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Wave Propagation in a Viscoelastic
Fiber Subjected to Transverse Impact

A dynamical finite-element analysis is used to demonstrate the effect of viscoelastic re-

laxation on a 3-element rate-dependent model fiber subjected to transverse impact.

The

transverse shock waves produced by the impact are seen to propagate more slowly and at
a larger fiber inclination than the rate-independent theory predicts, and these perturba-
tions are shown to have an appreciable effect on dynamsic stress-stratn curves whick are
inferred from measurements of the fiber configuration during impact.

Introduction

THE problem of transverse impact of a filamentary
material has been of continuing interest for approximately the
past three decades. This has been due of course to the large
number of industrial and military textile applications involving
such impacts, but in addition several authors have recently noted
that the dynamic constitutive response of a material can be in-
ferred from high-speed photographic measurements of the fiber
configuration during the impact. In this latter regard, a series
of transverse impact tests over a range of impact velocities can
serve as a valuable supplement to such dynamic characterization
techniques as Hopkinson bar measurements, and can provide one
of the very few presently available methods whereby the stress-
strain curve can be obtained for materials in fiber or film form
at strain rates corresponding to wave-propagation speeds. The
stress-strain curve can be calculated quickly and easily from ex-
perimental impact data (a numerical program for a programmable
desk calculator is available from the author), but these calcula-
tions rely on the rate-independent theory of transverse impact
which has been developed by Rakhmatulin [1]' and others.
Since it is desirable to characterize even highly rate-dependent
materials, such as polymeric fibers, by this technique, the effect
of viscoelastic relaxation on the fiber configuration during impact
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has been analyzed. This paper presents the results of that
analysis. Although this study is specifically intended to extend
the applicability of the dynamic characterization technique just
mentioned, the numerical technique used is capable of generating
certain information not obtainable from the analytical treatments
commonly used for uniaxial or transverse propagation, so that the
results are of more general interest than this one specific applica-
tion.

Rate-Independent Theory

Since the early work of Rakhmatulin and Taylor, several
authors have formulated the mechanics of transverse impact,
assuming a rate-independent material constitutive response.
Reviews of this work can be found in the books of Rakhmatulin
[1] and Cristescu [2]. The salient features of this theory can be
stated with reference to Fig. 1. Upon impact, longitudinal strain
waves are propagated outward from the point of impact. The
increments of strain € comprising these waves propagate at
speeds c(e) corresponding to the slope of the dynamic stress-strain

curve at that strain: c(e) = Vv, dT/de = vV E(¢). (Here the
material density is included implicity by using the textile units of
grams/denier for the tension 7' and the modulus E, and numerical
conversion factors have been omitted.) Depending on the shape
of the stress-strain curve, these strain waves may contain both
dispersive and shock components. Behind these waves, material
flows inward toward the point of impact at a constant velocity w
and strain €. In addition to the longitudinal waves, transverse
shock. waves are propagated outward from the point of impact.
This wave usually propagates more slowly than the final longitu-
dinal wavelet, and can usually be characterized as follows: At
the transverse wave front, the inward material flow velocity
ceases abruptly and is replaced by a transverse particle velocity v
equal to that of the projectile. The strain and tension are un-
changed across this wave front, but both the longitudinal and
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Fig. 1 Wave propagation in a transversely impacted fillament
transverse particle velocities experience discontinuities there.

(The apparently unbalanced tensions on either side of the wave
front are compensated by the change in particle momentum as

the wave propagates.) Behind the transverse wave front, all

particle velocities are equal in magnitude and direction to the
projectile velocity, and the yarn configuration is a straight line at
a constant inclination @ from the longitudinal direction.

Smith [3] has presented a comprehensive summary of the rate-
independent theoretical relations between these variables, as well
as the modifications which are necessary to describe such com-
plications as shock formation and interference between the longi-
tudinal and transverse waves. For a given stress-strain curve and
impact velocity V, these relations can be used to calculate the final
strain €, the final tension 7T, the longitudinal particle velocity w
between the final strain wave and the transverse wave, the trans-
verse wave speed U and U (in Lagrangian and laboratory coor-
dinates, respectively), and the fiber inclination 6. Working
backward, one can use experimental plots of either I or 6 versus
V to obtain values of T, €, and w as functions of V. The sets of
Ty — e states can then be cross-plotted to produce a dynamic
stress-strain curve. Papers by Smith [4] and Schultz [5] il-
lustrate the technique using U-V and 8-V data, respectively.

