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SUMMARY

Adirect numerical solution is described which models the wave propagation dynamics
of a system of two crossed fibres, one of which has been subjected to transverse
ballistic impact. The model provides a means of assessing the influence of fibre
materials properties and fibre-fibre slip on the complex wave phenomena occurring at
fibre crossovers. This is a matter of considerable importance in rationalising the
performance of textile structures used as ballistic protection devices.

INTRODUCTION

This paper reports on a numerical study of the dynamics of a special but highly
important physical system: that of two fibres, one having been transversely impacted
at zero obliquity by a high-speed projectile, and the other crossing the first
perpendicularly at some distance from the impact point. This system is germane to
the understanding of impact and wave propagation phenomena in woven textile
panels used for ballistic protection of personnel and equipment. Wave propagation
phenomena occurring at fibre crossovers have a very strong influence on the ballistic
response of a panel, since a typical woven panel has of the order of a million
crossovers per square meter, each of which effects the intensity of stress waves
propagating away from the impact point. Some fibre—fibre slippage is often noted in
post-mortem examinations of impacted fabrics, and one would expect that the
extent of slippage might also affect the nature of the fabric transient response.
Although the initial response of a single fibre to high-speed transverse impact is
describable by closed-form algebraic expressions,’ the late-time effects associated
with wave reflections from fibre crossovers and subsequent interactions between
reflected and ongoing waves are intractable by closed-form methods. One seeks a
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numerical approach which can take due advantage of the effectively one-
dimensional nature of fibres. Such a numerical approach was developed by Davids,?
who used an explicit finite-difference method based on a discrete formulation of the
governing dynamic equations. This method has been found to be well suited to the
analyses of fibres>* and fabrics,’ and its use in the present crossed-fibre system will
be detailed below.

METHOD OF SOLUTION

System idealisation

The system of two crossed fibres is modelled as in Fig. 1, where the origin of
coordinates is placed at the midpoint of the clamped primary fibre, which extends
along the x-axis. The projectile moves along the y-axis only, and impacts the
primary fibre at the origin. From symmetry, only half the primary fibre need be
considered. The secondary fibre extends along the z-axis and intersects the primary
fibre at some arbitrary distance from the origin. At the crossover point, the
secondary fibre is assumed to follow the motion of the primary fibre in the direction
perpendicular to the primary fibre (in the x-y plane), but is allowed some measure of
slip in the direction parallel to the primary fibre. Motion of the primary fibre is
assumed to occur in the x—y plane only, while the secondary fibre may move in all
three directions.
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Fig. 1. Schematic of model for numerical analysis of two crossed fibres.
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To proceed, the fibres are discretised as a series of n pin-jointed finite elements of
equal length as shown in Fig. 2. The masses of the elements are taken to be lumped at
the nodal end points of these elements, and at these nodes are defined vector
coordinates x,, velocity v;, and tension T,. The scalar strain ¢; at each element will be
computed from the coordinates of the nodes at either end of the element. The
tension T, has the same direction as the element itself (approximating the element’s
assumed inability to support a bending moment), while v; is not constrained in
direction. These elements are now described by simple governing equations:
impulse-momentum balance, strain—displacement relation, constitutive relation,
etc. These relations are cast as a recursive algorithm for proceeding from one
element to the next along the fibre length, and then repeating the process at a new
increment of time. The computer solution is referenced to a Lagrangian frame of
reference attached to and extending with the fibre, which effectively reduces the
problem to one dimension.

Fig. 2. Discrete element of fibre.

Momentum balance

A consideration of impulse-momentum balance at the i + 1st node provides a
means of computing the current velocity at that node in terms of its velocity at the
beginning of the previous time increment and the tensions acting on it during that
time increment. (In the following, subscripts on a variable refer to the node at which
itis defined, while superscripts t and ¢ — 1 refer to values at the current and previous
times respectively.) The impulse-momentum balance can be written in finite
difference form as:

Am -1

;I{—T:_l=—A—t(V:+1—V,-+1 (1)
Letting A = At/Am, a fixed parameter, eqn (1) may be solved for v}, ;:
Vi =Vl AT =T ¥)

The boundary conditions are easily incorporated into the impulse-momentum
balance: at the first node, the velocity is set equal to the current projectile velocity (v
=v}), and at the clamp the velocity is set to zero (v, = 0).
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Strain—displacement relation
Having computed the velocities at the ith and i + Ist nodes the strain in the
element between these nodes is computed as:

Ag; = (L; — Li"")/L) A3)
where L, is the scalar element length. Continuing:
Bl (YL - 1 (4)
where
Lt =xii —xi7Y 6))
and
Li=xiy; — x| = (3] + Vi A0 — (x(71 + v Ar)] (6

Constitutive relation

Knowing the strain ¢}, the tension magnitude T} is computed from the material’s
dynamic stress—strain law. The numerical results reported in this paper will be
restricted to linear elastic materials, for which the tension is computed as:

T} = Eg N

where F is the Young’s modulus. Other constitutive models could also be used
without difficulty, and the code as presently developed contains routines for
nonlinear elasticity (polynomial or exponential strain hardening), and for both
linear and nonlinear viscoelasticity. The reader is referred elsewhere® for a more
detailed account of the use of these other models in the analysis of fibre and fabric
impact.

