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A numerical simulation of ballistic impact and penetration
on woven textile panels is described which can easily incorpo-
rate a wide variety of realistic constitutive and fracture models.
The use of this model in assessing viscoelastic relaxation effects
is illustrated, and is further extended to include non-linear
viscoelastic effects. Since a variety of non-linear models is
presently available and there is insufficient evidence to indi-
cate the superiority of any single one in this instance, the
Eyring non-linear model was chosen arbitrarily to indicate the
ease with which these models may be implemented into the
numerical treatment. The results obtained using the non-linear
model are compared with comparable computer experiments

using linear elastic and linear viscoelastic models.

INTRODUCTION

extile structures have been used to provide protec-
Ttion against ballistic threats since the Second World
War, with the development then of flak jackets for air-
craft crewmen. Now used widely by military and police
personnel, these devices have been constructed princi-
pally of ballistic nylon or impregnated fiberglass. In
recent years, however, improved devices have been
developed using aramid fibers (DuPont’s Kevlar® 29 or
49), and these are being considered for such additional
applications as aircraft engine rotor-blade burst con-
tainment. Development and design of these devices has
been largely empirical, and considerable effort has been
expended to develop rational analytical tools which may
be used in design, or at least in improving the designer’s
intuition.

Although closed-form mathematical analyses can be
applied to the initial ballistic response of a single fiber
(1), late-time effects arise due to stress wave interactions
and reflections which make such closed-form analyses
intractable. In the case of woven panels, each fiber
crossover acts to reflect a portion of the stress wave
which is propagating outward from the impact point, so
here closed-form treatments are completely inappli-
cable. The complexity of these phenomena have re-
sulted in the development in our laboratory of a series of
computer codes, and these numerical treatments have

1068

proven to be of great value in understanding the ballistic
event. These codes do not involve the idealizing approx-
imations needed in many other treatments, such as
modeling the woven panel as a membrane, so that the
user is able to proceed directly from fiber material prop-
erties, weave geometry, projectile impact velocity, etc.

NUMERICAL ANALYSIS OF TEXTILE IMPACT
Computational Scheme

The computer method used in the present analysis of
textile impact is an outgrowth of a technique pioneered
by Davids, et. al. (2) and applied successfully to a variety
of wave propagation problems. This approach, which is
similar in final form to finite-difference analysis but mar-
kedly different in derivation, was first used by Lynch (3)
to analyze transverse impact of single fibers and later
extended by Roylance, et al. to the study of viscoelastic
fiber impact (4) and impact of woven textile panels (5). As
indicated in Fig. I, the woven panel is first idealized as
an assemblage of pin-jointed, flexible fiber elements,
each having a mass which makes the areal density of the
idealized mesh equal to that of the panel being simu-
lated. The initial projectile velocity is imposed on the
node at the impact point, which causes a strain to de-
velop in the adjacent elements. The tension resulting
from this strain is computed from the constitutive law,
and this tension is used to calculate an acceleration in the
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Fig. 1. Idealization of fabric mesh for numerical analysis.

neighboring elements. The computer proceeds outward
from the impact point in this manner, using a
momentum-impulse balance, a strain-displacement
condition, and a constitutive equation to compute for
each element the current values of tension, strain, veloc-
ity, position and such ancillary but important quantities
as strain energy and kinetic energy. At the end of these
calculations, a new projectile velocity is computed from
the tensions acting on the projectile from the fibers, and
the process is repeated for a new increment of time.
In the development of dynamic codes of this sort, due
attention must be given to matters of numerical stability
and accuracy. Stability—the absence of spurious numer-
ical oscillations which grow without bound during the
computations—is insured by selecting the time incre-
ment to match the time needed for the propagating
stress waves to traverse the length of the finite element
(6). Stability can be monitored by comparing the total
energy stored in and dissipated by the fabric with the
kinetic energy lost by the projectile. Accuracy is more
difficult to insure, since no closed-form analytical so-
lutions of this problem exist for comparison. (The de-
generate case of a single fiber impacted transversely
does agree closely with closed-form analyses, however).
As a means of demonstrating accuracy, therefore, sev-
eral computer experiments were performed which
simulated actual ballistic firing experiments for which
high-speed photographic data was available (7). Figure 2
shows a typical comparison of this type, where here
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Fig. 2. Residual velocity after penetration: comparison of ex-
perimental and numerical results.

impact on a single layer of Kevlar 29 was simulated. Very
crude approximations for the material properties were
used here: the modulus was assumed to remain constant
with strain and was set at the value obtained by quasi-
static tension tests, and the failure criterion used was a
simple maximum-strain condition. In spite of these
idealizations, good agreement with experiment was ob-
tained.

Modeling of Dynamic Material Properties

In spite of the good agreement with experiment ob-
tained using only very simple idealizations of material
properties, one would expect that for improved insight to
the penetration process a proper simulation of dynamic
material properties would be necessary. In particular,
two classes of material response must be modeled: con-
stitutive and fracture. Both of these can be expected to
be dependent on both time and temperature in the case
of polymeric textiles. Brief descriptions of currently
employed models will be given here.

