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INTRODUCTION

Finite element analysis offers great promise for reducing the empiri-
cism now used extensively in polymer processing design, since it is well
suited for modeling the complicated boundary conditions and material prop-
erties encountered in industrial practice. This paper will present the
formulation we have developed for use in such processing analyses, and re-
sults which illustrate its use in some typical situations. Our element
formulations are constructed on the premise that momentum convection can
be neglected (polymer melt flows typically have very low Reynolds' num-
bers}, but that convective heat transfer may be significant (high Peclet
numbers). Nonisothermal effects are considered important in polymer pro-
cessing, due in part to the significant heating which may occur due to
viscous dissipation, and also to the very strong influence of temperature
on fluid viscositv. This paper will not discuss problems in which the
temperature dependence of viscosity is considered, although our code does
have the capability for such problems. Here we will treat the flow as
Newtonian, with the flow field being coupled to the heat transfer equation
only through the viscous heat generation.

MODEL FORMULATION
Governing Equations.

The velocity and temperature fields are governed by the conservation
equations for momentum and energy as shown below (a list of nomenclature
appears at the end of the paper):

n (Du/Dt) = -Vp + uv2u
p <(DI/Dt) = kV2T + Q

In our work the velocity field is constrained to be incompressible (Vu =
0) and the heat generation Q is given by the viscous dissipation (Q =
T:Yu). Boundary counditions on velocity, stress, temperature and heat flux
are also present on various portions of the boundary, and the ease with
which these conditions are handled by the finite element procedure consti-
tutes one of its most attractive features.

Finlte Element Equations.

As is described in detail in several texts (e.g. ref. 1), the finite
element equations mav be developed from the governing equations and their
boundary conditions by recasting the equations in a Galerkin weighted re-
sidual formulation, applving Green's Theorem to lower the order of second
derivatives and introduce natural boundary conditions, and finally by ex-
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pressing the problem variables in terms of an interpolation among their
values at various nodes which are located at finite elements within the
problem domain.

In our formulation the nodal unknowns are taken as the velocity compo-
nents and the temperature, so that:

(u,T) = Niai

where the i subscript refers to nodal values and the N functions are in-
terpolation polynomials computed by standardized subroutines for isopara-
metric elements. The finite element equations can be written in the form:

Ca + Ka = f
where
c® o K+ gH 0 £t }

b
0 ¢ o Kkl +xf+h ALY

The components in these global matrices are assembled from corresponding
element submatrices given in the following list:

c” =fN N dQ (fluid inertia)

T . .

c =./rNDCN df (thermal inertia)

T [

kx =~/ﬁ(m B)TX(mTB) df (compressibility penalty)
1 T . .
k" = f B"DB dQ (viscosity)

T T .

k =‘}r(V NYKVN dQ (thermal conduction)
c T .

k =~/FNDC u VN df (thermal convection)
h .
k= f NhN dT (boundary convection)
ft = —J/~Nt* dar (applied tractions)

£ ==y/&Q dQ (heat generation)

£ = _./pNhTa ar (ambient temperature)



We have chosen to compute various time-step values for transient prob-
lems using the "theta method" described in Ref. 1. The algorithm may be
written as:

[(c/At) + 61<]an+l + [(-C/At) - (1-8)K]a = (1-6)fn + 6fn+

1

Here the n and n+l subscripts refer to values at the current and next time,
and 0 is aparameter between zero and one which determines the weight to be
given the next time step. The algorithm is unconditionally stable for
6>.5, and 0=.667 corresponds to a Galerkin treatment with a linear inter-
polation over the time increment. ’

a
n

All of this formulation is.conventional, and a more detailed discus-
sion of its underlying theory and computer implementation can be found
elsewhere !’?. Some specific items might be mentioned here, however: (1)
A penalty formulation is used to enforce incompressibility, rather than
the usual velocity-pressure approach. This requires the use of double-
precision computer arithmetic and a selectively reduced order of numerical
integration for sufficient accuracy, but offers some reduction in program-
ming effort and eliminates the need to compute pressure as an additional
nodal variable. (2) The formulation assumes a full coupling between the
viscous and thermal terms, with the resulting storage and manipulation of
zeroes as seen in the above matrix equations. This coupling is unneces-
sary and inefficient for the partially coupled example problems described
below, in which the flow field could be solved separately and then used in
a single heat transfer solution. However, the coupled formulation is more
general and we expect the majority of our work will require it. (3) We
have coded a capability for either conventional Galerkin or "optimal' up-
winding for the handling of the thermal convection term. The upwinding
formulation is very convenient, as it requires simply a one-point evalu-
ation at asuitably shifted Gauss point within each element?, but this ap-
proach is controversial and evidence can be cited as to its failure in
some instances’.

EXAMPLE PROBLEMS
Entry Flow.

Figure 1 shows the streamlines for a 4:1 entry flow which we have pre-
viously reported in greater detail®. Here a grid of 100 four-node linear
elements were used to model the upper symmetric half of the plane capil-
lary, and a fully-developed Poiseuille velocity distribution was imposed
at the reservoir entry as a boundary condition. The streamlines are iden-
tical with published experimental and numerical results, although the
grid used here was not intended to be fine enough to capture the weak re-
circulation which develops in the stagnant corner of the reservoir.

The temperature contours for convectionless flow are shown in Figure
2, which shows a hot region at the entrance of the capillary due to the
combination of higher viscous dissipation at this region and a greater
distance from cool boundaries to which heat may be conducted. These iso-
therms are normalized on the maximum centerline temperature T = pv?/3k
expected for Poiseuille flow in the capillary.

