POLYMER PROCESS ENGINEERING, 3(3), 247-261 (1985)

A TRANSIENT FINITE ELEMENT MODEL
FOR PULTRUSION PROCESSING

LESA AYLWARD, CRAIG DOUGLAS * and DAVID ROYLANCET

Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

Finite element analysis is a general numerical tool for solving the
field equations of engineering practice, and this paper demon-
strates its use in modeling the nonisothermal cure of pultruded
composite material. A very simple grid is used in this case to
model a narrow strip of material, and this grid is then solved
using a time-stepping algorithm to simulate the passage of the
strip along the pultruder die. As time proceeds, heat is con-
ducted into the strip from the heated boundaries at the die
walls, and cure proceeds at a rate dependent on the local tem-
perature. The computer model can be used to minimize the time
needed for sufficient cure, and helps avoid such processing errors
as undercure or thermal degradation.

I. INTRODUCTION

Although Edisonian innovation will always be important in the development
of new materials and processing methods, there is an increasing need for
analytical tools which can simulate expensive hardware and laboratory
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experiments. Even when the analytical models must be idealized consider-
ably, they can often serve to sharpen the engineer’s intuition of the situation,
so that the empirical approach can be more efficient.

This paper demonstrates a simple application of a general finite element
code which has been developed to solve the equations governing noniso-
thermal, reactive, transient viscous flow processes. The code is quite general
in its applicability, but this paper will demonstrate that it is also useful in
relatively simple situations which might otherwise be attacked by writing
special purpose software. We are concerned here with continuous, steady
processing operations such as pultrusion or film blowing which have large
aspect ratios, the process geometry being much smaller in one dimension than
in the others.

Usual finite element grids are awkward in such problems: accuracy general-
ly requires keeping the aspect ratios of individual elements near unity, so
having enough elements in the thin dimension to maintain reasonable resolu-
tion would require an excessive number of elements in the other. In such
problems an alternative approach might be to neglect diffusive transport in
the long direction and discretize only a narrow strip of material in the thin
direction. This strip could then be followed as it travels along the processing
path, so that the long direction is modeled as a time dimension. The two-
dimensional code is employed in this case to solve a transient problem in
one spatial dimension.

This approach will be outlined using the pultrusion process as an example.
The governing equations and their finite element counterpart will be
described briefly, and numerical results will be presented for a simulation of
an actual pultrusion line for which material and process parameters are
known. Finally, we will show the results of some trial situations which are
difficult to analyze experimentally.

Il. PULTRUSION PROCESSING

Pultrusion is the name given to a variety of processes for making composite
materials consisting of unidirectionally oriented reinforcing fibers in a resin
matrix. Price [1] describes several of these processes. Some involve a con-
tinuous process where fibers are drawn through a resin bath and then into a
heated die to be cured. Other processes involve a partially cured pre-preg
composite ribbon which is pulled through a heated die to complete cure.
Figure 1 is a schematic representation of a pultrusion process.

As a strip of material enters the heated die region, it experiences a sudden
increase in temperature at its outer boundary. Heat is transported into the
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FIG. 1. Schematic of pultrusion process (from Price [1]).

material by conduction, which is a relatively slow process in most polymers.
As the local temperature increases, so does the rate of chemical reaction. The
reaction is exothermic, so an additional heat source will be generated as the
reaction proceeds. The problem is then one of coupled, transient heat transfer
and chemical reaction.

I1l. NUMERICAL MODEL
The equations which govern reactive polymer processing are well known and
are available in texts of transport phenomena and polymer processing [2, 3].
They are a set of coupled, nonlinear, second-order partial differential equa-
tions which enforce conservation of momentum, energy, and reactive species:
plou/or+uVu] = -Vp+V(nVu)

pcldT/3t+u"VT] = Q+V(kVT)

[3C/3t+u-VC] = R+ V(kVC)
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Here u, T, and C are fluid velocity (a vector), temperature, and concentration
of reactive species; these are the principal variables in our formulation.
Other parameters are density (p), pressure (p), viscosity (n), specific heat (c),
thermal conductivity (k), and species diffusivity (D). V is the Laplacian
operator. The similarity of these equations is evident, and leads to consider-
able efficiency in the coding of their numerical solution. In all cases the
time rate of change of the transported variable (u, T, or C) is balanced by
the convective or flow transport terms (e.g., «*V T), the diffusive transport
(e.g., V(kVT)),and a generation term (e.g., Q).

