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The finite element method is an approximate numerical
analysis approach of great applicability to a wide variety offield
problems. This paper describes the formulation of a conve-
nient method for treating fluid-flow problems relevant to
analysis of polymer processing operations, and illustrates its
use by means of some linear and nonlinear problems in melt

extrusion.

INTRODUCTION

Although a good many of the developments in poly-

mer melt processing have been—and will continue
to be—largely Edisonian in nature, polymer processing
technology is now sufficiently mature that further de-
velopment will profit considerably by improved analyti-
cal means of estimating the effects of processing vari-
ables on final-part quality and process economics with-
out resorting to purely empirical experimental searches.
The engineer is interested in such effects as the location
and minimization of regions of excessive shear deforma-
tion and mechanical degradation within the flow field,
regions of stagnation at which overlong material resi-
dence and thermal degradation might occur, develop-
ment of molecular orientation along desired directions
by employing preplanned velocity gradients, and pre-
dictions of power requirements and process cfficiency.
In a closely related discipline, the polymer rheologist is
interested in means whereby the consequences of
newly-developed material constitutive models might be
assessed. This eventually improves the capability to de-
sign the molecular and supermolecular architecture of
the polymer so as to manipulate favorably the relation-
ships between material structure, processing, and prop-
erties. This latter goal is one of the central themes of
materials science and engineering,

Problems of viscous fluid flow, even when the
simplifying assumption of incompressibility is appli-
cable, constitute some of the most challenging problems
in applied mathematics. They are typically mixed
boundary-value problems (velocities or velocity gra-
dients being specified over some portions of the bound-
ary, forces or tractions over other portions), and are
often both nonlinear and time-dependent. Certain of
these problems can be attacked successfully using
closed-form mathematical methods, and these classical
problems provide an important basis of understanding
in fluid mechanics. In practical problems, however, one
commonly encounters boundary conditions which are
difficult to describe mathematically, and which in any
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case are sufficiently complex to render the resulting
system of equations intractable. For these situations,
the fluid analyst has developed an extensive and power-
ful array of numerical means of obtaining approximate
solutions. These have emphasized the use of finite-
difference methods, in which the partial derivatives
found in the fluid governing equations are approximated
by discrete differences in the field variables, the spatial
coordinates, and time. Finite difference methods will
certainly continue to be very popular in fluid-
flow problems, but they do have certain drawbacks
which tend to limit their use in some instances. They
tend to require rather extensive reworking for each
problem so as to fit the grid and the recursive algorithms
to the boundaries, and it is sometimes difficult to fit the
complex geometrical boundaries encountered in real
processing flow problems. For these reasons and others,
a good deal of attention is now being directed to the
application of finite element methods to fluid.flow prob-
lems (1,2). The finite element method counts ease of
implementation to new problems and ability to fit ex-
tremely irregular geometries among its most attractive
features.

The finite element method (3,4) is & computer-
oriented numerical approach to field problems in which
approximations of the field variables within discrete re-
gions of the solution domain are assumed. These approx-
imations are then used to develop relations between the
known and unknown values of the field variables at
various nodes which are established within and along
the element boundaries. These relations typically take
the form of a large system of algebraic equations which
may be solved using direct or iterative numerical meth-
ods. The method was first used principally by engineers
who regarded it as an outgrowth of matrix structural
analysis. In recent years, however, the method has been
placed on a firm foundation in applied mathematics
which has facilitated its extension to a wide variety of
field problems beyond structural stress analysis. Its
ability to handle many diverse problems in fluid flow ina
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convenient and economic manner makes it very attrac-
tive for analyses of polymer processing operations. This
paper will discuss a particularly convenient formulation
for this purpose, and illustrate its use in some two-
dimensional problems in polymer melt extrusion.

PENALTY FORMULATION FOR VISCOUS
IMCOMPRESSIBLE FLUIDS
Fundamental Relations.

Although the governing equations for two-
dimensional fluid flow may be written in several alterna-
tive forms, a useful similarity to finite element solid
mechanics formulations is obtained if one adopts an
Eulerian measure of velocity as the fundamental un-
known. Fluid velocity then becomes analogous to solid
displacement, and many aspects of solid mechanics
computer analysis may be used directly. This approach
is discussed in more detail by Zienkiewicz (5), and will
be outlined here only briefily.

