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Abstract

A simple but effective numerical method for analysis of ballistic impact on a woven
fabric panel has been extended to treat the case in which the fabric is protected against
long slender projectiles by means of hard covering plates. The principles and imple-
mentation of the numerical method are described, following which the computer code
is used in a series of numerical experiments to assess the influence of these plates on
the wave propagation patterns in impacted panels. Based on these results, three armor
configurations are recommended for further study: Kevlar fabric fronted by titanium
plates, Spectra fabric fronted by titanium plates, and Spectra fabric fronted by B,C
plates.



Chapter 1

Introduction

1.1 Current Status of Personnel Armor Design

The history of personnel armor has been marked by advances in armor design counter-
acted by advances in armaments, requiring further development in armor systems to
meet the new threats. The effectiveness of fabric armor for personnel protection against
fragments and lower velocity projectiles increased significantly with the development of
aramid fibers, due to their remarkable combination of high modulus and high failure
strain. Since the incorporation of these fibers into body armor and helmets, several
new projectiles have appeared which must be countered by advances in the design of
the fabric armor system.

Among the newer armament threats which have been developed in recent years
are projectiles which have a low friction coefficient coating such as teflon, and high
aspect ratio projectiles such as flechettes which are able to defeat the fabric armor
by passing through the interstices of the fabric without losing a significant amount of
kinetic energy.

Techniques were developed during the 1970’s to model the response of fabrics to
ballistic impact and to clarify the details of the projectile-fabric interaction. These
analytical techniques succeeded in large part in accounting for the increased armor
protection afforded by aramid fabrics. These same techniques have been utilized and
extended in this study in an effort to upgrade the ballistic resistance of fabric armor
to the newer threats.

1.2 Stress Wave Propagation in Fibers.

Much of the numerical modeling to be described in this report is based on the closed-
form analysis of wave propagation in fibers which is available in the literature (e.g.
Roylance, 1977).} Salient points from these earlier analyses are included here to estab-
lish a context for the computer model.

Wave propagation phenomena in the fibrous elements of the fabric are consider-
ably less complicated than in a general medium, since the possibility of unrestrained

1Literature citations are listed alphabetically in Appendix A on page 28.
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transverse contraction in fibers eliminates to a good approximation the simultaneous
propagation of independent dilatational and distortional waves which are present in
general. Previous work has shown that longitudinal tensile stress wave propagation in
fabric armor can be predicted accurately using these simplifications.

The equation of motion for fibers or rods is simply:

Fu_E (a=u) )

ot~ p \az?

where u is the longitudinal particle displacement, p is the material density, E is the
longitudinal Young's modulus and z and ¢ are the space and time coordinates. This is
the well known wave equation, whose solution represents a disturbance traveling at a

velocity
c=+vE/p (1.2)

Conventional textile units employing stiffness per unit linear density are very con-
venient in wave propagation analyses, since the factor is included implicitly in the
modulus. For modulus expressed in grams per denier and wavespeed in meters per
second, the equation for wavespeed becomes:

c=VkE (1.3)

where k = 88,260 is the necessary units-conversion factor. The appropriate value of
modulus in these equations is the “dynamic” stiffness relevant to the high strain rates
corresponding to wave-propagation tests.

The relations above provide a simple means of estimating the stress which will be
generated upon impact. Consider a fiber fixed at one end whose free end is suddenly
subjected to a constant outward velocity V in the longitudinal (fiber) direction. After
a time t, the strain wave will have propagated into the fiber a distance ct, while the free
end will have displaced outward an amount Vt. The strain resulting from the impact
of then the displacement Vt divided by the effected length ct:

e= Yt 1:- = V\/pJE (1.4)

The corresponding stress is
oc=FEe=V\/pE (1.5)

These equations assume a linear elastic material whose stiffness E is independent
of the strain. In this case the wavefront will propagate as a sharp discontinuity (a
shock wave) at which the strain rises instantaneously from zero to the value given by
the strain equation. The effect of fiber nonlinearity gives rise to complications in the
above equations, causing among other effects a rounding of the shock front. Although
this treatment represents a simplification, it remains a good general description of the
nature of the propagation of longitudinal stress waves in the fibers of a textile material.

Additional features must be added to the one-dimensional wave theory when the
fiber is impacted transversely, as indicated in Fig. 1.1. In additional to an outward-
propagating tensile wave which acts as for longitudinal impact, there is a transverse or

2
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Figure 1.1: Schematic of wave propagation in transversely impacted fiber.

kink wave which is also propagated outward from the impact point. At the transverse
wavefront the inward flow of material due to the longitudinal wave ceases abruptly and
is replaced by a transverse particle velocity equal in magnitude and direction to that of
the projectile. The strain and tension are unchanged across the transverse wavefront,
but both the longitudinal and transverse particle velocities experience discontinuities
there; in this sense the transverse wave is a geometrical shock. The apparently un-
balanced tensions on either side of the transverse wavefront are compensated by the
change in particle momentum as the wave propagates. Behind the transverse wavefront
all particles velocities are equal in magnitude and direction to the projectile velocity,
and the fiber configuration is a straight line at a constant inclination from the longitu-
dinal direction.

The mechanics of transverse impact of single fibers, at times sufficiently short to
avoid interactions of reflected wave components, have been elaborated by in a number
of papers by Smith (e.g. Smith et al., 1955) and Roylance (e.g. Roylance, 1977).
Relations among the principal problem variables can be listed as follows:

o Longitudinal wave speed:

e(e) = VE(¢)/p = \/kE(c), gpd

e Particle velocity:

“«
= de
w /0 c(e)de

U = /Tok/(1+ €)

U=(1+60)U—w

e Transverse wave speed:
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¢ Relation to impact velocity:

V=J(1+60)2_U-2

e Transverse wave angle:
S U 4

1+eU

# = sin”

These relations are useful in assessing the role of fiber modulus on wave propagation
parameters. In the case of linear materials (E = constant), they can be combined to

give:
V= \/eokE [2\/60(1 + €g — eo] (1.6)

which provides a relation for the strain ¢; developed by impact at a velocity V in terms
of the fiber modulus. The relation can be solved numerically if one withes to compute
¢ for a given V, or it can be used directly to plot ¢; versus V for the purpose of
developing design curves.

These closed-form relations show (Roylance, 1977) that the rate at which the fiber
absorbs energy from the projectile increases monotonically with modulus, so from this
point of view one seeks the highest possible modulus. However, increases in stiffness
are usually accompanied by decreases in breaking strain, and a point may be reached
where this reduced ductility overshadows the beneficial reduction in impact-generated
strain. Much of the numerical modeling to be discussed in this report is aimed at
determining this balance between energy absorption rate and toughness.




Chapter 2

The Numerical Model

2.1 The “Direct Analysis” Method

Given the importance of textile armor in military and police applications, it is not sur-
prising that a number of techniques have been developed for the purpose of simulating
analytically the ballistic impact of these systems. In the 1960’s and 1970’s, Prof. Nor-
man Davids and his collaborators at Pennsylvania State University (e.g. Mehta &
Davids, 1966) developed an approach to transient field problems which was termed “di-
rect” analysis. This method consists of taking incremental statements of the governing
equations directly and coding them for computer execution, as opposed to carrying the
incremental statements to a limit so as to develop differential equations.

The direct approach was used by Lynch (1970) to analyze transverse impact of
single fibers and later extended by Roylance (1973) to the study of viscoelastic fiber
impact and by Roylance, Wilde, and Tocci (1973) for impact on woven textile panels.
This method appears to be well suited for flexible armor analysis and design: it is
relatively simple to understand and implement, yet seems to capture the important
physics of the impact event with good accuracy. Without claiming that direct analysis
is the only effective approach to the fabric impact problem, this report will describe
the extension of this method to an armor design for flechette-type projectiles.

2.2 Basic Numerical Algorithm

Referring to Fig. £.1, the woven panel is idealized as an assemblage of pin-jointed,
flexible fiber elements, each having a mass which makes the areal density of the idealized
mesh equal to that of the panel being simulated. (The density of crossovers in the
numerical model need not necessarily be the same as that in the actual panel.) The
initial projectile velocity is imposed on the node at the impact point, which causes a
strain to develop in the adjacent elements. The tension resulting from this strain is
computed from a material “constitutive” (stress-strain) relation, and this tension is
used to calculate an acceleration in the neighboring elements. The computer proceeds
outward from the impact point, successively using a momentum-impulse balance, a
strain-displacement condition, and a constitutive equation to compute for each element

5
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Figure 2.1: Idealization of fabric.

the current values of tension, strain, velocity, position, and such ancillary but important
quantities as strain energy and kinetic energy. At the end of these calculations, a new
projectile velocity is computed from the tensions exerted on the projectile by the fibers,
and the process is repeated for a new increment of time.

At each time step, the computer code “marches” from node to node, beginning
at the impact point and working outward. At each nodal position, it determines the
values of the problem variables at the next node outward in terms of those at the
present node. The algorithms for this are written in terms of using values at node
(7,k) to determine variables at node (7 + 1,k + 1). The indices j and k are stepped
from 1 (at the impact point) to a value corresponding to the edge of the plate; this
latter is an input parameter named jt in the code. The indices are incremented so as
to follow diagonal paths at successive distances from the impact point, as indicated by
the dotted lines in Fig. 2.1.

The beginning point for these “space loop” calculations is on the horizontal fiber
running through the impact point, and is denoted in the code by the Fortran variable
jfront. This starting node is initially at j = 2,k = 1, and at each successive time
increment is moved one node to the right; the jfront position noted in Fig. £.1 is the
fourth starting point for the space loop. After jstart reaches the edge of the panel, it
is then moved upward along the vertical fiber at the panel’s edge.