The experimental measurements of § or I are made from photo-
graphic exposures taken at times prior to any interactions of re-
flected longitudinal waves with the transverse wave; these inter-
actions modify both 8 and U and render analysis of the data very
difficult, if not impossible. While it is experimentally possible to
avoid these longitudinal-transverse wave interactions, it may
not be possible to obtain photographic records of the fiber con-
figuration sufficiently close to the time of impact such that ap-
preciable viscoelastic relaxation has not occurred. Relaxation
causes the plateau of constant strain which the rate-independent
theory predicts to exist behind the longitudinal strain waves to be
replaced by a field of simultaneously increasing strain (creep) and
relaxing stress; in addition the intensity of the strain wave front
is attenuated as it propagates along the fiber. These continuing
changes in the stress-strain state in which the transverse wave
propagates alter the configuration of the impacted fiber from that
predicted by the rate-independent theory, and several authors
(6-8] have noted discrepancies between the theoretically predicted
and experimentally observed impact parameters which seem
attributable to relaxation processes. Smith [6] in particular
argues that appreciable relaxation occurs during the first 50 micro-
sec after impact of polyester and nylon textile yarns which is
essentially complete at longer times; the effects of such relaxation
will certainly be present in photographic records, which are
taken in the range of approximately 20-200 usec after impact.

If dynamic stress-strain curves obtained from 6-V or U-V
data are to have any meaning for rate-dependent materials, the
magnitude of the perturbation of the fiber configuration due to
relaxation must be assessed. It is not obvious a priori whether
application of the rate-independent theory to the relaxing fiber
produces grossly erroneous results, or perhaps an approximately
valid result. A possible approach to this problem is to use a given
time-dependent material response—either & spring-dashpot model
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representation or experimental dynamic data obtained via time-
temperature shifting techniques—and then compare the pre-
dicted impact configuration with that of the rate-independent
theory. Such a procedure can lead to an estimation of the rela-
tive effect of material relaxation and thus assist in determining
the error produced when the rate-independent theory is used to
characterize a rate-dependent material.

Prior Work in Viscoelastic Wave Propagation

Several recent papers have addressed the problem of uniaxial
wave propagation in a viscoelastic medium, the spring-dashpot
representation of material constitutive response being perhaps
more common than experimentally measured properties. Leeand
Kanter [9] used Laplace transform methods to demonstrate the
attenuation of the wave front in a Maxwell solid, and Glauz and
Lee [10] later applied the method of characteristics to this same
problem. Morrison [11] used Laplace transforms to illustrate
wave propagation in a standard linear solid (a spring in parallel
with a Maxwell element), and Smith [12] modified this solution
for the specific case of longitudinal fiber impact. Knauss [13]
obtained a series solution for viscoelastic wave propagation and
applied experimental time-temperature reduced relaxation
modulus values for Hysol 8705 to it; Wenner [14] had earlier
used experimental modulus values in conjunction with a numer-
ical finite-element analysis of uniaxial propagation. Smith [15]
has attacked the problem of transverse impact of a viscoelastic
fiber using a numerical scheme based on the method of charac-
teristics, and the results of his analysis will be compared with
those of the present study.

Method of Analysis

Direct Numerical Analysis

In recent years, Davids, et al. [16-18], have developed a dy-
namical form of finite-element analysis which will be referred to
here as “direct analysis.” The mechanics of wave propagation
are usually formulated by applying an impulse-momentum
balance and a condition of continuity to an incremental volume of
material; when the size of the volume element is reduced to the
limit a system of hyperbolic partial differential equations results
which in conjunction with the boundary values and the material
constitutive law describes the space-time response of the physical
system. The combined system of equations is then attacked by
analytical mathematical techniques, such as Laplace transform
methods or the method of characteristics, or by replacing the par-
tial derivatives with finite divided differences so as to effect a
computational solution using a digital computer. Direct analysis
is a computer-oriented technique, but it differs from the finite-
difference approach in that the original incremental volume ele-
ment is never taken to the limit; the fundamental governing rela-
tions are used directly and the development of the differential
equations is dispensed with.