Equilibrium of the local stresses @ and the body forces
b within the fluid domain may be written in matrix form
as

LT'e+b=0 (1)
Tre dlax 0O
o= 0, L=]0 a/dy
Ty 8/0y o/ox

The relation applies equally to solids and fluids. Provi-
sion for the convective inertial forces which occur in
fluid flow may be obtained by including a d’Alembert
term in the body-force vector:
b= bo - pc (2)
¢ = du/dt + (V-uh)u 3)
Here b, includes the usual body forces (gravitation,
etc.), pis the fluid density, u” = (u,, u,) lists the velocity
components, and VT = (8/dx, 9/dy) is the gradient
operator. The pc term may be neglected for steady
creeping flows (typical of many flows in polymer melt
processing); its inclusion, when necessary, leads to a
nonlinear problem with unsymmetric stiffness matrices.
The local strain rates may be written in terms of the
velocities as .
€=Lu 4)

where L is the same derivative-operator matrix defined
in Eq 1.

The fluid stresses are related to the strain rates by the
material constitutive law. Since the strain rates depend
only on the deviatoric components of the stress o', it is
convenient to dissociate the stress tensor as

=0+ mo, (5)
where m” = (1,1,0) and o, = (05, + Oy + 0..)/3. The
mean stress o, is the negative of the hydrostatic

pressure p. In the case of Newtonian fluids, o’ and &
are related by

200
a"=y,[020]é§ Dé (6)

001 ‘
where p is the Newtonian viscosity.

Of course, many constitutive models of polymer melt
response beyond that given in Eq 6 exist, and a principal
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goal of fluid flow analysis is to provide a means by which
these more advanced models can be tested and im-
proved. An often used constitutive model, fairly well
suited to many polymer melts, is that of the power-law
fluid, in which the Newtonian viscosity is replaced by

PEAE Y

where
A:A - 2 2 2

5 = 2[u%e + ubul + [uy. + us,) ®)
and n is the power-law exponent. Use of this and most
other more advanced constitutive laws renders the for-
mulation nonlinear, increasing greatly the difficulty of
closed-form solutions and requiring the use of iterative
schemes in numerical approaches.

The continuity law may be written:

ap/ot = V7(pu) 9
which for nearly incompressible fluids simplifies to
Viu=¢é,=0 (10)

This relation may be viewed as a constraint on the ve-
locities admissable as solutions, and the means of incor-
porating this constraint constitute one of the principal
differences between the various finite element models
of fluid flow which have been proposed to date. A very
convenient approach is that of the “penalty function” (6),
in which the consequences of not enforcing incompres-
sibility are “penalized”by writing

p=aég, (11)

where a is a large number in comparison with u. In this
context, a is analogous to the bulk modulus of the mate-
rial.

Finite-Element Discretization

In the “isoparametric” formulation of the finite ele-
ment method, one begins by writing an expression for
the coordinates within a portion (element) of the solu-
tion domain in terms of the coordinates of nodal points
which are selected along and within the element bound-
aries:

X = N( X4 (12)

Here x” = (x,y) is the position of a point within or on the
boundary of the element, x; are the x—y coordinates of
the element’s nodal points, and the “shape functions”
Ni(x,y) are interpolating polynomials chosen to provide
the desired variation of x within the element. Using
shape functions which are tabulated in several standard
texts (e.g. Refs. (3) and (4)), one may use the transforma-
tion of Eq 12 to map extensive families of linear and
curvilinear elements in a simple and convenient man-
ner.

The velocities at arbitrary positions within the ele-
ment are written in terms of the velocities at the nodes,
using the same interpolation shape functions as in Eq 12:

“(x’y) = Ni(x»y) u; (13)

where here u, lists the velocities of the nodal points. The
u; are of course unknown as yet, and their determination
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is the first goal of this assumed-velocity form of analysis.
Equation 13 constitutes an approximating assumption as
to the variation of the velocity u(x,y) within the element.
As the element size is decreased, this approximation is
expected to converge to the correct value. Depending
on the order of the interpolating polynomial N;(x,y), one
may obtain linear, quadratic, or higher order variations
of u(x,y). The higher orders require more computational
effort, but are often sufficiently more accurate as to be
more efficient than low-order elements.