The masses of the fiber elements are taken to be lumped at the crossover “nodal”
points, so that each node incorporates half the mass of the four fiber elements meeting
at that node:

1
mg, = '2- ' 4§p¢Al (21)
The parameter p; is the lineal fiber density, read into the Fortran variable denyrn in
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textile units of denier (mass in grams of a 9,000 m length of yarn); this is usually
converted to gm/cm by dividing by 9 x 10%. Al is the length of the fiber element
connecting the nodes, and ¢ is a numerical factor associated with the crimping and
weave of the fabric structure. The crimping factor ¢ (named crimp in the computer
code) is in turn computed by dividing the actual mass of the experimental fabric panel
by that which would have been obtained simply by multiplying the lengths of the various
fiber elements by their density. This crimping factor provides a means of simulating
multiple-layer fabrics; the user provides a value for the actual multiple-layer panel mass
(fmassa in the code), and the appropriate mass adjustment is incorporated into the
crimping factor. The crimping factor allows the use of numerical meshes less fine than
the actual weave, since it serves to make the areal densities of the actual and simulated
fabrics the same.
These considerations have been programmed in Fortran as follows:

denyrn = denyrn*clyr

fmassa = fmassa*clyr

jtmi=jt-1

fmassm = 4.d0*float(jtml)*(2.d0*denyrn*x1)/9.d5
crimp = fmassa/fmassm

unitm = crimp*2.dO*denyrn*dxl

In the above, an effective yarn density (denyrn, in gm/den), and fabric mass
(fmassa, in gm) is obtained by multiplying the single-yarn denier and the single-layer
fabric mass by the number of layers clyr. A “model” fabric mass, named fmassn, is
computed by multiplying the yarn denier by the fabric half-length (x1, in ¢m), dividing
by 9 x 10° to obtain grams mass, multiplying by two to obtain the mass of a fiber
running the full width of the fabric, times the number of horizontal fibers in the entire
square panel (2 x [jt —1]), and finally times two again to account for the vertical fibers.
The model fabric mass is then divided into fmassa to obtain the crimp factor. The
effective nodal mass m,, named unitm in the code, is computed as in Egn. 2.1.

The tensions in the fiber elements meeting at the node cause an acceleration of the
nodal mass, and this effect is described by a straightforward application of Newton’s

Second Law:
Av

At
Here Av is the change in velocity in a time increment At, where boldface type is used
to indicate vector quantities. This relation provides a means of calculating current
velocity from field variables in the previous time increment. For instance, at node
(5 + 1,k + 1), the velocity at time t,4; may be expressed in a finite difference form as

At
Vicieer = Visrae + Tiniae ZemAl (2.3)

T=m, (2.2)

In this expression subscripts are used to indicate nodal positions, and superscripts
denote the time increment.

The units in this expression warrant some discussion, as the code is written to use
common but mixed units: c¢m for position and displacement, m/s for velocity, us for
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time increment, denier for lineal density, gmf/den for fiber tension and stiffness. A
units equation for the momentum balance might be written as:

Av (3) I (552) - pu(den) - 980.7 (4152) . At(us) - 10°° () 1077 =

8 2¢ - gty (5‘%) - Al(em) ¢m

_ 8.826TAt
T 2¢Al
To obtain the final expression above, dyne-sec/gm are noted to be equivalent to cm/sec
(since 1 dyne = 1 gm cm/s?). Note also that the yarn denier p; cancels from the
expression, which is one reason for using lineal density in the formulation.
The tensile force T,41.4+1 has five contributing components, one from each of the
four fiber elements meeting at the node, and one more - potentially — from any “backup”
material lying behind the impacted fabric. These components can be denoted as:

(2.4)

;‘n+l,k+1 = Tlo;:»I,H»l - Tlorkﬂ + TOI;":&I.&+1 - TOlﬁl,k - kb“;‘tmn (2~5)

in which k, is a backup spring constant and u is the displacement vector. T10 and T01
are the tensions in fiber elements oriented originally along the z and y axes. Of course,
as the fabric deforms during impact, these originally orthogonal fibers will deflect, so
that T10 and T10 will develop force components in all three coordinate directions.
The tensions are those “outboard” of the node; for instance a tension T10;, is the
(vector) tension in the element running outward from the point of impact, connecting
node 7,k and j + 1,k. The backup spring can serve to simulate the influence of an
actual backup layer in the armor, or the effect of the human torso. It might also serve
to stiffen the fabric so as to simulate the role of an impregnating resin, such as the
butyral resin used in current military helmets.

The Fortran statements for these velocity calculations compute each velocity com-
ponent separately, as follows:

dvx=(tx10(j+1.,k+1)-tx10(j k+1)+tx01(j+1,k+1)-tx01(j+1,k))

& *dtm+*8.82d0/(2.d0*dx1*crimp)
dvy=(ty10(j+1,k+1)-ty10(j k+1)+ty01(j+1,k+1)-ty01(j+1,k))

& +dtm*8.82d0/ (2.d0*dx1*crimp)
dvz=(tz10(j+1,k+1)-tz10(j k+1)+tz01(j+1,k+1)-t201(j+1,k))

& *dtm*8.82d0/(2.d0*dx1*crimp)

& +xk*dxl*zcd (j+1,k+1)*dtn*9.8d-6/(unitm/9.db)

The coordinates representing nodal positions can be updated at each time increment
by using current values of the nodal velocities; this relation can be written as:

m+1 —_ wh m+1
X1k = Xjrrkt1 T Vigg 1B (2.6)

The corresponding Fortran statements are:



xed(j+1,k)=xcd(j+1,k)+vx(j+1,k)*dtn/1.44
yed(j+1,k)=ycd(j+1,k)+vy(j+1,k)*dtm/1.44
zed(j+1,k)=zcd(j+1,k)+vz(j+1,k)*dtm/1.44

xcd(j k+1)=xcd(j, k+1)+vx(j, k+1)*dtn/1 .44
yed(j , k+1)=ycd(j, k+1)+vy(j,.k+1)*dtn/1.44
zcd(j,k+1)=zcd(j k+1)+vz(j . k+1)+dtm/1.44

The 1.d4 factor compensates for the mixed units: coordinates are in cm, velocities in
m/s, and the time increment dtm is us.

The current strain € can then be computed from the updated displacements. For
instance the strain €017}, of the element extending in the y-direction from node (5 +

1, k) is:

m+1 — M+l
OIS, = 017, , + (oixibtt " ik _y (2.7)
g+ = Ul m m ‘
xT — X"
J+1,k+1 s+1,k

This produces an “incremental” or logarithmic strain measure, in which each increment
of strain is based on the current length of the fiber element as opposed to its original
unstrained length. The Fortran computations are done in a series of steps:

dsqO1=(xcd(j+1,k+1)-xcd(j+1,k))**2

& +(ycd(j+1,k+1)-ycd(j+1,Kk))**2

& +(zcd(j+1,k+1)-zed(j+1,k))#*2
distO1=dsqrt(dsq01)

dsqx01=(xcd(j+1 k+1)+vx(j+1,k+1)*dtm/1.44

& -xed(j+1.k )-vx(j+1,k )*dtm/1.d4)**2
dsqyOi=(ycd(j+1,k+1)+vy(j+1,k+1)*dtm/1.d4

& -yed(§+1,k )-vy(j+1,k )*dtm/1.d4)**2
dsqzO1=(zcd(j+1,k+1)+vz(j+1,k+1)*dtm/1.44

& -zcd(j+1,k )-vz(j+1,k )*dtm/1.d4)**2

ddst01=dsqrt (dsqx01+dsqy0i+dsqz01)
deps=ddst01/dist01-1.40
ops01(j+1 ,k)=epsO1(j+1,k)+deps

The fiber tension T can be related to the strain ¢ by the material’s dynamic consti-
tutive relationship, and the code has a number of material models available. For the
case of a simple elastic fiber of modulus E, stress and strain may be calculated by the

simple form of Hooke’s law:
T = Ee (2.8)

Here the modulus E is in units of gm/den. In addition to linear elastic materials, the
code is able to simulate power-law nonlinear elasticity:

T = ke” (2.9)
9



or a polynomial nonlinear elasticity:
T =E;+ Eje+ E;é* + Esé® (2.10)

or “Standard Linear Solid” viscoelasticity:
- A
T = gleé — ¢ 1) + ——-—-—g(l’_ )e'At + 1! (2.11)

Here g is the instantaneous or “glassy” modulus, 7 is the characteristic time for the
relaxation, and A is the ratio of the magnitude of the relaxation to the equilibrium
modulus (Roylance, 1973).

The linear viscoelastic model has also been extended (Roylance & Wang, 1978) to

include nonlinear viscoelasticity by using a power-law spring and an Eyring dashpot,
defined as

T, = ke, éa = Asinh(aTy) (2.12)

The finite-difference equation relating tension to strain in the j** arm of the model is
¢_@1 1 (T\bT o

- ot ] o B E .sinh(a,TY). 2.13

e (2 i) + 4, sinh(a,T) (213)

This last relation requires an iterative numerical solution for each T} at each element
and at each time step; the computer effort is increased but the principles of the impact
algorithm are unchanged. The principal obstacle to the use of nonlinear models in
impact analysis is not the incorporation of the models into the solution scheme, but
deciding which of many possible approaches is reasonable. Of course, it is also difficult
to determine the many material parameters applicable in the microsecond time scale
of polymer relaxations.

The subroutine tensn.for which computes the element tension from the strain also
computes the increase in fabric strain energy. The incremental increase in strain energy
per unit volume is 0 A¢, and the code uses the average stress during the time increment:

AU = (O'__‘ +20‘-l) (6' - c‘“lv)

The units of this expression are in gmf/den; it is converted to units of Joules per gram
of fabric by multiplying by the factors:
dyne g N

den) - 980.75X2¢ . 10-
pi(den) 9807sz 10 dyne

- Al(em) - 1022
cm

The corresponding Fortran statement, which includes a correction for crimping and a
normalization by the fabric mass fmassa, is:

dsen=(4.d0 * 0.56d0 * (ts+tslold) * (epss-epsold)
& * dx]l * denyrn * crimp * 9.8d4-5 * symctr) / fmassa

10



The factor 4.0 accounts for the energy deposited symmetrically in all four quadrants
of the fabric.

After indexing the node counters from the impact point to the upper-right node
in the half-quadrant, the projectile velocity V, is updated and the loop over the fabric
nodes is begun again. The projectile velocity is corrected by means of a momentum
balance between the projectile deceleration and the tensions acting on the projectile by
the four fiber elements connected to the impact point, and also the decelerating force
provided by the backup medium:

]2

Vit = Vo [4(T2)105 - sin 6, + ky(u,) 33 —, (2.14)
P

where m, is the projectile mass and 6, is the fabric inclination at the impact point,
which may be evaluated from the nodal coordinates as:

- (It)gtﬂ - (zz)fgl
op = tan™? { 9 Al ! .

(2.15)

Here z, is the z-component of the node’s position vector; i.e. its deflection along the
direction parallel to the projectile velocity.