Direct analysis has several advantages over these other
methods: its conceptual simplicity leads to an easily written
and debugged computer program, and boundary conditions and
constitutive laws can be changed with only very minor program
alterations. In addition, phenomena which render analytical
approaches hopelessly intractable—such as wave reflections at
boundaries, longitudinal-transverse wave interactions, unloading
waves, etc.—are incorporated automatically simply by specifying
the appropriate boundary conditions.

Criteria for accuracy and stability of the method are related
to the theory of characteristics for hyperbolic systems and are
similar to those developed for finite-difference methods [19].
Given a wave equation of the form

%/t = c3(d%u/0x?) (1)

which is to be solved numerically by approximating ¢ and 0z by
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Fig. 2 Spring-dashpot representation and basic relations for the
standard linear solid

finite differences At and Az, respectively, a ‘‘stability ratio”’
can be defined as

a = ¢(At/Ax) (2)

Courant, et al. [20], have shown that the finite-difference solution
is stable and accurate for & = 1, stable but increasingly inaccu-
rate for @ < 1, and violently unstable for @ > 1. The choices for
Az and At are thus not independent, but are related by the wave
speed ¢ for the choiceof & = 1.

In the direct analysis of the impacted fiber, this criterion is
equivalent to adjusting the rate of march of the computer solu-
tion along the fiber to match the rate of propagation of the strain
wave. Conceptually, this requirement is related to the necessity
of programming the finite governing equations so as to model the
actual continuous dynamic process as accurately as possible. If
a major disturbance—such as the passage of a strain wave with
its accompanying energy input—takes place in a finite element
which is not considered explicitly in the computational scheme,
one can almost be guaranteed increasingly divergent numerical
results. This conceptual approach to stability—rather than the
formal criteria dictated by the theory of characteristics—is gen-
erally more workable in the actual programming of the method.
Once a stable computational scheme has been developed, one
usually attempts to increase its accuracy to whatever limit is de-
sired by decreasing the size of the finite elements;i.e., by increas-
ing the number of mesh points. Since for & = 1, a decrease in
Az requires a corresponding decrease in A, the computation
time—and therefore the expense—required for analysis of a given
impact event increases as the square of the number of mesh
points. The mesh size is therefore chosen so as to balance the
conflicting requirements of economy and accuracy.

Choice of Constitutive Law

All numerical results presented here will be for the constitutive
response of the standard linear solid, indicated schematically in
Fig. 2. Here € is the strain, 7 is the tension, the ¢’s are spring
constants, and v is the dashpot viscosity. Following Smith [12],
it is convenient to define the parameters g, A, and 7 by A\g = g1,
(1 — AN)g = g5, and Agr = v; the constitutive equation can then
be written

(1 =Ny

e=T‘+1T (3)
T T

gé +

(Here the dots denote time derivatives.) The parameter g repre-
sents the instantaneous or glassy modulus of the model, 7 is the
relaxation time of the viscous arm, and as X is varied from zero to
one the amount of viscous response varies from zero (purely
elastic case) to that of a Maxwell element. In a stress relaxation
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Fig. 3 Finite-element conceptualization of the fiber

test, for instance, the tension relaxes exponentially from an initial

value T = ge, to an asymptotic limit of (1 — A)ge in a charac-
teristic time r.
Equation (3) can be written in finite-difference form as
1 - )\)g AT 1
=== =T
‘N At ; a @

Letting the subscripts ¢ and ¢ — 1 identify the variables 7 and ¢
at times after and before the passage of the time increment At, a
new value of tension can be computed from the current strain
and the previous strain and tension as

gle, — &) + [g(1 — N)/r]Ates + Ty

Te= 1 + (At/7)

(6)

Equation (5) is in a form readily adapted to the direct analysis
program.