The fluid strain rates may now be written in terms of
the nodal velocities using Egs 13 and 4:

€'=Lu=LN,~u,-=B,-u,- (14)
where
Nir» 0 1]
Bf =L Ni - 0 Ni,y <15)
Ni,y Ni.r,
The stresses are then:
0'=Dé=DB,-u,- (16)
p=oaé=am’B;u; (17)

Equation 17 reveals one of the most attractive features of
the penalty function approach: the pressure is computed
in terms of the nodal velocities only, whereas other
formulations typically introduce additional unknown var-
iables to enforce incompressibility. The penalty formu-
lation is simpler to implement in computer language,
and the lower number of unknowns results in sig-
nificantly shorter run times and costs. '

Finally, all of the above relations can be combined in
an expression of virtual work:

[wadv—fautbdv— SuTt* dS = 0
v |74 St

(18)

where the 8 € and du represent virtual quantities, V is
the element area, and S, is the portion of the element
boundary over which tractions t* are prescribed. Sub-
stituting the previous expressions for €, &, and u into Eq
18 and factoring out du gives eventually

- = 4 _
[K+K+K+M-at—]u,.+f,.-o (19)

where
Ky = fVBT,.D B,dV (20a)
K, = [Vp(N,-)’[V~<N,-u,-)T‘_|TN,- v (201)
Ku= [ (mB)"a(m8) &v (200
M, = fv (N)p N, dv (20d)
f= - fVNT,-b,,dV - [ Nt as (20e)

Although somewhat complicated in appearance, each of
the integrands in Egs 20a-e above is easily computed at
any arbitrary point within the element. The integrals
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themselves are computed numerically, with Gaussian
integration used commonly due to its efficiency.

In the case of penalty function formulations, the use of
numerical integration also provides a means of improv-
ing the accuracy of the analysis. By using a reduced
order of integration relative to the number of element
degrees of freedom, the assembled K matrix tends to
singularity. This seemingly undesirable result is in fact
necessary to prevent the factor a from dominating the
solution and leading to a trivial null solution for the u; (6).
In the examples to be presented below, a four-point
Gaussian integration was used in conjunction with
nine-node quadratic elements.

Computer Implementation

In practice, the computations described in the previ-
ous section are employed in a computer code which
loops through each successive element in turn, develop-
ing the submatrices of Eqs 20a-e. These submatrices are
added to the appropriate positions of global arrays which
take cognizance of the nodal numbering scheme for the
entire solution domain; these assembled arrays then
constitute the coefficient matrix and constant vector of a
system of linear algebraic equations. The code must
contain provision for accepting or generating the input
data, computing and assembling the global arrays, solv-
ing the resulting system in an efficient manner, comput-
ing such ancillary data as strain rates and stresses in
terms of the resulting nodal velocities, and providing a
convenient output of the results.

The researcher or educator wishing to use finite ele-
ment analysis must decide on the sort of code he wishes
to obtain or write for this purpose. Several large,
production-oriented codes are available (7), but these

_are often proprietary and not available in their source

version. Even when their source language is available,
these large codes tend to be difficult to modify due to
their complexity. Further, their considerable ability to
preprocess and postprocess the data so as to provide, for
instance, convenient graphical input-output procedures
may sometimes mask errors in numerical approximation
which often arise as new element types are being de-
veloped.

For the purpose of implementing the fluid analyses
described above, the present author has selected the
code written by Taylor (8) as a good compromise for
research purposes. This code is available to all, is well
documented and supported by an excellent textbook,
and is relatively easy to use and modify. It also contains
most of the important features found in the large pro-
prietary codes: economical active-column storage of the
stiffness array, an efficient Gaussian equation solver for
either symmetric or unsymmetric arrays, a generalized
shape-function approach which facilitates the develop-
ment of new elements, and a mnemonic maerocontrol
language which permits the code to attack a wide variety
of linear and nonlinear, and steady or transient, prob-
lems. The fluid element developed for this present work
was constructed along the lines suggested by Taylor for
this code.
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APPLICATION TO POLYMER PROCESSING:
MELT EXTRUSION

In principle, finite element analysis is ideally suited to
the requirements of analytical models outlined earlier.
Once the nodal velocities have been computed, Eq
13-17 permit the velocities, strain rates, shear stresses
and pressure to be computed at any point in the flow
domain. Force reactions at the boundaries are also ob-
tained easily, and integration of these over the boundary
surfaces permits a computation of the total forces which
must be supplied by the equipment, and the power
needed to operate the process.