The length increment Al is user-specified, by selecting the number of nodes jt
spanning the distance from the impact point to the edge of the fabric. However, the
time increment At cannot be specified arbitrarily, since the ratio of the length and time
increments must satisfy a numerical stability criterion:

— < Cry (216)

where ¢; is the wavespeed in the fabric. This wavespeed is less than the well-known

value ¢ = {/E/p expected for single fibers, since the crossovers act effectively to double
the mass density sensed by the propagating wave. This line of reasoning, which is
admittedly conjectural and in need of further study, leads to ¢; = v/2¢. To permit
alternative relations, the time increment is computed by the code as:

po Bl A

¢ a E/p.

(2.17)

where usually we take @ = v/2; a is named ctdn in the code.

The numerical method requires appropriate initial and boundary conditions in order
to proceed with the computation. The initial condition is that all nodal points are at
rest except that the initial projectile velocity is imposed at the center of the panel,
i.e. v§5 = V,. The boundaries of the fabric are assumed to be rigidly clamped during
impact, thus v{ ; ,, = 0.

2.3 Extension to Covering-Plate Designs

As presently developed, fabric-based flexible personnel armor is able to provide good
protection against relatively blunt projectile impacting at low to moderate velocities,
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such as are developed by common fragmentation threats. However, fabrics are notably
less effective against slender needle-like projectiles, such as the “flechettes” being incor-
porated in a variety of “improved conventional munitions” (ICM’s). These projectiles
are able to insinuate themselves through the fabric by passing between fibers, so the
ability of the fibers to absorb strain energy is not brought to bear in defeating the
projectile.

One natural means of defeating such a threat might be to provide an overlapping
arrangement of small plates covering the outward-facing side of the fabric armor; these
would act either to defeat the projectile themselves, or at least to deflect the projectile
away from a zero-obliquity impact. The direct-analysis fabric code was therefore ex-
tended to make a new version, named PLATE, which incorporated this feature. While
keeping the basic nature of the direct analysis algorithm — a space loop embedded
within a time loop ~ several features must be considered in adding a covering plate to
the model:

e A decision must be made concerning the nature of the projectile-plate interaction.
This might range from simply assuming the plate to impact on the fabric at a
velocity equal to that of the projectile, to a full and detailed finite-difference
simulation of plate perforation.

e Whereas in the FABRIC code only a single nodal point remained in contact with
the projectile, in PLATE the velocity of the covering plate is imposed on all those
nodes lying beneath it.

o At the end of the space loop over the fabric nodes, the projectile is decelerated
by the forces exerted on it by the fibers and the backup support. When the plate
is added, decelerating forces are imposed on it by all of the fibers connected to
its edges.

In a first model for covering-plate simulation, the FABRIC code was updated sim-
ply by replacing the point-impact scenario by one in which the plate and projectile
were assumed to impact the fabric together, with a velocity equal to that of the initial
projectile velocity. This provided some indication as to plate effects, but it is clearly un-
realistic to assume the plate can accelerate instantaneously and without any slowdown
of the projectile.

A number of trial developments were then investigated which considered more re-
alistic mechanics of the plate-projectile interaction. One approach would be the use
of one of several “hydro” impact codes now avaliable (e.g. HEMP, PUFF, DYNA,
EPIC, etc.) These finite-difference or finite-element simulations could provide a very
high level of detail as to the impact dynamics of the projectile and plate, not only near
the impact point but also the back-face displacements which could then be imposed on
the underlying fabric. However, these codes are substantially larger and more complex
than our fabric code, and in keeping with our goal of simplicity and economy we have
sought less elaborate approaches.

As an intermediate approach, we developed several code versions which estimated
the dynamic stress state at the impact point between the projectile and the plate,
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and then used the corresponding force to compute an acceleration of the plate. This
acceleration was in turn used to start the iterative fabric calculations.

One such estimate was provided by the ARAP model (Aeronautical Research Asso-
ciates of Princeton, 1977), which uses hydrodynamic reasoning to estimate the impact-
point force to be of the form:

F = pl? (%V’ + E,) = AV + A, (2.18)

where ARAP has estimated values for the constants A; and A; from impact data. While
this model has several attractive features, its use in beginning FABRIC calculations is
problematic due to the need to estimate the region over which the impact stress occurs.
When the impact force as calculated from Egn. £.18 is used to initiate the code, an
overly rapid deceleration of the projectile occurs. This is because the computed force
does not act on the entire projectile, but is confined to a small region of influence near
the contact point. This “region of influence” is itself an important dynamic variable,
but to compute it exactly would appear to require an elaborate penetration code.

A similar problem arises even in using very simple estimates of the impact stress,
such as the expression 0 = V/pE given by one-dimensional wave theory (Egn. 1.5).
The stress is easy to compute, but its region of influence is a variable which increases as
waves propagate outward from the point of impact. Use of the stress from this equation
directly in an expression for plate acceleration, assuming the stress acts on the entire
projectile, produces unreasonably large values. It appears that any stress-wave oriented
approach will suffer from this difficulty, and it would be necessary to include an overly
complex “front-end” code in order to compute the forces transmitted by the plate to
the fabric. In keeping with our stated intention to keep the computer model as simple
as possible, other approaches are indicated.

After several trials, we have selected a simple approach in which the initial plate
velocity is computed by partitioning the initial momentum in the impacting projectile
such that the plate and projectile move together at a common velocity after impact.
This is a “totally inelastic” collision, in which the kinetic energy is not conserved and
the velocity is that which conserves momentum, as given by:

= Mors
V=0 = ‘/impact (m_—&’_"—) ’ (2'19)

where V*=° is the initial velocity of the projectile-plate combination which is to be
imposed on the fabric, Vimpq. is the impact velocity of the projectile, and m,,; and my;
are the masses (in gm) of the projectile and plate respectively. This computation is
done in the following Fortran expressions:

totmass=prjmass+pltmass
vplate = vproj*prjmass/totmass

vproj=vplate

At present, the failure time for the fabric-panel combination is computed by moni-
toring the strain in each fiber element, and predicting panel failure when any element

13



exceeds the specified fiber breaking strain. More elaborate failure models are possible,
of course. One elaboration which should be considered for future work is that of pre-
dicting the breakup of the covering plate. This might be done by using ARAP or other
plate-penetration models. Once the plate is predicted to have failed, the PLATE code
might then reassign jplate to be unity and set the plate mass to zero. The fabric could
then continue to respond as in the point-impact case to whatever velocity remains of
the impoacting projectile.

The computation of the deceleration of the projectile-plate combination is done at
the end of each space loop, just as before. However, the plate will now be influenced by
tensions in fiber elements all along the plate edges, as well as by backup forces from all
nodes lying underneath the plate. These computations are performed by the following
statements:

c compute plate/projectile slowdown

49 zforce=0.40
do 50 k=1, jplate
aproj=atan((zcd(jplate+1,k)-zcd(jplate, k))
& /(xcd(jplate+1,k)-xcd(jplate,k)))
zforce=zforce + ti10(jplate,k)*sin(aproj)
50 continue
bforce=xk*zcd(1,1) * ((2*jplate-1)**2)
vplate=vplate+8.d0*zforce*dtm*denyrn*9.80e-06*crimp/totmass
& -bforce*dtm*9.80e-06/totmass
vproj=vplate
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Chapter 3

Numerical Design Studies

3.1 Code Predictions

Many performance aspects of the basic numerical algorithm have been discussed in
previous reports and papers. However, certain features will be elaborated here, both
to place the further numerical developments in context and to elaborate points which
warrant further discussion.

3.1.1 Wave Propagation Plots.

As the code simulates the propagation of strain waves away from the point of impact, it
generates a large quantity of data representing the problem variables at each node and
at each increment of time. It is difficult to observe trends from printed numerical tabu-
lations alone, and some means of graphical interpretation is very useful. Although the
code is not written with an explicit graphical output capability, it does create a series of
output datafiles which can be used as input to independent graphics routines. Most of
these files are indicated with a .csv suffix, which denotes a “comma-separated value”
format; these can be imported into a variety of graphics and spreadsheet programs.

Figure 8.1 displays a three-dimensional map of the z-displacements approximately
10us after a 300 m/s impact on a simulated nylon fabric; this map was created from
the file zmap10.csv using the “Golden Graphics” software package. A similar map, but
depicting the strains in the horizontally-running fibers, is shown if Fig. 3.2, this was
generated from the file smap10.csv. A visual comparision of these two figures shows
that the strains are propagated outward from the impact point more rapidly than is
the transverse displacement.

The files splot.csv and zplot.csv depict the strains and 2-displacements, respec-
tively, along the fiber passing through the impact point, at each increment of time
after impact. Figure 3.8 shows a plot obtained by processing splot.csv with the “Su-
perCalc 4” spreadsheet program; here the strain at three nodal positions, successively
further from the impact point, are plotted versus time after impact of a simulated nylon
fabric at 300 m/s.

Several aspects of wave propagation in fabrics are evident in this plot: the strain
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Figure 3.5: Master curve for strain at impact point.

3.1.2 Influence of Fiber Properties.

The principal influences of fiber properties on ballistic response of textile panels have
been described in an earlier reports by Roylance and Wang (1979, 1981). As in the case
of a single transversely impacted fiber described in the introduction of this report, two
properties are especially important: the fiber modulus and the fiber breaking strain.
As the modulus increases, so does the wavespeed according to ¢ = y/E/p, and the
fabric will be able to propagate the ballistic impact energy away from the point of
impact more rapidly. The influence of modulus is demonstrated in Fig. 3.5, in which
the ordinate is strain at the impact point, normalized by the strain which would have
been developed in a single transversely impacted fiber (o in Egn. 1.6). The single-fiber
strain is itself modulus-dependent; higher-modulus fibers develop higher strain when
impacted at a given velocity. The abscissa is time after impact, normalized by the
fourth root of the fiber modulus. The resulting plot is a “master-curve” depiction of
strain history, made independent of fiber modulus by the normalization factors.

As breaking strain increases, longer times will be required for the strain at the im-
pact point to rise to the breaking value, and the fabric will be able to survive a longer
time after impact. While it survives, the outward-propagating strain waves will develop
strain energy in a region of influence which increases in size as time proceeds, and this
increasing fabric strain energy is extracted from the kinetic energy of the projectile.
Clearly, higher breaking strains will improve ballistic performance, Unfortunately, in-
creasing the fiber modulus - usually by drawing it to a greater extent after spinning
— normally reduces its breaking strain. This forces the armor designer to compromise
these two conflicting effects, and one principal use for such computer analyses as the
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at the impact point (node # 1) generally rises with time, due to the arrival there
of wavelets reflected from fiber crossovers. This is unlike the single-fiber event, in
which the strain at the impact point remains constant (in the absence of appreciable
viscoelastic relaxation) until the strain wave propagates along the fiber, reflects from
the clamp, and travels back to the impact point.