Computation of new projectile velocity

The algorithm described above proceeds from one element to the next along the
length of fibre, and is started by imposing the initial projectile velocity on the first
node. At the end of the first time increment, a strain will have developed in the first
element due to the velocity difference between the first and second nodes. (Initially,
all velocities, tensions, and strains are set to zero.) This strain produces a tension as
calculated from the constitutive relation, and this tension produces a velocity in the
second node beginning at the next time increment.

After each time increment, at the completion of the lengthwise recursive
calculations, a new projectile velocity v}, can be computed by means of a momentum
balance using the tension at the first node:

NN S|
~2T, = m,,éAi’tE = m, > (8)

where m, is the projectile mass, T, is the component of fibre tension in the projectile
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travel direction, and the factor 2 accounts for the other half of the primary fibre
extending in the —x direction.

Crossover fibre calculations

Computation of field variables along the secondary fibre proceeds in a lengthwise
manner exactly as described above, although the vector resolutions become slightly
more complicated due to the motion in three rather than two dimensions. The
secondary algorithm is started by imposing on the first node of the crossover fibre
the velocity imparted to it by the primary fibre. As stated earlier, the secondary fibre
is allowed a measure of slip along the primary fibre but is constrained to follow it in
the direction normal to the primary fibre. Denoting the node on the primary fibre
nearest the crossover point as ix, the velocity of this node resolved in directions
parallel and perpendicular to the primary fibre there are:

Vpara = Uix COS O}, + i, SIN 03, ®
Uherp = Vi, €OS 0}, — ui, sin6;, (10)
g, = tan ™" [(p1}, — ylip- /(31 — X152 0)] an

Inegn (11), notation of the form y1 or y2 indicates field variables for the primary and
secondary fibres respectively. The velocity imposed on the first (crossover) node of
the secondary fibre is:

w2y = at,,cosb, — Uperp SIN g (12)
02 = o, sin B, + Uperp COS a:, (13)
w2 =0 (14)

where o, is a slide factor which permits no sliding when set to 1 and unrestrained
sliding when set to zero.

The crossover node ix will change with time if the tangential slip along the primary
fibre is sufficient. After each time increment, a new position of the first node on the
secondary node is computed, and ix is assigned to the nearest node on the primary
fibre. '

The momentum-balance calculation of v! , | in the primary fibre must be modified
when the i + 1st node is also the crossover node ix, since the secondary fibre applies
its own tension to that node. Denote the direction angles of the primary and
secondary fibres at that node as ¢1,, ¢1,, ¢1, and ¢2,, ¢2,, ¢2, respectively (o1,
= 0). Then the components of tension applied by the secondary fibre, resolved along
directions parallel and perpendicular to the primary fibre are:

T2.,.. = T2 [cos ¢2 cos pl, + cos ¢p2 cos ¢l,] (15)

para

Lerp = T2} [cos 2, cos 1 — cos ¢p2,cos pl,] (16)

perp —

where the direction cosines are computed from the current nodal coordinates. The
primary fibre is allowed to feel the impulse of the perpendicular component fully,
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but the parallel component is reduced by the slide variable «, The usual
computation of v{_, is then adjusted as:

ully = ull,, + 24[T2,, cos¢l, + a T2, cos¢l,] (17)

perp

vliyy « iy + 24(T2; cos b1, + a, T2,  cos pl,] (18)

perp

where the « symbol indicates a computer replacement operation ; i.e. the additional
impulse from the secondary fibre is added to that already computed from eqn (2).

Stability, accuracy and efficiency

Criteria for stability and accuracy of the above method are related to the theory of
characteristics for hyperbolic systems of partial differential equations and are
similar to those for finite-difference solutions of wave propagation problems.” Given
a wave equation of the form

0%ujot? = c*(0%u/ox?) (19)

which is to be solved by approximating d¢ and dx by finite differences A¢ and Ax, a
stability ratio o can be defined as

a = c(At/Ax) (20)

The finite-difference scheme is stable and accurate for « = 1, stable but increasingly
inaccurate for o < 1, and unstable for « > 1. The choices for Ax and At are thus not
independent, but are related by the wavespeed for the choice of & = 1.

In the direct analysis of the fibres described above, this stability criterion is
equivalent to adjusting the rate of march of the computer solution along the fibre to
match the rate of propagation of the strain wave. Conceptually, this requirement is
related to the necessity of programming the finite governing equations so as to model
the actual continuous dynamic process as accurately as possible. If a major
disturbance—such as the passage of a strain wave with its accompanying energy
input—takes place in a finite element which is not considered explicitly in the
computational scheme, divergent numerical results are very likely.