The standard linear solid was not chosen for reasons of ease of
programming, since either experimental data or much more
elaborate spring-dashpot models could have been programmed
almost as easily. Such normally intractable elaborations as
caleulation of adiabatic heating due to the dynamic energy input
of the strain wave and the effect of the temperature rise on the
constitutive response could also have been easily incorporated.
Use of the standard linear solid, however, has several compelling
advantages:

1 Being simple and easily visualized, its results help establish
an intuitive feeling for the effect of relaxation during fiber impact.
" 2 Many previous analyses of viscoelastic wave propagation
have used the standard linear solid, and its use here permlts corre-
lation of the results with these earlier works.

3 Most important, the standard linear solid appears to pro-.
vide a rather accurate model for the textile yarns being tested in
our laboratory. With increasing strain rate, their stress-strain
curves become increasingly linear, although there remains the
strong evidence mentioned earlier of appreciable relaxation dur-
ing approximately the first 50 microsec after impact. The speci-
fic molecular nature of this relaxation is somewhat unclear, but
mechanical loss spectroscopy has indicated that molecular mo-
tions on this time scale are available to the material. The stan-
dard linear solid provides this linear but time-dependent response.

Computational Scheme for Transverse Impact

The application of direct analysis to transverse impact has been
demonstrated by Lynch {21]; his paper shows that many diverse
aspects of the problem can be examined by this method: energy
loss of the impacting projectile, energy partition in the impacted
fiber, effect of elastic support on the fiber, nonlinear and time-
dependent stress-strain curves, and impact of a flexible mem-
brane. His computational scheme was used with only minor
modification to analyze the present problem.

A fiber of half-length L, to be impacted at zero obliquity at its
midpoint with velocity V, is considered as consisting of n finite
elements as shown in Fig. 3. Associated with the ith element are
laboratory coordinates s, ¥:, a scalar strain €;, and vector quanti-
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ties T; tension and v; velocity. The tension T; has the same
direction as the element itself (approximating the fiber’s assumed
inability to support a bending moment), while v; is not restricted
in direction. These variables are related by simple governing
laws: impulse-momentum balance, continuity, etec. The pro-
gram is then written so as to employ these relations sequentially
and effect a recursive algorithm for proceeding from one element
to the next over the length L, and then repeating the process at a
new increment of time. It was found that satisfactory results
were obtained with this very simple idealization of the fiber, and
such elaborations as provision for lateral inertia were unneces-
sary.

Even though the fiber motion takes place in two space dimen-
sions, the computer solution is referenced to a Lagrangian frame
attached to and extending with the fiber; this essentially reduces
the problem to one dimension. The components of the vector
quantities with respect to the laboratory coordinates are com-
puted by means of the element’s inclination angle §; = tan=!
X [(gier — 90)/(®ipn — 2:)].  In the summary of the computa-
tional scheme, these vector resolutions, as well as all units con-
version factors, are omitted for clarity. The material density
and the element mass are included implicitly as before by choice
of modulus g and tension 7T in units of force per linear density
(grams per denier).

1 Specify input parameters: =, V, L, g, A, 7.
2 Define increment sizes

¢ = Vy (6a)
AL = L/n (6b)
At = AL/c (6¢c)

3 Propagation procedure; repeat for ¢ = 1 to ¢ = n. The
value of a variable here is identified with the current or preceding
time increment by a second subscript, t or ¢t — 1.

(a) Impulse-Momentum Balance
Vizrs = Vigne1 + [(Tipn,0m0 — Ti00)(At/AL) )
(b) Impose Boundary Conditions
Ifi=1, viee=V (8a)

Ifi=n Va:=0 (8b)

(¢) Continuity Condition

i = €1a + {[(xi.t—l + viAL) — (Xip1,0 + vig, dAL)] _ 1}
[%6,6m1 — %ig1,e]
(9)
(Here x. is the coordinate vector corresponding to z;, y:.)
(d) Constitutive Law (From Equation (5))
gleie — €,0a) + [(1 — Mg/ At + Tioa
Tie =
' 1+ (At/1) (10
(Here T is the magnitude of the vector T.)
(e) Compute New Laboratory Coordinates of Element
it = Xier + vi, AL (11}
4 Increment time
t=t+4+ At (12)

Steps 3 and 4 are repeated for a specified number of times cor-
responding to the time range of interest, or a failure criterion can
be incorporated into the program to terminate computation at a
time corresponding to fiber failure. :