It is also seen in Fig. 8.9 that the strain history does not increase monotonically, but
rather with a series of local maxima separated by a fairly regular period. It is tempting
to ascribe this periodicity to some sort of constructive or destructive interference of
wavelets travelling in the fabric. However, the same waviness is seen in simulations of
single-fiber impact as well (Cunniff, 1989), and is probably an artifact of the numerical
algorithm.

It is also useful to crossplot the data so as to examine the distribution of strain
along the fiber passing through the impoact point at a sequence of times. Figure 8.4
shows such a plot for a simulated Kevlar 29 fabric impacted at 300 m/s. At high impact
velocities, fracture can occur at the impact point without any reflection of the main
wavefront from the fabric clamp. But as can clearly be seen in Fig. 8.4, eventually the
wave can reflect from the clamp and travel back toward the impaact point. It is also
possible for the reflected strain to exceed the breaking strain, in which case the model
will predict fiber rupture at the clamp.
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Figure 3.6: Projectile deceleration after 300 m/s impact.

one developed in this study is in determining the optimal balance.

The output file plate.csv contains values of current projectile velocity, as well as
the fabric strain and kinetic energies, at each time increment after impact. Plots of
projectile velocity versus time are useful in assessing armor effectiveness, and Fig. 3.6
compares the relative ability of Kevlar 29 (denoted by the O symbols) and Spectra 900
(A symbols) in decelerating the projectile after a 300 m/s impact. The Kevlar survives
longer, but its lower wavespeed and concomitantly lower rate of energy absorption leads
to a higher residual projectile velocity after failure. Thsis plot indicates that Spectra
would be ezpected to provide ballistic resistance superior to Kevlar. (This conclusion is
based only on wave propagation characteristics and breaking strain, without regard to
cost, ease of fabrication, or other potentially important aspects of armor design.)

3.1.3 Influence of Node Spacing

As was mentioned earlier, it is not necessary to have as many crossover nodes in the
numerical model as are actually present in the fabric, since the crimp factor acts to
make the areal densities of the numerical and actual fabrics equal. Woven fabrics
have on the order of 40 crossovers per inch, and using a numerical mesh density this
fine would overwhelm the storage capacity of many small computers. However, code
accuracy would be expected to improve as the number of nodes increases. To assess
this aspect of code performance, a number of simulations were completed in which the
projectile velocity was kept constant and only the number of nodes jt was varied. One
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Figure 3.7: Influence of node spacing on impact-point strain histories.

useful measure of code response is to plot the strain history at the impact point, as
is done in Fig. 8.7. Here the [ symbol denotes a simulation for jt = 10, while the
symbols A, ¢, and x indicate jt = 20, 30, and 40, respectively.

Clearly, the node spacing has a substantial effect on the computed strain history.
Figure 3.8 provides one way of quantifying this effect, by plotting the time taken for the
strain at the impact point to rise to a given value (4%) versus the node spacing. (This
figure is for impact at constant 300 m/s velocity on a ballistic nylon fabric.) It is seen
that the dependence on node spacing diminishes, with relatively little dependence after
jt = 40. This is also the limit which can be accomplished with our present hardware,
and the flattening out of the curve provides some assurance that further refinement
beyond jt = 40 might not be necessary for preliminary design work.

3.1.4 Influence of Covering Plate

When a covering plate is impacted by a projectile, the highest strains are developed
initially in the fiber elements around the edge of the plate. Figure 8.9 is a portrayal
of the strains developed in the “10” fibers (those running in the z-direction) approxi-
mately 10us after impact on an idealized ballistic nylon panel covered with a 2 cm plate
is impacted at a constant velocity (300 m/s). Another view is provided by Fig. $.10,
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Figure 3.8: Influence of node spacing on time to reach 4% strain.

which plots the strain in the fiber running through the impact point at two different
times after impact.

These strains are propagated both outward, away from the plate, and inward, under-
neath the plate. In time, the strain directly under the projectile impact point becomes
the largest in the fabric, just as in the fabric-only case. This can be seen in Fig. 8.11,
in which an idealized ballistic nylon panel covered with a 3 cm plate is impacted at a
constant velocity (300 m/s). Here X indicates values at the node nearest the edge of
plate, and [0 represents the fabric under the center of the plate (at impact point).

3.2 Design Recommendations.

The principal design recommendation of this report, taken in response to the threat of
slender flechette-type projectiles, is to provide an array of adjacent hard plates which
prevent the projectile from simply passing between the fibers of the fabric weave. These
plates could be held in place by a fabric weave, or pinned so as to make a chain-
mail-like sheet which could be placed in a vest in front of the fabric layers. In the
sections to follow, we use insight provided by the PLATE code to develop “first-cut”
recommendations as to the various materials and geometric parameters which make up

such a design.

3.2.1 Fabric Material Selection.

Any study aimed at furthering fabric armor would naturally begin with DuPont’s
Kevlar 29 as a baseline material; this material provided a breakthrough in armor effec-
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[ | Spectra 900 | Kevlar 29 |

Areal Density, gm/cm?® | 0.00237 0.0421
Modulus, gmf/den 1400 550
Yarn Denier 1200 5835
Breaking Strain, % 0.035 0.04

Table 3.1: Properties of candidate ballistic fabrics.

tiveness in the 1970’s and is now almost synonymous with impact protection devices.
However, as demonstrated in Fig. 8.6, Spectra fibers are an obvious choice as an al-
ternative material. With its very high wavespeed (¢ = VkE = /88,260 x 1400 gpd =
11,116 m/s for Spectra 900), a very rapid rate of projectile energy absorption can
be expected. This high modulus and low density are achieved while retaining a high
breaking strain of 0.035%. Spectra 900 is tougher than the higher-modulus Spectra
1000, so further design variations will assume a 7 0z/yd? plain-weave fabric of Spectra
900 fibers. Table 8.1 lists certain properties for this fabric, taken from Allied-Signal
literature, which are needed in the PLATE code. Data for the Kevlar fabric used in
the 1979 report by Roylance & Wang is included for comparison.

3.2.2 Plate Size.

Figure 3.12 illustrates the effect of plate size on the projectile deceleration for a single
layer of Spectra 900 fabric impacted at 450 m/s. Here the [ symbol indicates numerical
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Figure 3.12: Effect of plate width on projectile slowdown.

data for no plate at all, while X and 7 are for plates 1 and 2 cm wide, respectively.
The mass of these plates was taken as zero, so their effect is to spread the impact
stresses over a wider area of the fabric without initially reducing the projectile velocity
by momentum transfer. As the plate is made wider, the projectile deceleration is
increased; this is to be expected since a larger number of fibers is brought to bear
in retarding the plate-projectile combination. However, the strain level in the fabric
also increases more rapidly as the plate size is increased, so that the time to failure is
reduced.

As seen in Fig. .12, the largest overall reduction in projectile velocity occurs when
no plate is present at all. Of course, the inertia of the plate will assist in lowering
the projectile velocity by momentum partitioning, and this will help offset the strain-
intensifying effect. But in order to minimize this effect the plate size should clearly be
taken as small as practicable. A reasonable size might be approximately 2 ¢m, as this
would result in an overlay of adjacent plates without undue fabrication difficulties.

3.2.3 Selection of Plate Material.

Choice of plate material goes somewhat beyond the scope of this study, as it involves
considerations of ballistic resistance of homogeneous armor material. This is a very
large field of study, with an extensive literature and a sizeable community of active
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| | Ti | B,C |
Hardness Br 200 | Vi 2800
Modulus, Mpsi 14

Yield stress, kpsi | 150
Density, gm/ml | 4.5 2.52
Cost, §/1b 5 3

Table 3.2: Physical properties of candidate plate materials.

researchers. The ARAP Integral Theory of Impact mentioned earlier is an example of
such studies; that work provides a means of ranking materials based on their capacity
for ballistic energy absorption. The ARAP classifications showed titanium to be a near
optimal armor from several points of view: it requires somewhat more thickness of
plate than steel in order to stop a specified projectile, but is some 36% lighter. At
approximately $5/1Ib, it is moderate in cost. It is hard in comparison with most metals
(Brinell 200 in comparison with Br 40 for aluminum), which contributes to its ability
to blunt or shatter an incoming projectile. Table 8.2 lists various properties of this
material which are relevant to armor design.

Titanium is a natural choice as one candidate for the covering plate material, but
several attractive alternatives exist as well. For instance, ceramic materials offer a
number of very attractive features in this application. ARAP (1977) studies have shown
that B4C, with a Vickers hardness of 2800, a potential future cost of approximately
$3/1b, and a plastic energy absorption capacity of 500 BTU/Ib (compared with 328
BTU/Ib for titanium) could become a superior alternative as the pertinent costs and
technologies improve. B,C will be a second plate material for design purposes, and its
properties are included in Table 8.2.

The above materials considerations lead us to propose the following three design
configurations:

1. Kevlar fabric fronted by titanium plates.
2. Spectra fabric fronted by titanium plates.

3. Spectra fabric fronted by B,C plates.

3.2.4 Selection of Armor Thicknesses.

Once a given threat mass and velocity is specified, a thickness of plate and number
of fabric layers is chosen to defeat the projectile (or reduce its residual velocity to a
specified level). This level of design detail will require collaborative guidance from
Natick personnel as to current views of threat distributions. Accordingly, plate/fabric
areal density specification will be among the features to be completed in the final phase
of the study, to be conducted in collaboration with Natick personnel. The topics to be
addressed in this final phase will be listed in the following section.
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Chapter 4

Recommendations for Future Work

The work to date in this study has developed a numerical method for simulating a
fabric armor with an overlay of flechette-defeating hard plates. It remains in the final
phase of the project to use the code, in conjunction with guidance as to current Army
performance goals, to develop a detailed armor design which will then be fabricated by
the Army and evaluated ballistically. These tasks can be listed as:

¢ Natick and ACL personnel will work in collaboration, using current threat dis-
tributions and casualty reduction goals, to specify the plate and fabric thickness
needed for the desired level of protection. The design will be done by performing
PLATE code runs to assess the initial-versus-residual projectile velocity response
of various plate and fabric thicknesses.

o Test specimens of the designed armor will be procured by the government. If
funding permits, it would be desirable to fabricate panels over a range of pa-
rameters, to permit corroboration and fine-tuning of the computer model. For
instance, the suggested plate size of 2 cm is an estimate based largely on ease of
fabrication. It would be of interest to procure panels of varying covering plate
sizes, so as to determine experimentally the degree to which this size is critical.

e The fabricated panels will be evaluated by the Army for ballistic performance,
by means of firing tests. ACL will collaborate in the planning and execution of
both the panel fabrication and firing tests.