Q and R are generation terms for heat and chemical species, respectively,
while the pressure gradient Vp plays an analogous role for momentum
generation. In our polymer problems, the heat generation arises from viscous
dissipation and from reaction heating:

Q = 7:y+R(AH)

where 7 and vy are the deviatoric components of stress and strain rate, R is
the rate of chemical reaction, and AH is the heat of reaction. R in turn is
given by a kinetic chemical equation; in our model we have implemented an
mth-order Arrhenius expression:

R = k,, exp (-E/R, T) C™

where k,, is a preexponential constant, £ is an activation energy, and R, is
the gas constant.

These equations are usually not solvable in closed form for problems of
practical interest, due partly to the irregular boundary conditions which must
be satisfied and also to the nonlinear dependence of material parameters on
the solution variables. Recently, however, finite element numerical analysis
has grown well beyond its early use as a tool for stress analysis and is now
established as a general method for solving the sort of boundary value prob-
lems described above.

Several texts {4, 5] demonstrate how the governing equations can be
written in an integral form which permits one to satisfy solution criteria
over selected subregions (“elements’”) in the problem domain rather than at
every point. The finite element equations can then be obtained by replacing
the actual problem variables by interpolations among discrete values at
selected nodal points. When this interpolated solution is used in the integral
equations, a set of simultaneous algebraic equations can be assembled of the
form
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Ka = f

where a is a vector of nodal variables whose values are sought, f is a vector
of forces or fluxes, and K is a coefficient matrix relating these quantities.
The computer assembles the K and f arrays from the contributions of each
element, and then solves for the & vector by Gaussian reduction or other
numerical means.

The finite element method can also handle transient problems by using a
variety of time-stepping algorithms adapted from the finite-difference tech-
nique. The processing problems of interest here involve only the first deriva-
tive of time, and for this case the extension to transient problems is simple
and inexpensive. When the derivative terms are added, the finite element
matrix equations take the form

da
C % t+Ka =
ar TKe=7

where the C matrix stores the inertial influences and da/dt is the derivative
vector of the nodal variables. This can be written in finite difference form as

a l—a
C% +K[(1-0)a, +0a,,] = f

This implicit relation permits the values @, ,; at the end of the next time
increment At to be computed from the current values g,,. Here the forcing
terms f are assumed constant over the time increment, and § is a parameter
between O and 1 which allows the time-stepping scheme to be adjusted
between forward and backward differencing. The method is unconditionally
stable for § = 1/2, and we have used 8 = 2/3 in the simulations to be pre-
sented below.

Although many important processing problems have features which strain
or exceed the capability of this method—fluid viscoelasticity is a notable
example—many other problems can be handled inexpensively and routinely.
We have developed a series of element routines for this purpose which operate
within the FEAP code written by Taylor and freely available in the
Zienkiewicz textbook [4]. Our routines can presently solve the transient
momentum, energy, and species equations simultaneously, for Newtonian
fluids at low Reynolds’ numbers and in domains having fixed boundaries.
More detailed descriptions of the formulation are available in earlier
publications [6-8].
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Our numerical modeling of the pultrusion process avoids the use of flow
velocity as an explicit problem variable. Instead, a Lagrangian view is used
in which a single strip of material is followed in a time-stepping manner
after entry into the heated die (Fig. 2). The progress through this region is
then considered only in terms of the heating and reaction effects. Rather
than model material flow in an Eulerian laboratory frame, which would
require an unwieldy element mesh in two dimensions, the process is idealized
as a transient problem in one spatial dimension. The simple 13-element grid
of Fig. 2, refined at the outer edge to capture the boundary effects more
accurately, was used for all of the simulations to be discussed below.