Neither the formulation of the foregoing governing equations
nor their sequential ordering is unique; this scheme represents
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Fig. 4 Normalized strain plotted against Lagrangian fiber coordinate
for various times after impact for material constants g = 100 gpd, A =
0.2, 7 = 50 usec :
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Fig. 5 Normalized tension distribution along fiber; same units as Fig. 4

just one possibility which generates reasonably stable and ac~
curate results. As the number of wave fronts propagating in
the fiber increases due to wave interactions, the stability of the
method tends to degenerate somewhat. Within the time range
corresponding to time-to-break of the impacted fiber; however,
the method does provide rather accurate values in comparison to
experimental observations. If A is set equal to zero, the method
also gives results identical to those of the rate-independent ana-
lytical theory for a linear constitutive law. Approximately 2
millisec of computation time are required per element for the CDC
6400 computer system.

Results

The direct analysis program generates numerical values for the
position, velocity, strain, and tension of each finite element of
fiber as a function of time after impact. (The partition of kinetic
energy lost by the projectile into fiber kinetic and strain energy
is also ecomputed, but these data will not be included here.)
Figs. 4 and 5 show the distribution of nondimensionalized strain
and tension along the fiber at various times after impact, plotted
against thed.agrangian fiber coordinate. These distributions are
for a choice of g = 100 gpd, A = 0.2, and 7 = 50 usec; the corre-
sponding longitudinal wave speed is 2970 meters/sec. The
values of the ordinates have been normalized by the strain € or
tension T which the rate-independent analytical theory predicts
for a linear material at the same impact velocity V. e is found
by a numerical solution of the equation

V2 = geo(l + &) — [ Vel + @) — «Vg]?  (13)

Then the initial tension is
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Fig. 7 Normalized transverse wave configuration for various times after
impact for material constants g = 100 gpd, A = 0.2, 7 = 20 usec

Ty = g& (14)

To and ¢ can also be computed by the direct analysis program by
setting A = 0.

The distributions in Figs. 4 and 5 demonstrate the features
noted by several of the previously mentioned authors as being
typical of viscoelastic wave propagation: the magnitude of the
wave front attenuates as it propagates along the fiber, the strain
at a given position increases with time from its original value, and
the tension decays with time. Smith [15] used the method of
characteristics to show that the wave-front attenuation is given
by

T(ct, t) = Toexp (—Nt/27)
€(ct, t) = € exp (—AL/27)

(15a)
(15b)

The wave-front tension magnitude predicted by equation (13a)
is shown in Fig. 6, which also illustrates the numerical accuracy
of the direct analysis. (Here a 6-in. fiber was broken into 200
finite elements.) Considerable numerical overshoot is evident at
the wave front, but the distribution extrapolates to the analyti-
cally predicted value.

By means of Laplace transforms, Smith [12] also obtained ap~
proximate expressions for the strain and tension distributions in a
longitudinally impacted fiber. These expressions predict that
the tension and strain at the point of impact will approach the
limiting values

T, o) = TeV'(1 — \) = 0.8%4T, (164)
€0, ®) = &/V (1 — \) = 1.1186 (16b)

where the numerical values are for A = 0.2. Atz = 0, the dis-
tributions in Figs. 5 and 4 approach limiting values greater than
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Fig. 8 Variation of relaxation correction factor 7 with model viscous
fraction A

equation (16a) for tension and greater than equation (16b) for
strain. Thus stress relaxation is slightly less and creep slightly
greater for transverse impact than for longitudinal impact; Smith
[15] reached this same conclusion in his work on transverse
impact.

The effect of relaxation on the experimentally chservable
quantities # and U is conveniently illustrated by a nondimen.
sionalized plot of the transverse wave configuration, as shown in
Fig. 7. The y-coordinate of each fiber element is normalized by
the projectile travel distance Vi, and the z-coordinate by the
linear rate-independent analytical prediction for the transverse
wave travel distance Ust. The analytical expression for [ is

U= VU + a)eg — «Vy an

For A.= 0, the normalized coordinates of all fiber elements plot
along the straight line from (y/Vit) = 1 to (z/Ud) = 1. Fig. 7
shows that viscoelastic relaxation causes the normalized trans-
verse wave to approach a steady-state configuration below this
line in a characteristic time 7. (7 = 20 usec in Fig. 7.) No
discernible curvature is introduced into the transverse wave by
the relaxation, but its propagation speed UF decreases and its in-
clination angle # increases relative to the initial values T and 6.