Of course, the finite element method is an approxima-
tive rather than exact solution scheme, and one should
assess the accuracy and reliability of such an approach
before embarking on an extensive series of simulations.
In addition to approximation errors, newly-developed
codes are likely to contain errors in both logic and cod-
ing. The melt extruder, in which molten polymer is
dragged toward a die by the relative motion of the
extruder barrel relative to the screw, is a process of
actual interest which is also well suited for illustrating
the reliability of the finite element approach. The flow
channel is of a sufficiently simple shape to permit theor-
tical solutions for comparison purposes, but the flow is of
a general mixed-boundary value nature so that the gen-
eral applicability of the method may be assessed.

As described in several texts (e.g., Refs. (9-10)), the
helical flow path may be idealized as a straight, rectangu-
lar channel covered by a plate which moves tangentially
to the channel as shown in Fig. 1. Due to the tangential
motion of the top plate, fluid flow is established in both
the axial (down-channel) and transverse (cross-channel)
directions. In addition, the axial flow is inhibited by the
development of pressure by the die. In the case of
Newtonian melts, these two flow fields are uncoupled
and may be treated separately.

Figure 2 shows the sixteen-element idealization used
to simulate a portion of the axial flow field. Normalized
dimensions and operating parameters were used during
the analysis; in particular, the pressure increase through
the length L was set to unity. The fluid viscosity was
then set to that value which the theoretical solution
predicts would cause the ratio of drag to pressure flow to

(o] —

o w

Fig. 1. Straight-channel idealization of single-flight melt ex-
truder.
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Fig. 2. Finite-element idealization of axial flow. Normalized
values: V,, =p,=H =L =1;p, = 0, = 0.25.

have the value -2/3. The normalized axial velocity distri-
bution as computed along a constant-x line near the
center of the mesh is compared with the theoretical
distribution in Fig. 3, and it is seen that the numerical
prediction is good in spite of the relatively coarse mesh
used.

Figure 3 also shows the numerical results obtained
when a non-Newtonian fluid with power-law exponentn
= 0.8 is considered. This solution was obtained by using
the Newtonian solution as an initial estimate for the
nodal velocities, then conducting a Newton-Raphson it-
eration to obtain the nonlinear solution. The macro lan-
guage provided by the Taylor code makes programming
for this iterative solution very convenient, and the
Newton-Raphson scheme converged in this case in four
iterations. In the case of nonlinear fluids, however, the
transverse and axial flow fields are coupled, since the
velocity gradients in one field influence the viscosity
which in turn perturbs the flow field in the other direc-
tion. A three-dimensional analysis is needed to model
this situation correctly.

1o

y/H OS5}
0 1 1 1 ]
-0.25 05 1.0
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Fig. 3. Variation of axial velocity for Newtonian and power-law
fluid along x/L = 0.625. Drawn curve for n = 1 is the theoretical
prediction. Circles represent weighted averages of nine nodal
velocities.
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The variation of pressure along the axial direction is
compared with the theoretical linear variation in Fig. 4.
This figure indicates one of the averaging procedures
which often prove useful in these analyses: the pressures
are computed initially at the Gaussian integration sta-
tions, but some improvement in accuracy may be ob-
tained at times if these values are used to compute an
average value within the element.

Figure 5 shows the results obtained using 2 6 X 3 ele-
ment simulation of the transverse flow field. This is a
more difficult problem numerically, in spite of the fact
that the boundary conditions appear simpler (no
prescribed forces). However, the velocities exhibit
singularities at the upper corners of the flow field, and a
finer mesh is needed to describe these regions
accurately. This is also a more difficult problem theoret-
ically: it is usually treated by adopting the lubrication
approximation (neglect vertical velocity components)
and then viewing the flow as a combined drag and
pressure flow similar to the axial flow. The pressure
gradient established within the section by the presence
of the vertical walls is obtained by insisting that the net
flow across any constant-x line must be zero. The veloc-
ity arrows drawn in Fig. 5 are a weighted average of the