This approach to the pultrusion analysis differs from the usual scheme of
first reducing the general governing equations to fit the problem at hand—in
this case a one-dimensional transient formulation. Instead, the code is written
to solve the general equations as outlined earlier, and only the form of the
input dataset changes to effect the particular solution desired. This method
may seem unconventional to the reader accustomed to seeing a development
of specific equations for particular cases which are then attacked by closed-
form or numerical means, but it is arguably more general and economical.
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FI1G. 2. Pultrusion heater die and element mesh.
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IV. MODEL RESULTS AND DISCUSSION
A. Simple Conduction

As an initial check of the computer model, a simple reactionless conduction
problem for which a closed-form solution is available was modeled using a
strip of elements initially at constant temperature T . One edge is constrained
at this temperature, while the other is suddenly exposed to a higher tempera-
ture T,. Figure 3 shows the theoretical transient temperature profiles along
the strip as given by the solution in Schlichting [9] and the computed results
obtained using log time stepping at three time steps per decade. At short
times a thermal boundary layer develops near the heated edge, and at long
times the temperature profile in the strip becomes linear from T, to T,.
Figure 3 also shows the computed temperature profile at one time when
only one time step per decade is used; the coarser time steps lead to a
reduction of accuracy, as expected.

B. First-Order Isothermal Reaction

A trial pultrusion run with very high thermal diffusivity (to enforce rapid
conduction of heat from the heated edge to the center, and thus essentially

O t.*=0.04
o) t.*=0.40
| A t*x=1,268
0.8 S te=12.8
A t*:=1,28 (coarse)
- 0.8- Theoretical
'_
~
E o 0.48
0.2+
0.0 ¥ : —a : i
0.0 0.2 0.4 0.6 0.8

Distance, y/H

FIG. 3. Theoretical and model transieni temperature profiles for a simple
conduction problem. Dimensionless time ¢t = 4(\/at)/h.
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FIG. 4. Theoretical (closed-form solution) ‘and model (computer solu-
tion) reactant concentration histories for a first-order isothermal reaction.

uniform and steady temperature profiles throughout the material) was made
to verify the reaction modeling capabilities of the code. A first-order reaction
was modeled with the initial concentration of reactants set at 1.000, and the
results are shown in Fig. 4. The plotted points are the computed reactant
concentration values averaged over the length of the strip at each time.
Excellent agreement between computed and closed-form values is obtained
over most of the reaction history. At longer times some error is observed,
probably due to the logarithmically increasing size of the time steps.

C. Pultrusion Simulations

The width of the pultrusion stock is taken to be substantially greater than
the thickness, so that gradients across the width can be neglected. We have
modeled the puitrusion of “thin” (2 mm) and “thick” (2 cm) specimens,
using the 13-element strip stretching from the pultrusion centerline to the
heated edge as shown in Fig. 2. The boundary conditions for both simula-
tions were set to give a constant temperature at the heated edge and zero
temperature and concentration gradients at the centerline. The material
modeled was a real epoxy-graphite composite whose curing kinetics and
pultrusion behavior has been studied by Price [1]; his material and reaction
parameters are listed in Table 1.
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TABLE 1
Material and Reaction Properties
for Graphite-Epoxy Composite

Property Value
Thermal conductivity, W/m'OK 1.0
Density, kg/m? 1500.0
Specific heat, J/kg*°K 1000.0
Reaction heat, J/kg 60.3
Reaction order 1.0
Preexponential constant, s~! 4,16 X 10*
Activation energy, J/mol 56X 10*

Figures 5 and 6 are the transient temperature and reactant concentration
profiles for the 2-mm “thin” pultrusion problem. The temperature profiles
become essentially constant at 490 K within 10 s and stay constant through-
out the course of the reaction. This result is in reasonable agreement with
that of Price [1], who used finite difference methods to show that a uniform
temperature profile was reached in about 3 s, after which the temperature
in the strip remained essentially constant.