The numerical algorithm is finally terminated by
simulated rupture of the fibers. Since the strain and
tension histories are computed for each element in the
mesh, a variety of failure criteria may be easily incorpo-
rated. The use of Eyring-type rate process fracture
criteria (8) are particularly attractive, since they are
computationally convenient and still provide good simu-
lation of time and temperature effects. A simple but very
useful such criterion is that due to Zhurkov, who states
that the lifetime 7of a solid subjected to a constant stress
o is:

T=Toexp(—[—]—%) 1)

where k is Boltzman’s constant and T is the absolute
temperature. 7,, U and 7y are material constants related
to the dissociation kinetics of the atomic bonds and the
internal defect structure of the material. For time-
varying stresses and/or temperatures, one may assume
superpossibility and write Zhurkov’s equation in the
form

’ dt

U - t
° 1, exp { [ k;{(g( )] }

In the present treatment, the current value of the above
integral is computed at each node. The time and location
of rupture is determined when the integral value
reaches unity at any node.

In the course of the iterative calculations, a constitu-
tive material law must be evoked at each element in
order to compute the element tension from its strain
history. One would expect that a model incorporating
viscoelastic effects would be necessary for proper simu-
lation of polymeric structures. With nylon fibers, for
instance, there is considerable evidence that relaxation
does indeed occur in the ballistic time frame (9). This is
expected in light of the dynamic mechanical spectrum of
nylon, in which a beta relaxation is observed having an
apparent activation energy of approximately 60 KJ/mole
(10); this relaxation is calculated to occur in approxi-
mately five microseconds at room temperature.
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A general viscoelastic model well suited for comput-
ing tensions from prescribed strains is the Wiechert
model, depicted schematically in Fig. 3. This model
takes the polvmer response to be that of the shown array
of Newtonian dashpots of viscosity m; and Hookean
springs of stiffness k;. The differential tension-strain law
for the jth arm of the model is

¢ = % o; + % a; 3)
where the dots indicate time differentiation, o is the
tensile stress and € is the strain. Casting this equation in
finite difference form relative to a discrete time incre-
ment Af and solving:

1

o= TTF T [ki(¢ — &)+ a7l (4)

where the superscripts ¢t and ¢-] indicate values at the
current and previous times respectively. 7, = ni/k; is a
characteristic relaxation time for the j™ arm. The total
tension at time ¢ is the sum of all the o}’ plus the tension
in the equilibrium spring k€

o' = ket + 3 R €D T o

% (at/7) ®)

This tension-strain calculation is performed at each ele-
ment node. In addition to storing all the k; and 7;, the
computer must also store the previous strain and tension
values at each node.

Although several spring-dashpot arms are needed to
model accurately the distribution of relaxation times
inherent even in a “single” polymer relaxation, valuable
insight to the influence of viscoelastic effects on fabric
impact may be obtained by considering the model ob-
tained by using only one spring-dashpot arm in parallel
with the equilibrium spring. This is the “standard linear
solid”, and it is often used for qualitative studies of
viscoelastic phenomena. Typical results obtained using
this model are shown in Fig. 4, where the model con-
stants have been taken as representative of drawn nylon
fibers (k. = 80 gpd*, k, = 20 gpd, 71 = 5 us). Figure 4
shows the variation in fiber stress along the fibers run-
ning through the impact point, 30.4 us after an impact at
300 m/s, and compares the standard linear solid material
with that of a linear elastic material of the same initial

* gpd. or grams per denier. is a commonly used but non-ST unit which is very convenient in
wave propagation calculation. The conversion to STunits is: 1 gpd = (88.2p) MPa, where pis
the density in Mg/m®.

o (t)

Fig. 3. The Wiechert model for linear viscoelastic constitutive
response.
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Fig. 4. Stress distributions along orthogonal fibers passing
through impact point: comparison of linear elastic and linear
viscoelastic fibers.

modulus. The degree of relaxation X is the fraction of
initial modulus which undergoes relaxation; it is equal to
0.2 for the standard linear solid for the above choice of
model constants, and is equal to zero for elastic mate-
rials. Note that the stress distribution even for elastic
materials is non-uniform, as a result of wave reflection
and interaction from fiber crossovers. Also shown in Fig.
4 is the ratio of the viscoelastic to the elastic stresses
(denoted T/T,); the variation of this parameter with dis-
tance shows that the effect of relaxation is most dominant
near the wavefront, and assumes a stable value less than
unity at distances far behind the traveling wave.