¢ The experimental ballistic observations will be compared with the PLATE code
predictions, and directions for future code development will be suggested.
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Appendix B

Code User Instructions

The PLATE code is written so as to accept input data on Fortan logical unit #S5.
On Unix-type systems, this allows the input dataset to be provided to the code by
redirection; for instance the file specl can be run by issuing the command plate
<specl. As the code runs, it creates a number of output datafiles as described earlier
which can be printed or imported into independent graphics routines.

A typical input datafile is shown below:

specl: Spectra 900 450 m/s, 1lcm Ogm plate

1.1 | prjmass projectile mass (gm)
450. | vproj initial projectile velocity (m/sec)
9.8 | fmassa actual fabric mass (gm)
1. | psize plate size (cm)
0. | pltmass plate mass (gm)
10.16 I x1 fabric panel length (cm)
1200. | denyrn yarn denier
.035 | epsb yarn breaking strain
0. | xk elastic spring constant (gmf/sq cm)
100. | tmax maximum time (microsec)
1.4142 | cdtm stability coefficient (.ge. 1)

1l 1yr number of fabric layers in panel

|
40| jt nunmber of nodes along panel length
1] inc print skip increment

1| execution mode (0 for check, 1 for execution)

1| flag for nonlinear (exponential) strain hardening

1400. | eyrn preexponential factor (gpd)
1. | chard strain hardening exponent
I
0| flag for nonnlinear polymomial
| eo first term (gpd)
| el second term (gpd)
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e2 third term (gpd)

e3 fourth term (gpd)

flag for standard linear solid viscoelasticity
100. g glassy modulus (gpd)
0. vlamda viscous fraction (.le. 1.)
5. tau relaxation time (microsec)

i

I

!
ol

!

|

|

I
0| flag for nonlinear viscoelasticity

| eni equilibrium spring constant (gpd)

| en2 second spring constant (gpd)

i a eyring coefficient (1/sec)

| alp eyring exponential (1/gpd)

| vilbd model viscous fraction (.le. 1)

The first line of this file is a comment line which can be filled out as desired; the
remaining lines contain numerical input parameters. Only the first ten columns of these
parameter lines are read by the computer; the remaining columns are used to annotate
the meanings of the various parameters. This provides a template to facilitate the
preparation of input files, by copying the file to another name and then editing it as
desired. It is important only to respect the ten-column field expected by the Fortran
format commands; for instance, integers and exponent fields must be right-justified
against column ten. Values with explicit decimals and without exponent fields can be
placed anywhere in the first ten columns.
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Appendix C

PLATE Source Code

The Fortran module plate.for is the main program for the covering-plate model.

c PLATE

c A direct numerical solution of the field equations

c for normal-obliquity ballistic impact of an orthogonal

c fabric mesh, with an overlying plate.

c Modified 1988-89 for implementation on MS-DOS and UNIX

c systems. Presently written to accept input om unit b

< as standard ioput. A datafile can then be provided by

c redirection, e.g. plate < pdata

c Output files:

c unit 6 - log file to be sent to standard output

c unit 7 - full numerical output, sent to file "plate.out”

c unit 8 - selected data, sent to file "plate.cav" as

c comma-separated values

c unit 9 - zplot.csv, z-displacements of nodes along

c primary fiber

c unit 10 - splot.csv, strains along primary fiber

c unit 11 - smapl0 - x-y map of strain in 10 fibers

c unit 12 - zmapl0 - x-y map of z-disp in 10 fibers

== e emmmmmm e e e meee—— e ——————
c---~ DECLARATIONS --===--------mmecom oo oo

implicit real*8 (a-h,o-z)
character*80 hed

common/ixmatl/ipt
common/cmatl/eyrn,chard,e0,el,e2,e3
common/visco/g,vlamda,tau
common/nonlr/eni,en2,a,alp,vlbd
common/varbl/jt,x1,dxl,dtm,denyrn,prjmass,crimp,fmassa,fmassm,
& unitm,bunitm, jplate,vproj,epsmax,epsb,tim
common/tsnold/t1001d(40,40),t0101d(40,40),e1001d(40,40),
& €0101d4(40,40)
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common/backup/xk
common/cmesh/xcd(40,40) ,ycd (40,40) ,zcd (40,40) ,xcdold,ycdold, zcdold
common/ten/t10(40,40),t01(40,40),tx10(40,40),tx01(40,40),

& ty10(40,40),ty01(40,40),tz10(40,40),tz01(40,40),

& eps10(40,40),eps01(40,40)
common/veloc/vx(40,40),vy(40,40),vz(40,40)
common/ergcum/xknrgy, yknrgy, zknrgy, snrgy
common/ergelem/elke (40,40),else(40,40),tlelen(40,40)

c~~== INPUT AND INITIALIZATION---=---=vo-mmmcccmmo oo
c open output files

open ( 7,file='plate.out’)
open ( 8,file='plate.csv’)
open ( 9,file="zplot.csv')
open (10,file='splot.csv’)
open (11,file='smapl0 °)
open (12,file='zmapi0 °*)

c read and print input parameters
and compute internal control parameters

1 format(£10.0)
2 format(i10)
3 format (a80)

read (5,3) hed
read (5,1) prjmass
read (5,1) vproj
read (5,1) fmassa
read (5,1) psize
read (5,1) pltmass
read (5,1) x1
read (5,1) denyrn
read (5,1) epsd
read (5,1) xk
read (5,1) tmax
read (5,1) cdtm
read (5,2) 1lyr
clyr =lyr

read (5,1) skipln
read (5,2) jt
read (5,2) inc
read (5,2) mode

¢ exponential strain hardening
read (5,1) skipln
read (5,2) iflag
if (iflag.eq.1) ipt = 2
read (5,1) eyrn
read (5,1) chard
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¢ nonlinear polynomial
read (5,1) skipln
read (5,2) iflag
if (iflag.eq.1) ipt =1
read (5,1) e0
read (5,1) el
read (5,1) e2
read (5,1) e3

¢ standard linear solid
read (5,1) skipln
read (5,2) iflag
if (iflag.eq.1) ipt = 3
read (5.1) g
read (5,1) vlamda
read (5,1) tau

¢ nonlinear viscoelasticity
read (5,1) skipln
read (5,2) iflag
if (iflag.eq.1) ipt =4
read (5,1) enl
read (5,1) en2
read (5,1) a
read (5,1) alp
read (5,1) vlbd

cwave = dsqrt(88260.d0*eyrn)

jtml = jt-1
dxl = x1/float (jtmil)
dtm = 1.d4*dx1/cwave
dtm = dtm/cdtm

ntinc = idint(tmax/dtm)
idiag =0

jplate = 1 + int( .5+( (psize/2.) /dxl) )
jprt = jt

jprty =1

iplast = 0O

tprt =0

denyrn = denyrn*clyr
fmassa = fmassa*clyr
foassm = 4.d0*float (jtml)+(2.d0*denyrn+*x1)/9.45

crimp = fmassa/fmassnm
unitm = crimp#2.dO*denyrn*+dx1/9.d5
bunitm = 0.5d0*unitm

totmass= prjmass+pltmass

vplate = vproj*prjmass/totmass

vproj = vplate

xke = 0.5d-3*totmass*vproj*+*2/fmassa

write (6,1010) hed
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1010 format (1x,aB0,/2x,’ time’,T15,” proj. vel.',T30,

&

max. strain’,4x,'% error'/)

write (7,121) hed

121 format (1x,a80)

write (8,121) hed

write(8,1030)

1030 format( /’time,proj vel,proj engy loss,’,
& 'fab en gain,backup engy,strain engy,’,
& 'x - k.e.,y - k.e.,z - k.e.,nax strn,'/)

wvrite(7,61) denyrn,vproj,prjmass,xl,dxl,tmax,cdtm,dtm,lyr

format(ix, 'input parameters:’'//

6x,'yarn denier, denyrn (den) =',f8.1/

bx,'initial projectile velocity, vproj (m/sec) =',f7.1/
6x,'projectile mass, prjmass (gm) =',£8.3/

5x, 'fabric panel length, x1 (cm) =',f8.2/

6x,’element length dx1, (cm) =',£7.3/

6x, 'maximum impact duration, tmax (microsec) =',£7.3/
bx,'stability coefficient, cdtm =',£7.3/

bx,’'time increment, dtm (microsec) =',f6.3/

5x, 'numbers of layers, lyr =',i3)

write(7,62) cwave,eyrn,xk
format(/6x, 'strain wave velocity, cwave (m/sec) =',f8.1/

bx,'initial modulus, eyrn (gr/den) =',£8.2/
6x, 'backup spring constant, xk (gr/cm/cm) =',£8.2)

write(7,63) jt, ntinc,inc
format(/6x, 'number of nodes along model panel, jt =',i3/

5x, "maximum number of time increments, ntinc =’,i4/
5x,'printing frequency, inc =',i3)

write(7,64) fmassa, fmassm,crimp,unitm,hunitm
format (/56x,'actual fabric mass, fmassa (gm) =',£8.2/

bx,’'model fabric mass, fmasem (gm) =',£8.2/
6x,'crimp = fmassa/fmassm =", £7.2/
bx,'unit element mass (gm) =',g11.4/

bx, ‘half-unit element mass (gm) =',g11.4)

write(7,65) xke

format(/5x,’initial projectile kinetic energy, xke (joule/gm) =',

£7.3)

write(7,652) psize,pltmass,jplate

61
&
&
&
&
&
&
&
&
&
62
&
&
63
&
&
64
&
&
&
&
66
&
652
&
&

format(/6x, 'plate size (cm) =',£8.2,

/6x,’plate mass (gm) =', £8.2,
/6x,'node at edge of plate (jplate) =', i2)

write(7,66) ipt,eyrn
66 format(/3x, 'material properties:'/
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& 6x,’material model option, ipt =',i2/
& 6x,’initial modulus, eyrn(gr/den) =',£8.2)

if (ipt.eq.2) write (7,661) eyrn, chard
661 format (/ix,’exponential strain hardening'/
& bx,’'coefficient, eyrn (gr/den) =',£8.2/
& b5x,’strain hardening exponent, chard =',£8.2/)

if (ipt.eq.1) write (7,662) e0,el,e2,e3
662 format (/1x,'nonlinear elastic model -- cubic polynomial’/
6x,'e0 (gr/den) =*,£8.2/
6x, el (gr/den) =',£8.2/
6x,'e2 (gr/den) =',£8.2/
6x,'e3 (gr/den) =',£8.2)

