecond time scale, some three
orders of magnitude slower than ballistic impact frac-
tures. Such an extrapolation is clearly dangerous and
should be verified by additional experimentation. The
plot given in Figure 7 is in reasonable but not excellent
agreement with experimental data given in Smith’s
papers, indicating that the approach is promising but
needing of further corroboration.
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