The reaction in this case lags behind the temperature rise, and except at
the very beginning of the reaction at the heated edge, the reactant concen-
tration profiles are essentially flat across the thickness of the strip. A notice-
able decrease in reactant concentration occurs between 0.1 and 2.2 s, and the
reaction is complete between 20 and 40 s after the pultruded strip enters
the heated zone.

Figure 5 shows the closed-form predictions for temperature distributions
in the simple conduction problem corresponding to the pultrusion boundary
conditions, but without reaction, at two times [10]. The computed tempera-
ture profiles are at or slightly below these theoretical levels. At this point
the reaction has not yet begun, so the close agreement between the theoreti-
cal solution and the code results is another confirmation of the model
accuracy. At longer times, when the reaction has progressed substantially,
the temperature profile still remains flat at about 490 K. Heat from the
reaction is small compared to the material’s heat capacity, and in this case
is able to diffuse out of the thin specimen quickly.

Figures 7 and 8 are the transient temperature and reactant concentration
profiles for the 2-cm ““thick” pultrusion strip at 490 K. At 100 s the center
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FIG. 5. Transient temperature profiles for a 2-mm pultrusion strip cured
at 490 K (+ = theoretical temperature profiles with no reaction present).
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FIG. 6. Transient concentration profiles for a 2-mm pultrusion strip
cured at 490 K.
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FIG. 8. Transient concentration profiles for a 2-cm pultrusion strip cured
at 490 K.
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of the strip has still not reached the heater temperature. The edge of the
strip has reacted completely at this point, while more than half the thickness
of the strip is essentially unreacted. This is clearly an undesirable configura-
tion for any kind of industrial application; the strip would take much too
long to cure. Another run was made, this time with the heater temperature
increased 25°C to 515 K, to see if this would decrease the curing time for
the specimen. Figures 9 and 10 are the temperature and reactant concentra-
tion profiles for this test. The 25°C increase in curing temperature provided
only a slight increase in the amount of the strip cured after 100 s. Based
on this information, it would seem that a 2-cm thick pultrusion of this
material is an impractical process if heating is by conduction anly. This is
an example of how this model could be used as a design tool. By using the
model to make preliminary predictions on the feasibility of a process, or
on how to optimize a process, the need for expensive process experimenta-
tion can be reduced.

It is interesting to simulate a process in which the exothermic reaction
heat cannot be removed quickly enough by thermal conduction, leading to
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FIG. 9. Transient temperature profiles for a 2-cm pultrusion strip cured
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FIG. 10. Transient concentration profiles for a 2-cm pultrusion strip
cured at 515 K.

catastrophic temperature rises. Clearly, such processes are studied more
safely by computer simulation than by laboratory experimentation. To
demonstrate this effect, the thermal capacity of the material was artificially
set to a low value by adopting a density of a 1 kg/m®. All other material
parameters are the same as for the graphite~epoxy composite. Figure 11
shows the dramatic increases in internal temperature for this combination
of input parameters. This extreme situation is an example of the compli-
cations that can arise when exothermic reactions are present, and the value
of theoretical modeling as a means of avoiding catastrophes in the laboratory
or production line.

V. CONCLUSIONS

The pultrusion of the epoxy-graphite composite modeled in this work was
seen to be practical for thin (2-mm) ribbons, but the thicker (2-cm) specimen
took too long to cure at a given temperature to be practical. The cure of a
hypothetical low-density material demonstrated the danger present when an
exothermic reaction has a significant heat of reaction compared to the heat
capacity or conductivity of the material.

This use of finite elements does not really use the method’s powerful
ability to treat irregular boundaries, but does serve to illustrate how the
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FIG. 11. Transient temperature profiles for a hypothetical low-density
2 c¢m pultrusion strip cured at 515 K.

generality of the technique can be exploited to solve materials problems
without resorting to special-purpose software. Although the pultrusion
problem can be treated with finite differences [1], such treatments usually
involve code development specialized to a particular case; here it was only
necessary to construct a suitable input dataset. Even with the higher compu-
tational overhead often associated with finite element codes, these problems
took less than a second of processor time on a mainframe computer. With
some further streamlining, it might be possible to use the code on a dedicated
computer for pultrusion control and optimization.
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