L

if (ipt.eq.3) write(7,68) g,vlamda,tau

68 format(/b6x,’'viscoelastic - standard linear solid parameters:'/

& b5x,’model glassy modulus (gpd) =',f8.2/
& bx,’model viscous fraction =’,£7.2/
& Bx,’'model relaxation time (microseconds) =',f8.2)

if (ipt.eq.4) write(7,69) eni,en2,a,alp,vibd

69 format(/ix,’eyring nonlinear model, el (gpd) =',d14.5/

67

6x, 'Eyring nonlinear model, e2 (gpd) =',d14.5/
6x, ‘nonlinear dashpot, a (i/sec) =',d14.5/

6x, 'nonlinear dashpot, alp (den/gf) =',d14.5/
8x, 'nonlinear elastic arm ratio, vlbd =’,d14.5)

o rrn

write(7,67) epsb
format(/6x, "fiber rupture strain, epsb =’,£7.3/)

initialize field variables
establish initial nodal coordinates

do 11 k=1,jt
do 11 j=1,jt

xcd(j . k)=(j-1)*dx1
yed(j k)= (k-1) #dx1
zcd(j,k)=0.d0

vx(j ,k)=0.d0
vy (i, k)=0.d0
vz(j.k)=0.d0

£10 (§,k)=0.d0
t01 (j,k)=0.40
tx10(j ,k)=0.d0
ty10(j ,k)=0.d0
£210(j ,k)=0.d0
£x01(j ,k)=0.d0
ty01(j,k)=0.d0
tz01(j,k)=0.d0
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epsiO(j, k)=0.40
eps01(j ,k)~0.d0

t+1001d(j,k)=0.d0

t0101d(j,k)=0.d0

e1001d(j,k)=0.d0

¢0101d(j, k)=0.4d0
11 continue

inci=0
nfront=jtmi*2

c---~- LOOP OVER SUCCESSIVE TIME STEPS -----------=---ccomeeoccccaoo—u-
do 12 it=1,ntinc

vz(1,1)=vplate

xknrgy=0.d0
yknrgy=0.d0
zknrgy=0.d0
snrgy=0.d0
tim=dtm*float (it)
inci=inci+1
epsmax=0.d0
c¢---- LOOP OVER SUCCESSIVE DIAGONAL WAVEFRONT POSITIONS ------=======-=-
c (starting point moves horizontally from node to node away from
c the impact point, then up the vertical line of nodes
c at the clamp. There are thus nfront=(jt-1)#2
c wvavefront positions.)
call bndry(it,1,1)
< limit space loop to region of influence
imax = jplate+it+2
if (imax.gt.nfront) imax=nfront
do 14 ifront=2,imax
c locate nodes along front
if(ifront.1t.jt) call bndry(it,ifront,1)
iflag=0
nodes=ifront/2
if(ifront-(jt+1).1t.0) then
kstart=1
else
kstart =ifront-(jt-1)
endif
c---- INNER LOOP ALONG NODES ON DIAGONAL WAVEFRONT ---------=-=---------
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20

do 22 k=kstart,nodes
get nodal indices: j = column, k = row

j=ifront-k
if(k.eq.j) idiag=1

compute velocity changes from inpulse-momentum balance

dvx=(tx10(j+1,k+1)-tx10(j,k+1)+tx01 (j+1,k+1)-tx01(j+1, k))
+dtm+8.82d0/(2.d0*dx1*crimp)
dvy=(ty10(j+1,k+1)-ty10(j.k+1)+ty01 (j+1,k+1)-ty01(j+1,k))
*dtm*8.82d0/(2.40*dx1*crimp)
dvz=(tz10(j+1,k+1)-tz10(j,k+1)+tz01 (j+1,k+1)-tz01(j+1,k))
*dtm*8.82d0/(2.d0*dx1*crimp)
+xksdxl*zcd (j+1,k+1) *dtm*9.8d-6/ (unitm/9.d5)
dvz=-dvz

if( abs(dvx).ge.0.0001.0or.abs(dvy).ge.0.0001
.or.abs(dvz) .ge.0.0001) iflag=iflag+l

compute nev velocities

vx(j+1,kt1)=vx(j+1,k+1) +dvx
vy(j+1 ,k+1)=vy(j+1,k+1)+dvy
vz(j+1,kt1)=vz(j+1,k+1) +dvz

fix nodal velocities along panel edge

vx(jt, k+1)=0.40

vy(jt,k+1)=0.d0

vz(jt,k+1)=0.d0
fix z-velocities of nodes under plate
if(j.1t.jplate) vz(j+1,k+1)=vplate

set velocities in second octant by symmetry

vx(k+1,j+1)=vy(j+1,k+1)
vy (k+1,j+1)=vx(j+1,k+1)
vz(k+1,j+1)=vz(j+1,k+1)

if((ifront.gt.jtm1) .and. ((j+1) .eq.jt)) go to 24
compute change of nodal coordinates from velocities
xcd(j+1,k)=xcdold

ycd(j+1 k) =ycdold

zcd(j+1,k)=zcdold

xcd(k, j+1)=ycdold

yed(k, j+1)=xcdold

zcd(k, j+1)=zcdold

38



c compute change in element strain from new coordinates
c first, vertical element from (j+1,k) to (j+1,k+1)

24 deqO01=(xcd(j+1,k+1)-xcd(j+1,k))**2
& +(ycd(§+1,k+1)-ycd(j+1,k))#*2
& +(zcd(j+1,k+1)-zcd(j+1,k))»*2

distO1=dsqrt (dsq01)

dsqx01=(xcd (j+1 ,k+1)+vx(j+1,k+1)*dtn/1.d4

& -xcd(j+1,k )-vx(j+1,k )*dtm/1.d4)*#2
dsqyO1=(ycd (j+1,k+1)+vy(j+1,k+1)*dtm/1.d4

& ~ycd(j+1,k )-vy(j+1,k )+dtm/1.d4)#*s2
dsqzO1=(zcd(j+1,k+1)+vz(j+1,k+1)+dtm/1.d4

& -zed(j+1,k )-vz(j+1,k )*dim/1.d4)**2

ddst01=dsqrt (dsqx01+dsqy01+dsqz01)
deps=ddst01/dist01-1.40
eps01(j+1,k)=eps01(j+1,k)+deps

c check for max strain

if(epsO1(j+1,k).gt.epsb) then
write(7,242) tim,vproj
write(#*,242) tim,vproj
242 format(//1x, 'strain rupture at t = ’',g14.5,’ vproj =',gi4.5)
stop
endif
epsmax=dmax1{ epsmax, dabs(epsO1(j+1,k)) )

if(idiag.eq.1) go to 26
eps10(k,j+1)=epsO1(j+1,k)

c next, horizontal element from (j,k+1) to (j+1,k+1)
26 dsq10={xcd(j+1,k+1)-xcd(j k+1))*=*2
& +(ycd(j+1,k+1)-ycd(j, k+1))**2
& +(zcd(j+1,k+1)-zcd(j, k+1))**2
dist10=dsqrt(dsq10)
dsqx10=(xcd (j+1,k+1)+vx(j+1,k+1)*dtn/1.d4
& -xcd(j ,k+t1)-vx(j ,k+t1)=dtm/1.d4)*+2
dsqy10=(ycd(j+1,k+1)+vy(j+1,k+1)sdtmn/1.d4
& -ycd(j k+1)-vy(j ,k+1)*dtm/1.d4)**2
dsqz10=(zcd(j+1,k+1)+vz(j+1, k+1)+dtm/1.d44
& -zed(§ Lk+1)-vz(j ,k+1)=dtm/1.d44)=**2

ddst10=dsqrt (dsqx10+dsqy10+dsqz10)
deps=ddst10/dist10-1.d0

eps10(j k+1)=eps10(j, k+1)+deps
eps01 (k+1,j)=eps10(j, k+1)

c check for max strain
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0o o000

b1

if (eps10(j.k+1) .gt.epsb) then
write(7,242) tim,vproj
write(»,242) tim,vproj
stop

endif

epsmax=dmaxl( epsmax, dabs(eps10(j, k+1)) )

call tensn subroutine to compute element
tension and strain energy from element strain
or strain history.
first, vertical element from (j+1,k) to (j+1,k+1)

epslny=epsO1 (j+1,k)

epyold=e0101d(j+1,k)

tsyold=tOlold(j+1,k)

jpil=j+1

call tensn(it, jpi,k,epslny,tsly,epyold,tsyold,denrgy)

t01  (j+1,k)=tsly
t0101d(j+1,k)=tsyold
t1001d(k, j+1)=t0101d(j+1,k)
e010ld(j+1,k)=epyold
e1001d(k, j+1)=e0101d(j+1,k)

bsem=1.d0
if(j.gt.1.and.k.eq.1) bsem=0.5d0
snrgy=snrgy+dsnrgy*(2-idiag)*bsem

next, horizontal element from (j,k+1) to (j+1,k+1)
epslnx=epsl0(j, k+1)
epxold=e100ld(j ,k+1)
tsxold=t1001d(j, k+1)

kpi=k+1
call tensn(it,j,kpl,epslnx,tslx,epxold,tsxold,dsnrgy)

t10  (j,.k+1)=tslx
t1001d(j,k+1)=tsxold
t0101d(k+1, ) =t1001d(j, k+1)
@1001d(j,k+1)=epxold
e01old(k+1, j)=e1001d(j, k+1)
if(j.eq.1.and.k.eq.1) go to 51
snrgy=snrgy+dsnrgy* (2-idiag)

t£10(k, §+1)=t01(j+1,k)
t01(k+1,§)=t10(j, k+1)

xcdold=xcd (j,k+1)
yedold=ycd(j, k+1)
zcdold=zcd (j,k+1)

elke(j,k+1)=elke(j, k+1)+.5d-3*hunitm#*
(vx(j,k+1)«*2+vy(j, kt1) **2+vz(j k+1)*+2) /fmassa
elke(j+1.k)-e1ke(j*1.k)+.5d-3*hunitm*
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28