1.5pF
: ® — Gauss points o
OF o — Element averages oo
O
p 05} /
O
(ol [
(o]
®
-0.5 L i [ 4
0 0.25 05 0.75 1.O

x/L

Fig. 4. Comparison of theoretical and computed pressure along
axial channel, at y/H = 0.447.
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Fig. 5. Representation of computed cross-channel flow field.
Drawn arrows are scaled relative to the barrel velocity V,,
shown at top.
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nine nodal values at each element, and they indicate the
circulatory nature of the transverse flow field. The hori-
zontal components of the velocity field agree well with
the theoretical prediction, but the coarseness of the
mesh in the vertical direction has produced some er-
roneous values for the y-components of velocity which
results in a nonzero net flow across constant-y lines.

The pressures along several constant-y lines through
the transverse section are plotted in Fig. 6. These values
are both positive and negative, but they will be added to
the pressures developed in the axial direction so as to
create all positive values. The drawn line has the slope
predicted by the lubrication solution for the pressure
gradient, and it is seen that the numerical values agree
well. Note the higher pressure near the singularity in
the upper left corner. Again, these data are computed by
averaging the values of the four Gaussian integration
stations within each element.

CONCLUSIONS

The foregoing analysis and illustrative problems indi-
cate that the finite element method can be of consider-
able utility in providing approximate values for the vari-
ables of interest in real polymer melt processing opera-
tions. A good many operations exist in which exactly the
sort of analysis described above many be used directly.
One example might be the circulatory flow in the inter-
mediate stages of the plasticating extruder, in which the
flow takes place around a bed of as-yet-unmelted poly-
mer. However, many important processes will require
an extention of the numerical method for their proper
simulation, and these processes constitute exciting
fields of future work. Three such areas might be men-
tioned briefly: (a) The method can be used advantage-
ously in free-surface flows, such as extrusion through a
die and film blowing. This solutions are generally itera-
tive approaches in which the position of the free surface
is adjusted until all final velocities are tangential to the
surface. Free surface analyses will also profit from incor-
poration of more advanced viscoelastic fluid constitutive
laws, so that proper allowance for normal stresses can be
made. (b) The capability for handling temperature de-
pendencies can be improved. A simple step would in-
volve only incorporating a temperature-dependent vis-
cosity in the fluid element, then reading the various
element temperatures in as input data. A more substan-
tial development would be to couple the temperature

L0 r
° o — yH=0833
L © —3/H » 0500
\ O —y/H =0.)67
o ]
; [ \l
a \I\
L} \D
- ® -
Q
-0 i 1 1 J
[+] 0.25 05 075 10

x/W

Fig. 6. Computed pressures in transverse flow field, using aver-
aged Gaussian-station values. Drawn line has slope 474 kPa, the
theoretical value.
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into the formulation as another variable, so as to make
proper allowance for shear-generated dissipation and
heat transfer. (c) Certain problems, such as the coupling
between axial and transverse flow in nonlinear fluid
extrusion, will require the use of three-dimensional
elements. In all of the above areas and in many others
not mentioned, the analyst must choose carefully ‘to
make efficient and economical use of this very powerful
method.

Finally, the analyst should keep in mind that the
application of finite element methods to fluid flow
analysis is relatively new, and that several different ap-
proaches have appeared in the literature. As men-
tioned earlier, these various implementations differ
most substantially in the manner in which incompressi-
bility is enforced. The penalty method demonstrated in
this paper is very convenient in that it requires only
minor changes from the isoparametric formulation al-
ready widely available for stress analysis, and it does not
require the incorporation of additional degrees of free-
dom. On the other hand, some workers have noted a
tendancy for the assembled global stiffness matrix to
become ill-conditioned due to the use of the large pen-
alty coefficient, which leads to difficulties in obtaining a
numerical solution. The test problems solved in this
paper exhibited no such difficulties even when solved
using single-precision arithmetic; however, the use of
double precision may be prudent in order to help avoid
inaccuracies due to ill-conditioning. Given this caveat,
the convenience of the penalty formulation would seem
to favor its use over such other methods as direct
velocity-pressure formulations, Lagrangian multiplier
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constraints, or stream function formulations. Further
discussion of the relative merits of these differing ap-
proaches may be found in Refs. (1, 3, and 7).
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