NON-LINEAR VISCOELASTIC RELAXATION

Although the linear viscoelastic models described in
the previous section are useful for illustrating the gen-
eral features of relaxation on the penetration process,
they are certainly not rigorously applicable to the types
of materials presently used in impact-resistant textile
structures. In fact, although most polymeric materials
are time-dependent to various degrees, very few, if any
are linear, even at low strains. Beyond stating that
linearity is not observed, however, there does not exist
at the present time any single generally accepted means
of describing nonlinear effects. The reader is referred to
the recent books by Ward (10) and Findley, et al. (11) for
reviews of the several techniques currently in use.

One strong advantage of the direct numerical analysis
presented here is the ease with which various constitu-
tive models can be imcorporated: they are employed as a
library of subroutines, and no code revision is necessary
in order to incorporate new models. As a means of
demonstrating this flexibility, a somewhat arbitrarily-
selected nonlinear viscoelastic constitutive model has
been incorporated. The implementation of this model
will be described briefly, and the results obtained there-
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from will be compared with those of the linear elastic
and linear viscoelastic models.

The Wiechert model can be extended to include the
effect of material nonlinearity by rendering the spring
and/or dashpot elements non-linear. If for instance one
uses a power-law spring and Eyring dashpot defined as

o = keb, ¢; = A sinh(ao) (6)

Then the finite-difference equation relating tensions

and strains in the j™ arm of the model is:
1

¢ _Atet—l _ bjlkj (%jt)'ﬁ_l ( ot _Ato.jt—l)

+ A sinh(agy) (7)

A relation such as this requires an iterative numerical
solution for o at each element and at each time step; the
computer effort is increased but the principles of the
impact algorithm are straightforward. The principal ob-
stacle to the use of non-linear models in impact analysis
is not the incorporation of the models into the solution
scheme, but rather the determination of the material
parameters (the b’s, k’s, A’s and «’s in the above equa-
tion) applicable in the microsecond time scale of poly-
mer relaxations.

To illustrate the effect of non-linear constitutive
models on panel ballistic response, a series of computer
experiments was performed on three different simula-
tions of nylon fabric: one using only linear elastic re-
sponse (only the equilibrium spring in the Wiechert
model), one using the “standard linear solid” model for
linear viscoelastic response (the equilibrium spring plus
one dashpot arm), and the last being a standard linear
solid but with the dashpot made a non-linear Eyring
element. The initial modulus was taken as 100 gpd, the
relaxed modulus as 80 gpd, and the relaxation time for
the standard linear solid as five microseconds. The con-
cept of relaxation time (time to complete 63.2 percent of
the total relaxation) has no meaning for the non-linear
element since the rate of relaxation changes non-linearly
with the stress so the A and « were arbitrarily chosen so
as to cause relaxation in approximately the same time
scale (10® s7" and 0.1 den/gm respectively). The non-
linear constitutive equation was solved by using Mul-
ler’s method (12), which increased the computation time
by roughly one third.

Figure 5 shows the stress distribution along the ortho-
gonal fibers through the impact point for the non-linear
viscoelastic and linear elastic fabrics, 20 us after a 300
m/s impact. As in Fig. 4, this figure also depicts the
variation in the parameter T,/T,, the ratio of the vis-
coelastic to elastic stress. The forms of this parameter for
non-linear and linear viscoelastic fabrics are compared
in Fig. 6. Although the equilibrium value far from the
wavefront is approximately the same in both cases,
strong differences are evident near the wavefront. These
are due to the relatively more rapid response to higher
strain gradients in the non-linear material.

Another important indicator of viscoelastic fabric re-
sponse is the stress at the point of impact. The stress and
strain at the impact point increase with time due to the
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Fig. 5. Stress distribution along orthogonal fibers passing
through impact point: comparison of linear elastic and non-
linear viscoelastic fabrics.
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Fig. 6. Stress relaxation along orthogonal fibers passing
through impact point, relative to elastic material: comparison
of linear and nonlinear viscoelastic fabrics.

continual arrival there of wavelets reflected from fiber
crossovers, but in viscoelastic materials both stress relax-
ation and creep strain are superimposed on this overall
increase. In Fig. 7 are plotted the stress histories for the
three material models, as well as the stress relaxation
ratio defined before as the ratio between the viscoelastic
and elastic stress. As in the earlier two figures, the linear
and non-linear viscoelastic models approach essentially
identical equilibrium values at long time, but are mar-
kedly different near the initial disturbance due to the
more rapid response of the non-linear material to large
gradients.
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Fig. 7. Stress history at point of impact: comparison between
linear elastic, linear viscoelastic, and nonlinear viscoelastic

fabrics.
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CONCLUSION

The results above demonstrate that non-linear vis-
coelastic constitutive models can be incorporated into
numerical analyses of textile impact with no real
difficulty, and that the results are appreciably different
than those obtained by linear viscoelastic models. How-
ever, it should be emphasized that these specific results
were obtained from an arbitrary selection of both the
non-linear model and its numerical parameters, so they
must be regarded as illustrative only. With this analyti-
cal tool in hand, one can now turn to the task of inferring
suitable constitutive models and numerical parameters
from appropriate experiments.
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