&

L g

L. g

(vx(j+1,k)*+2+vy(j+1, k) #+2+vz(j+1, k) *+2) /fmassa
elke(k+1, j)=elke(j, k+1)
elke(k, j+1)=elke(j+1,k)
tlelen(j,k+1)=else(j, k+1)+elke(j, k+1)
tlelen(j+1,k)=else(j+1,k)+elke(j+1,k)
tlelen(k, j+1)=tlelen(j+1,k)
tlelen(k+1,j)=tlelen(j, k+1)

bkexyk=1.d0
bkexyj=1.40

if(k.eq.1.and.j.1t.jt) bkexyk=0.50d0
1£(j.eq.1.and.k.1t.}t) bkexyj=0.50d0

xknrgy=xknrgy+4.d0+0.50d-3*bunitm
* (bkexyk*vx(j+1,k) **2+bkexyj*vx (j k+1)**2)
/(fmassa)

yknrgy=yknrgy+4.d0+0.50d-3*hunitm
* (bkexyk*vy (j+1,k) #*2+bkexyj*vy (j k+1) *+2)
/ (fmassa)

zknrgy=zknrgy+(2.0d0-idiag) *4.d0+0.50d-3*hunitm
* (bkexyk*vz (j+1,k)**2+bkexyj*vz(j k+1)*+2)
/ (fmassa)

add symmetric components to energy unless on diagonal

if(idiag.eq.1) go to 28
xknrgy=xknrgy+4.d0*0.5d-3*hunitm
* (bkexyk#vx (k, j+1) #*2+bkexyj*vx (k+1, ) #+2)
/(fmassa)
yknrgy=yknrgy+4.d0+*0.5d-3*hunitm
» (bkexyk*vy(k, j+1) *+2+bkexyj*vy (k+1,j) *+2)
/ (fmassa)

store new nodal coordinates

xcd(j+1,k)=xcd(j+1,k)+vx(j+1,k)*dtm/1.d4
yed(j+1,k)=ycd(j+1,k) +vy(j+1,k) *dtn/1.d4
zcd(j+1,k)=zcd(j+1,k)+vz(j+1,k)*dtm/1.44

xcd(j , k+1)=xcd(j, k+1)+vx(j, k+1)*dtm/1.d44
yed(j  k+1)=ycd(j, k+1)+vy(j, k+1)*dtm/1.d4
zcd(j, k+1)=zcd(j ,k+1)+vz(j, k+1)+dtm/1.44

if(j.eq.k) go to 15

xcd(k, j+1)=xcd (k, j+1) +vx (k, j+1) +dtm/1.d4
yed(k, j+1)=yecd (k, j+1) +vy(k, j+1) *dtm/1.44
zed(k, j+1)=zcd(k, j+1)+vz(k, j+1) »dtm/1.d4

if(j.eq.(k+1)) go to 15

xcd(k+1,j)=xcd (k+1, j)+vx(k+1,j)*dtm/1.44
ycd(k+1,j)=ycd(k+1,j)+vy(k+1,j)*dtm/1.d4
zcd(k+1.j)'zcd(k+1.j)+vz(k+1.j)*dtm/1.d4
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91

92
96

97

98

93

94

95

obtain vector components of element tensions

al=atan((ycd(j+1,k+1)-ycd(j, k+1))
/(xcd(j+1,k+1)-xcd(j, k+1)))

cosal=cos(al)

sinai=gin(al)

if(abl(zcd(j+1.k+1)-zcd(j.k+1))— 0.0001) 90,90,91
cosb1=0.40
sinbi=1.40

go to 92

bi=atan(((xcd(j+1,k+1)-xcd(j ,k+1))**2
+(ycd(j+1,k+1)-ycd(j ,k+1))*+2)%+0.50
/(zed(j ,k+1)-zcd(j+1.k+1)))

cosbi=cos (b1)

sinbi=gin(b1)

if(lbs(xcd(j+1.k+1)-xcd(j+1.k))- 0.0001) 96,96,97
cosa2=0.d0
sina2=1.d40

go to 98

a2=atan((ycd(j+1,k+1)-ycd(j+1,k))
/(xcd(j+1,k+1)~xcd(j+1,k)))

cosa2=cos(a2)

sina2=gin(a2)

if(abs(zcd(j*l.k+1)-zcd(j+1.k))- 0.0001) 93,93,94
cosb2=0.40
sinb2=1.40

go to 95

b2=atan(((xcd(j+1,k+1)-xcd(j+1,k))**2
+(ycd(j+1,k+1)-ycd(j+1,k) ) *+2)*+0.50
/(zcd(j+1,k )-zcd(j+1,k+1)))

cosb2=cos (b2)

sinb2=gin (b2)

tx10(j ,k+1)=t10(j k+1) *sinbi*cosal
ty10(j.k+1)=t10(j k+1) *sinbis*sinal
£210(j,k+1)=t10(j k+1) *cosbl

tx01(j+1,k)=t01(j+1,k) *sinb2+cosa2
ty01(j+1,k)=t01(j+1,k)*sinb2¢sina2
t201(j+1,k)=t01(j+1,k)*cosb2

t10(k, j+1)=t01(j+1,k)
t01(k+1,j)=t10(j, k+1)

£1001d(k, j+1)=t0101d(j+1,k)
t01old(k+1,j)=t1001d(j, k+1)
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tx10(k, j+1)=ty01(j+1,k)
ty10(k, j+1)=tx01 (j+1,k)
tz10(k, j+1)=tz01(j+1,k)

tx01(k+1,j)=ty10(j, k+1)
ty01(k+1,§)=tx10(j,k+1)
tz01(k+1,§)=tz10(j, k+1)

idiag=0
c--~- END LOOP OVER NODES ON DIAGONAL ----=-coeommm oo
22 contimue
c---- END LOOP OVER DIAGONAL WAVEFRONT POSITIONS --==----=cccemoemoenn-
14 continue
c compute plate/projectile slowdown

49 zforce=0.d0
do 50 k=1, jplate
aproj=atan((zcd(jplate+i,k)-zcd(jplate, k))
& /(xcd(jplate+1,k)-xcd(jplate, k)))
zforce=zforce + t10(jplate,k)*sin(aproj)
50 continue
bforce=xk*zcd(1,1) * ((2+jplate-1)=s2)
vplate=vplate+8.dO*zforce*dtm*denyrn+9.80e-06%crimp/totmass
& -bforce*dtm+9.80e-06/totmass
vproj=vplate

dke=xke-0.50d-3+totmass*vproj**2/(fmassa)
tlegfr=snrgy+xknrgy+yknrgy+zknrgy

error = 100.%(1.-2.%tlegfr)/dke
engybk=dke-tlegfr

c check for end of run

if (vproj.le.0.d0) then
write(7,82) tim,vproj,dke,tlegfr,engybk,snrgy,

& xknrgy, ylorgy, zknrgy
82 format (//1x, 'at projectile stop:'/1x,4x,9e14.5)
stop
endif

if(xk.1t.0.001) engybk=0.d0
c print current field variables if at selected time increment
c entire strain and z-displacement fields at 10 microsec
if ( tim.gt.10. .and. tprt.eq.0 ) then
tprt=1
do 86 j=1,jt
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do 86 k=1,jt
write (11,84) xcd(j,k),ycd(j k), ,eps10(j, k)
write (12,84) xcd(j.k),ycd(j,k), zcd(j,k)
84 format (1x,3f15.4)
86 continue
endif

if(incl.eq.inc) then
c full data to plate.out file (unit 7):

write (7,2000) tim,vproj,dke,tlegfr,engybk,snrgy,xknrgy,
yknrgy, zknrgy,error, epsmax
2000 format(/ix,’'time = ’,g12.4,’ microseconds’,
/4x,'projectile velocity =',gl12.4," m/sec’,
/4x,'projectile energy loss =',gi12.4,' joules’,
/4x,'fabric enmergy gain =',g12.4,’' joules’,
/4x,’energy in backup =',g12.4,' joules’,
/4x,'fabric strain emergy =',g12.4," joules’,
/4x,’x - kinetic energy =',g12.4,' joules’,
/4x,’y - kinetic energy =',g12.4,' joules',
/4x,’'z - kinetic energy =',g12.4,’' joules’,
/4x,'energy discrepancy, % =',g12.4/,
/4x, ’'maximum strain =',g12.4/)

~

L O N N O R N

802 write(7,72) ((t10(ix,iy),ix=1,jprt),iy=1,jprty)
72 format(1ix,’'t10(ix,iy)="/8(g12.4))

write(7,74) ((t01(jx,jy).jx=1,jprt),jy=1,jprty)
74 format (1x,'t01(jx,jy)="'/8(g12.4))

wvrite (7,702) (( vz(nx,ny),nx=1,jprt),ny=1, jprty)
702 format (1x,* vz(i,j)="/9(gl12.4))

write(7,701) ((xcd(mx,my),mx=1,jprt),my=1,jprty)
701 format (1x, *xcd(i,j)="/9(g12.4))

write(7,703) ((zcd(icx,icy),icx=1,jprt),icy=1,jprty)
703 format (ix, *zed(i,j)="/9(g12.4))

write(7,76) ((epsiO(kx, ky),kx=1,jprt), ky=1, jprty)
76 format (1x, *eps10(ix,ky)="/8(g12.4))

write(7,78) ((epsO1(lx,1ly),lx=1,jprt),ly=1, jprty)
78 format (1x, 'eps01(1x,1y)='/8(g12.4))

c brief summary to screen (unit 6):

write(6,1020) tim,vproj,epsmax,error
1020 format (1x,2g15.4,£15.4,g15.4)

c comma-separated values to units 8,9,10:

c overall values for armor at this time increment...
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write(8,1016) tim,vproj,dke, tlegfr,engybk,snrgy,xknrgy,
& ykorgy,zknrgy, epsmax
1015 format( 4x,10(gi4.5,','))

c values of z-coordinate and strain along primary fiber...