At times long in comparison to 7, say ¢ > 27, the steady-state
transverse wave speed U can be written simply in terms of the
intercept of the “relaxed” profile in Fig, 7 with the z/Us-axis.
Denoting this intercept by (z/Ut) = 1,

U= T)ﬂo (18)
The relaxed inelination @ is given by
tan 8 = (Vi/nU0,) = (tan 60)/7 (19)

The parameter 7 is thus a quantitative measure of the perturba-
tion of 8 and U caused by a given amount of viscoelastic relaxa-
tion, and provides a correction factor whereby the initial values
U, and 6y can be inferred from measurements of the relaxed
values,

As )\ is increased from zero to one, i.e., the viscous relaxation
increasing from zero to that of a Maxwell element, the perturba-
tion of I and @ increases and 7 decreases from one to lesser
values, 7 was determined as a function of A by a series of plots
similar to Fig. 7, each the result of a separate computer run.
This functionsal relationship is displayed in Fig. 8. (At A = 1,
the Maxwell element, relaxation continues indefinitely; the value
shown corresponds to n at near ¢ = 50 usec.)

Discussion

The previous analysis does not provide & means of assessing the
degree and type of relaxation actually taking place in a transverse
impact experiment, but rather shows quantitatively how the
fiber configuration will be affected by an assumed relaxation
model. The choice of a valid model for the dynamic constitutive
response of a particular material must be based on some inde-
pendent evidence; this is a formidable task and thorough discus-
sion of it will not be attempted here. As stated earlier, however,
there is considerable justification for considering the standard
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Fig. 9 Experimental and relaxation-corrected 0-V curves for high-tenac-
ity nylon yarn

linear solid as a rather accurate model for the dynamic constitu-
tive response of textile fibers.

Stretching the assumption of the model’s validity somewhat
farther, it is worthwhile to ask whether the conclusions obtained
from the time-dependent but linear model material can be applied
to a real material which is both time-dependent and nonlinear.
It will be assumed without further argument here that the initial,
or instantaneous, values of U, or § for a real textile fiber can be
inferred to a reasonable approximation from the experimentally
measured valués by application of the linear-model correction
factor » just computed. . This, in turn, requires that a value of A
be assmned, and also assumes that 7 is such that relaxation is
essentially complete at the time of the photographic exposure.
Given the difficulty of rigorously justifying all these assumptions,
the results obtained thereby should be regarded as illustrative
rather than exact. Evenso, it can be argued that the approxima-
tions are reasonable and that the errors are not large.

Fig. 9 shows the experimentally measured variation of § with V'
for high-tenacitynylon yarn, together with the same data corrected
for relaxation using equation (19) and A = 0.2, n = 0.969.
This latter curve would presumably have been obtained experi-
mentally if the photographs had been exposed at sufficiently
short time after impact. The stress-strain curves constructed
from these two 6-V curves are shown in Fig. 10, with the static
stress-strain curve included for comparison. The dynamic
curves are complete to only about half the dynamic breaking
strain (estimated to be ~0.15) due to a present lack of higher-
velocity experimental impact data, but they clearly show an
appreciable difference between the instantaneous and the relaxed
data. It should also be mentioned that the corrected 0-V curve
in Fig. 9 is not much outside the variation which could occur in
the uncorrected curve due to experimental scatter in the indi-
vidual 8-V measurements.

Since the direct analysis program can incorporate any form of
assumed constitutive behavior, the application of relaxation cor-
rections to real materials could be made more realistic as addi-
tional information about the actual dynamic material response
becomes available.
would be minor corrections, and that the foregoing analysis is suf-
ficient for most purposes. It shows that even though the effects
of relaxation are not negligible, the rate-independent procedure
for constructing stress-strain curves for transverse impact data
is not rendered grossly erroneous by the presence of viscoelastic
relaxation, and that the error is of the same order as the ex-
perimental scatter.
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