The importance of thermal convection in this problem is given approxi-
mately by the Peclet number Pe = VLpc/k, where we may take V to be the
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maximum (centerline) velocity in the capillary and L as the capillary half-
height. Figure 3 plots the variation of temperature along the centerline
for various values of Pe, and it can be seen that the effect of increased
thermal convection is to sweep the cooler upstream flow particles well
into the capillary, with a resulting lowering of the temperatures overall
and a shift downstream of the hot spot near the throat. The relatively
coarse grid used in this problem produced unstable Galerkin results for
Peclet numbers greater than approximately ten, and so the higher degrees
of thermal convection were computed using the upwinding formulation. Fur-
ther tests with refined grids should be completed to assess the accuracy

of the upwinded solutions, although the plots in Figure 3 appear reasona-
ble.

Transient Couette Flow.

We have found that a capability for dynamic solutions is very useful
not only in explicitly transient problems, but for a variety of processing
flows. Rather than discretizing the entire bubble in a film blawing pro-
cess, for instance, we follow a small annular strip dynamically as it
travels from the die to the frost line. The dynamic algorithm is also
useful for developing steady solutions to nonlinear problems, and we are
presently working at modeling the flow of reactive fluids in this manner.

The performance of the time-stepping algorithm will be illustrated
here by means of some one-dimensional problems in which a single row of
linear elements is used. Figure 4 shows such a strip which is used to
model a Couette flow in which the upper plate is set into motion impul-
sively, and in which the velocity gradients in the horizontal direction
are zero. It is necessary in such problems to consider both the mesh
spacing and the time step carefully, in order that both are able to cap-
ture sharp gradients which occur near the moving wall. It is noted that
the mesh becomes much more refined near the upper plate in order to cap-
ture the boundary layer which develops there. We have also used a time
step which begins very small and then increases logarithmically as the
flow develops. The velocity histories at three positions in the flow
field are plotted in Figure 4 and compared with the theoretical solution.
It is clear that the computed solutions are not exact, but that the cor-
rect steady values are obtained at long times; improvement in accuracy
could likely be obtained by considering further refinements in the mesh
" and the choice of time steps.

Figure 5 shows the velocity and temperature profiles for a similar
problem, different only in that here the upper 15% of the fluid is a layer
having a viscosity ten times that of the remianing 85%. This simulation
is aimed at modeling the flow which may occur in coextrusion. At early
times, the flow has not developed sufficiently to involve the low-visco-
sity fluid away from the upper plate. The thermal dissipation in the up-
per region is initially intense due to the very high shear rates in the
boundary layer, and a severe thermal spike develops. At longer times the
flow is fully developed through the low-viscosity fluid; the high-visco-
city region experiences only little shear flow and appears almost as a
rigid boundary. The temperature profile in the low-viscosity fluid then
becomes parabolic as expected in simple Couette flow.



Graetz Flow.

The Graetz or forced convection problem is a commonly used trial prob-
lem in which channel flow suddenly encounters a heated portion of the boun-
dary. 1In the absence of flow the temperature distribution is based only on
conductive heat transfer considerations, but with significant flow the
cooler upstream particles are swept downstream; a thermal boundary layer
develops at the heated boundary which grows gradually toward the channel
center and the contours of constant temperature are swept downstream rela-
tive to the conduction-only case.

Figure 6 shows the isotherms for Peclet numbers of 1.3 and 130, where
upwinding was used to compute the high-convection case. The boundary con-
ditions included an imposed pressure at the entrance of the channel, and
the heated boundary was located a sufficient distance from the entry to
permit the development of a Poiseuille flow. 1In this example the viscous
generation of heat was assumed negligible, so heat is added only at the
boundary. '

CONCLUSIONS

This paper has described some features of a model which is being devel-
oped in our laboratory to simulate a number of diverse polymer melt pro-
cessing operations. We hope that this inexpensive and easily implemented
model can provide a means by which the designer's intuition might be ex-
panded. Continuing work is aimed at increasing the number of process sit-
uations amenable to this type of modeling; among these are included reac-
tive flows, free surfaces, and wall slip.

NOMENCLATURE

B Matrix of interpolation function derivatives
c specific heat

D Fluid viscosity matrix

D/Dt Substantive derivative

h Coefficient of convective boundary heat transfer
k Coefficient of thermal conduction

L Characteristic length

m Identity vector (1,1,1,0,0,0)

n Unit normal vector

N Interpolation function

P Pressure

T Temperature

Ta Ambient temperature

u Velocity vector

v Rate of deformation tensor

rh Boundary on which thermal convection occurs
rd Boundary on which heat flux q* is specified
rt Boundary on which traction t* is specified
ru¢ Boundary on which velocity u* is specified
At Time increment

0 Time step factor

A Penalty coefficient (usually 107p)

U Newtonian viscosity

P Density



T Deviatoric stress tensor

Q Problem domain (volume, area, etc.)
\Y Laplacian operator
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Figure 1 Streamlines for 4:1 Newtonian entry flow.

Te+0

02

7k

06 08 1012

-

Figure 2 Normalized temperature contours for 4:1 entry flow, Pe = 0.
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Figure 3 Centerline temperatures in 4:1 entry flow, at
various Peclet numbers.
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Figure 4 Transient Couette flow - grid and velocity
histories at various stations.
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Figure 5 Transient Couette flow of stratified immiscible fluids -
temperature and velocity profiles at various times.
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Figure 6 Isothermal contours for Graetz flow at two Peclet numbers.

Transition from cool to heated boundary is spread over one
element width.