1f(it.eq.1) write (9,1034) (i,i=1,jt)
1034 format (4x,41(i6,’,"))

write( 9,1035) tim,( =zcd(i,1),i=1,jt)

if(it.eq.1) write (10,1034) (i,i=1,jt)

write(10,1036) tim, (eps10(i,1),i=1,jt)
1035 format(4x,41(g14.5,',"))

inci1=0
endif
c==-= END TIME LOOP ----------romm oo memmm e
12 continue

wvrite(7,102) tmax

102  format(//2x, 'stopped at max time: t = ’, 2x,e14.5)
stop
end

The subroutine bndry.for is used to perform computations for nodes lying along
the horizontal fiber passing through the impact point.

subroutine bndry(it,j,k)

implicit real*8 (a-b,o-z)
common/ixmatl/ipt
common/cmatl/eyrn,chard,e0,el,e2,e3
common/visco/g,vlamda,tau
common/varbl/jt,x1,dx1,dtm,denyrn,prjmass,crimp,fmassa,fmassm,
¢ unitm,hunitm, jplate,vproj,epsmax,epsb,tim
common/tsnold/t1001d(40,40),t0101d(40,40),
& e1001d(40,40) ,e0101d(40,40)
common/backup/xk
common/cmesh/xcd(40,40) ,ycd (40,40) ,zcd(40,40),xcdold, ycdold, zcdold
common/ten/t10(40,40),t01(40,40) ,tx10(40,40) ,tx01(40,40),
& ty10(40,40) ,ty01(40,40) ,tz10(40,40) ,tz01(40,40),
& eps10(40,40) ,eps01(40,40)
common/veloc/vx(40,40) ,vy(40,40),vz(40,40)
common/ergcum/xknrgy, yknrgy, zknrgy ,snrgy
common/ergelem/elke (40,40),else (40,40) ,tlelen(40,40)

dvx=(tx10(j+1,k)-tx10(j,k)+2.d0*tx01 (j+1,k))*dtm

& *8,82d0/(2.d0*dx1*crimp)
dvz-(tle(j*l.k)-tle(j.k)+2.d0*tz°1(j*1.k))*dtm
& *8.82d0/(2.d0*dx1*crimp)
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& +xk*dx1*zcd(j+1,k) *dtm*9.8d-6/ (unitm/9.045)
dvz=-dvz

vx(j+1,k)=vx(j+1,k)+dvx
vy (j+1,k)=0.d0
vz(j+1,k)=vz(j+1,k)+dvz

if(j.1t.jplate) vz(j+1,k)=vproj

vx{jt,k)=0.d0
vy(jt,k)=0.40
vz(jt,k)=0.d0

vx(k,j+1)=vy(j+1,k)
vy(k,j+1)=vx(j+1,k)
vz (k,j+1)=vz(j+1,k)

dsqx=(xcd(j+1,k)+vx(j+1,k)+dtm/1.d4-xcd(j k)
& ~vx(j.k)*dtm/1.d4) ++2
deqy=(ycd(j+1,k)+vy(j+1,k)*dtm/1.d4-ycd(j k)
& -vy(j.k)*dtm/1.d4) **2
dsqz=(zcd(j+1,k)+vz(j+1,k)*dtm/1.d4-zcd(j k)
& -vz(j k) *dtm/1.d4)**2

ddl= dsqrt(dsqx+dsqy+dsqz)

dsq=(xcd (j+1,k)-xcd(j.k))**2+(ycd(j+1,k)-ycd(j, k))**2
& +(zcd(j+1,k)-zcd(j,k))*+2

dist= dsqrt(dsq)

deps=ddl/dist-1.d0
eps10(j,k)=eps10(j, k) +deps

c check for max strain

if(eps10(j,k).gt.epsb) then
write(7,242) tim,vproj
write(*,242) tim,vproj
242 format(//1x, *strain rupture at t = *,g14.5,' vproj =',g14.5)
stop
endif
epsmax=dmax1( epsmax, dabs(epsiO(j,k)) )

eps01(k, j)=eps10(j k)

tslold=t1001d(j k)

epsold=e1001d(j,k)

epsln=eps10(j, k)

call tensn(it,j,k,epsln,tsl,epsold,tslold,dsnrgy)

£10(j,k)=tsl
t01(k,j)=t10(j,k)
t1001d(j k) =tslold
t0101d(k, j)=t1001d(j,k)
€1001d(j k) =epsold
€0101d(k, j)=e1001d(j k)
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10

11

12

bkexy=2.d0
if(j.eq.1.and.k.eq.1) bkexy=1.40

xknrgy=xknrgy+bkexy*0.5d-3*bunitm*vx(j, k) **2/(fmassa)

& +bkexy*0.6d-3*bunitm*vx(k, j)*+2/(fmassa)
yknrgy=ylnrgy+bkexy*0.5d-3*hunitm*vy(j k) **2/(fnassa)

& +bkexy*0.5d-3*hunitmsvy(k, j)*+2/ (fmassa)
bkezz=4.d0

if(j.eq.1.and.k.eq.1) bkezz=2.d0
zknrgy=zknrgy+bkezz*0.5d-3*hunitm*vz(j k) *+2/(fmassa)
snrgy=snrgy+dsnrgy

ctrse=4.d0

if(j.eq.1 .and. k.eq.1) ctrese=1.d0
else(j, k)=else(j, k)+dsnrgy/ctrae
else(k,j)=else(j, k)

ctrke=1.d0

if(j.eq.1 .and. k.eq.1) ctrke=2.d0
elke(j,k)=elke(j,k)+ctrke*.5d-3*hunitm+
& (vx(j,k)**2+vy(j k) **2+vz(j k) *+2)/fmassa
elke(k, j)=elke(j, k)

tlelen(j,k)=else(j, k)+elke(j, k)
tlelen(k,j)=tlelen(j, k)

xcdold=xcd (j k)
ycdold=ycd(j, k)
zcdold=zcd(j,k)

xcd(j . k)=xed (j k) +vx(j, k) *dtm/1.44
yed(j k)=yed(j,k)+vy(j, k) *dtm/1.d4
zcd(j,k)=zcd(j,k)+vz(j, k) *dtm/1.d4

if(j.eq.k) go to 20

xcd(k,j)=xcd(k, j)+vx(k, j)*dtm/1.44
yecd(k,j)=ycd(k, j)+vy(k, j)*dtm/1.d4
zed(k,j) =zcd(k, j)+vz(k, j)*dtm/1.d4

a=atan((ycd(j+1,k)-ycd(j,k))/(xcd(j+1,k)-xcd(j, k)))
cosa=cos (a)

sina=sin(a)

if (abs(zcd(j+1,k)-zcd(j,k))-0.0001) 10,10,11
cosb=0.d0

sinb=1.40

go to 12

b=atan((xcd(j+1,k)-xcd(j.k)}/(zcd(j, k) -zcd(j+1,k)))
cosb=cos (b)
sinb=sin(b)

tx10(j,.k)=t10(j k) *sinb*cosa
ty10(j,k)=t10(j k) #sinb*sina
tz10(j,k)=t10(j k) *cosd
tx01(k, j)=ty10(j, k)
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ty01(k, j)=tx10(j, k)
tz01(k, j)=tz10(j, k)

return
end

The subroutine tensn.for computes the tension resulting from a given strain, and
also computes the strain energy in the fiber element.

subroutine tensn(it,j,k,epss,ts,epsold,tslold,dsen)

c use appropriate constitutive model for
c computation of element tension from strain
c or strain history

implicit real+*8 (a-h,o0-z)

external £

common/ixmatl/ipt
common/cmatl/eyrn,chard,e0,el,e2,e3
common/visco/g,vlamda,tau
common/nonlr/eni,en2,a,alp,vlbd
common/noneq/al,a2,a3
common/varbl/jt,x1l,dxl,dtm,denyrn,prjmass,crimp,fmassa,fmassm,
& unitm,hunitm, jplate,vproj
common/tsnold/t1001d(40,40),t0101d(40,40),
& 1001d(40,40),e0101d(40,40)
common/backup/xk

dimension x(1)

if (epss.le.0.d0) go to 1
symctr=1.00e 00
if(j.eq.1 .and. k.eq.1) symctr=0.5d0

if(ipt.eq.2) go to 12
if (ipt.eq.3) go to 14
if(ipt.eq.4) go to 18

c nonlinear (cubic polynomial) elastic model

ts = ¢0 + el*epss + e2+epss**2 + e3+epss**3
dsen=4.d0* (eO+*epss+0.5d0*epas**2

& +0.33333d0*epss*+3+0.25d00+epss*+4)

& *denyrn*dxlscrimp*9.8d-5*symctr/fmassa

go to 2
c
c nonlinear (exponential strain hardening) elastic model
c
12 ts=eyrnsepss**chard

dsen=(4.d0/(1.d0+chard))*eyrn * epss**(1.d0O+chard)

& »denyrn*dxlscrimp*9.80e-05*symctr/fmassa

go to 2
c
c linear (standard linear solid) viscoelastic model
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20

b=g#*(1.d0-vlamda) /tau
d=1.40 + dtm/tau
if(it.gt.1) go to 16
epsold=0.d0
tslold=0.d0
ts=(g*(epss-epsold) + bsepss*dtm+tslold) / d
dsen=(4.d0 * 0.5d0 * (ts+tslold) * (epss-epsold)
& + dxl * denyrn * crimp * 9.8d-5 * symctr) / fmassa
epsold=epss
tslold=ts
go to 2

nonlinear (Eyring) viscoelastic model

if(it.gt.1) go to 20
epsold=0.00e 00
tslold=0.00e 00
bl=en2*a*dtm
b2=en2+*(1.00d 00+v1bd)
b3=alp*eni*epss
b4=epss-epsold
al=bi*dcosh(b3)
a2=-bi*dsinh(b3)
a3=-b2+b4-tslold
eps=1.00d-06
eps2=1.00d-06
eta=1.00d-02

nsig=6

n=1

x(1)=tslold

itmax=100

call znonlr(f,eps,eps2,eta,nsig,n,x,itmax,ier)
t8=x(1)

dsen=(4.00e 00%0.50e 00+ (ts+tslold) * (epss-epsold) +*dx1*denyrn*crimp

&+9.80e-05*s8ymctr) /fmassa
epsold=epss

tslold=ts

go to 2

ts=0.00e 00

dsen=0.00e 00

return

end

real*8 function f(s)

implicit real*8 (a-h,o-z)
common/nonlr/enl,en2,a,alp,vlbd
common/noneq/al,a2,a3
f=s+aisdsinh(alp+s)+a2+dcosh(alp*s)+a3
return

end
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