Once a stable computational scheme has been developed, one usually attempts to
increase its accuracy to whatever limit is desired by decreasing the size of the
elements, i.e. by increasing the number of nodes. Since for « = 1 a decrease in Ax
requires a corresponding decrease in At, the computation time—and therefore the
expense—required for analysis of a given impact event increases as the square of the
number of nodes. The element size is therefore chosen so as to balance the conflicting
requirements of economy and accuracy. As an example of computation time, the
CPU requirement for the IBM 370/168 system was 10-1 s for a problem in which the
strain wave propagated 0-2 m along the primary fibre and 0-1 m along the secondary
fibre, with a length increment of 2-0 mm. As a means of improving code efficiency,
the program employs logical flags which terminate the length loop computation
when the computer passes the point along the fibre length corresponding to the
wavefront.
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Accuracy assessment for the case of two crossed fibres is difficult, since no
experimental or closed-form mathematical analysis of this problem is available.
However, some assurance of accuracy was derived by performing computer
experiments in which both the primary and secondary fibres were placed at the origin
(the impact point). In this case, both of the fibres responded as in single-fibre impact,
and these results could be compared with earlier studies.* These results agreed
identically. Checking of the crossover interactions was performed manually, but no
other verification procedures were attempted.

As with most discrete-variable solutions, problems were encountered with
overshoot and numerical oscillation at regions of discontinuity near the wavefront
and the crossover point. These oscillations could be diminished by incorporating
artificial viscosity into the material constitutive model, but the results to be
presented below were obtained without such smoothing.

RESULTS AND DISCUSSION

Figure 3 shows typical resuits obtained from the above described computer
treatment, in this case for two crossed aramid fibres (modulus = 58-6 GPa), the
crossover point being 10cm along the primary fibre from the impact point. The
fibres were assumed to respond elastically, and no sliding was permitted at the
crossover (a, = 1). The figure shows the distribution of strain in each fibre 28-7 us
after impact at 400 m/s, where the abscissa measures the distance along the primary
fibre from the origin and along the secondary fibre from the crossover point. The
dotted line at strain = 1-45 9/ depicts the level of strain which would be generated in
a single fibre at this impact velocity. In this example no artificial viscosity has been
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Fig. 3. Strain distributions in two crossed aramid fibres, 28-7 us after impact at 400 m/s.
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included, and the large overshoot at the wavefront causes problems in interpretation
of results. In spite of this oscillatory behaviour, however, an increase in strain in the
primary fibre behind the crossover due to the wavelet reflected from the crossover is
evident, as is a reduction in the strain intensity in the region of the primary fibre
beyond the crossover. More easily measured is the level of strain intensity diverted to
propagate along the secondary fibre.

Computer experiments were conducted on the crossover system for a range of
fibre moduli and slide factors, and graphical output similar to Fig. 3 used to
determine coefficients of wave reflection, transmittance and diversion. These
coefficients are defined as that fraction of the outward-propagating strain wave
which is reflected backwards by the crossover, the fraction which passes through the
crossover and continues its outward propagation, and the fraction which is diverted
and begins propagating along the fibre passing transversely through the crossover.
As a means of obtaining these coefficients in spite of the uncertainties caused by the
numerical fluctuations near the wavefronts, the computer was asked to determine
the average strain level over a portion of the fibre length away from the oscillation
region. In order to guarantee conservation of energy, the sum of the squares of the
above three coefficients should equal unity; this was in fact obtained and offers some
assurance as to the accuracy of the numerical values.

The variation in the transmission and diversion coefficients with fibre modulus is
shown in Fig. 4. The coefficients of reflection were near 19 over this range of
moduli, but showed considerable scatter. It is seen that only the diversion coefficient
is of a much larger magnitude than the reflection coefficient, and that it varies more
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Fig. 4. Influence of fibre modulus on coefficients of wave transmission and diversion.
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strongly with the fibre modulus. The major portion of the crossover influence on
wave propagation is thus ascribed to diversion rather than reflection.

As the slide factor «, decreases from unity toward zero, representing less
fibre—fibre friction at crossover points, one would expect that the reflection and
diversion coefficients would approach zero and that the transmission coefficient
would approach unity. At o, = 0, there is no coupling between the two fibres (until
the arrival of the transverse kink wave, which generally occurs later than the arrival
of the longitudinal wave). As seen in Figs 5, 6 and 7 respectively for aramid fibres,
this trend is quantified by the results of the crossover computations.
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Fig. 5. [Influence of fibre—fibre slippage on stress wave reflection.
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CONCLUSIONS

Although it was necessary to employ an averaging procedure to avoid
misinterpretation due to numerical oscillation at wavefronts, the numerical model
employed here was sufficient to determine the salient features of wave propagation at
fibre crossovers: the influence of wave diversion is much stronger than that of
reflection, the extent of wave diversion decreases with fibre modulus, and the
influence of the crossover diminishes as the extent of sliding increases. These
observations are of value in improving one’s intuition as to the effect of crossovers
during ballistic impact on a woven panel, but beyond this they may also be
incorporated explicitly in numerical analyses of panel impact. Some computer
experiments have been performed in which wave reflection—diversion models are
compared with direct finite-difference analyses of panel impact, and the conclusions
of these comparisons will be the subject of a later paper.
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