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Abstract. How should a firm price a new product for which little is known about demand?
We propose a simple and practical pricing rule for new products where demand infor-
mation is limited. The rule is simple: Set price as though the demand curvewere linear. Our
pricing rule can be used if three conditions hold: the firm can estimate themaximumprice it
can charge and still expect to sell some units, the firm need not plan in advance the quantity
it will sell, and marginal cost is known and constant. We show that if the true demand
curve is one of many commonly used demand functions, or even a more complex (ran-
domly generated) function, the firm can expect its profit to be close to what it would earn if
it knew the true demand curve. We derive analytical performance bounds for a variety of
demand functions, calculate expected profit performance for randomly generated demand
curves, and evaluate the welfare implications of our pricing rule. We show that with
limited demand information (maximum price and marginal cost), our simple pricing rule
can be used for new products while often achieving a near-optimal performance. We also
discuss the limitations of our method by identifying cases where our pricing rule does not
perform well.

History: Accepted by Joshua Gans, business strategy.
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1. Introduction
Firms that introduce new products must often set a
price with little or no knowledge of demand, and no
data from which to estimate elasticities. How should
firms set prices in such settings? This problem has
been the subject of a variety of studies, most of
which focus on experimentation and learning, for
example, setting different prices and observing the
outcomes (we discuss this literature later). Exper-
imenting with price, however, is often not feasible or
desirable; it is often common for firms to choose an
introductory price and maintain that price for a
year or more. We examine a much simpler approach
to this pricing problem that does not involve any
price experimentation.

We show that under certain conditions, the firm
can use a simple pricing rule. The conditions are that
(i) the firm’s marginal cost, c, is known and constant;
(ii) the firm can estimate the maximum price Pm it can
charge and still expect to sell some units (more pre-
cisely, Pm is defined as the price at which consumers
won’t buy, but if the price is slightly reduced, some
consumers will buy); and (iii) the firm need not know
or plan in advance the quantity it will sell. (We par-
tially relax the second assumption in Section 3.) These
conditions will not always hold, but as we will explain,

they do for many new products, particularly those that
involve new technologies.
Examples of new product introductions for which

these conditions hold include new types of biochemical
drugs introducedbypharmaceutical companies (suchas
Lilly’s Prozac in 1987, Astra-Merck’s Prilosec in 1995,
AstraZeneca’s Crestor in 2003, andMerck’sVytorin in
2004), software products introduced by technology
companies (such as Adobe’s Acrobat Distiller in 1993
and Intuit’s TurboTax in 2001), and digital content
delivered via downloads or streaming (such as Apple
setting the price of music downloads when launching
its iTunes store in 2002, or Netflix pricing subscrip-
tions when it launched its movie streaming service in
2007). These conditions can also hold for companies
introducing an existing product in a new and emerg-
ing market (such as Procter & Gamble launching
Pampers in China in 1998). In all of these examples,
marginal cost is known and constant. (It is zero for
software downloads and music or video downloads
or streaming, close to zero for most biochemical
drugs, and known from experience for diapers.)
However, the firms in these examples knew very little
about the demand curves they faced and had no data
to estimate elasticities. They could, however, roughly
estimate the maximum price they could charge, and
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with the possible exception of Pampers in China,
there was no need for them to know in advance how
much they could sell.

Because our pricing rule depends on these three
conditions, it is important to be clear about what they
mean, when they will or will not hold, and what
happens to our results if they do not hold. Here are the
conditions again, in more detail.

1.1. The Firm’s Marginal Cost Is Known
and Constant

This condition is straightforward. It is necessary
because if marginal cost varies with respect to output,
the optimal price depends on the slope of the demand
curve, which we assume is unknown. When will this
condition hold? For many new technology products,
marginal cost is both known and constant, and often
close to zero. Although this is obvious for software
downloads, or music or video downloads or streaming
(where marginal cost is zero), it might be less obvious
for pharmaceuticals, which is an important category of
new products.

We said that marginal cost is close to zero (in fact to
a first approximation equal to zero) for biochemical
drugs. To clarify, biochemical drugs are those that are
essentially made by mixing chemicals together (some-
times at precise temperatures) and have a simple mo-
lecular structure that is easy to specify (and thus patent).
An example is Pfizer’s Lipitor, a statin-type anticho-
lesterol drug, the molecule for which has 160 atoms
and ismade bymixing chemicals at a low temperature
(Wall Street Journal 2013). The chemicals that are
combined usually cost very little, and the process of
mixing them is easy, so that biochemical drugs are
very cheap to manufacture. Until around 2000, the
vast majority of drugs were biochemical in nature.1

1.2. The Firm Can Estimate the Maximum Price It
Can Charge

Bymaximumprice, we do notmean the price at which
the firm can sell any units (that price might be ex-
traordinarily high), but rather a price at which the
firm can still expect to serve a few percent of its po-
tential market. Determining the maximum price Pm
might not be easy, but it is a much less difficult task
than estimating the entire demand curve.

In practice, there are several ways of estimating Pm.
For some products and services, the firm can inten-
tionally create a scarcity situation (when a product is
first introduced) and then observe the highest prices
paid for the product or service through secondary
channels such as eBay (for products) or StubHub (for
events). Alternatively, the firm could first introduce a
product or service by selling it in a highest bid auction

format, as is done for prototypes of luxury items.
Finally, it is common for firms to hire focus groups
(marketing specialists or loyal/passionate customers),
where one of the main topics is the maximal price that
canbe charged for theupcomingproduct. This approach
is commonly used for the introduction of new software
and digital services (e.g., paid subscriptions for online
dating services).
A pharmaceutical company might estimate Pm by

comparing a new drug to existing therapies (including
nondrug therapies). For example,whenpricing Prilosec,
the first proton-pump inhibitor antiulcer drug, Astra-
Merck could expect Pm to be two or three times higher
than the price of Zantac, an older generation antiulcer
drug. And when it planned to sell music through
iTunes, Apple might have estimated Pm to be around
$2 or $3 per song, as amultiple of the per-song price of
compact discs. (A compact disc (CD) with 12 songs
might cost $12 to $15, but most consumers would
want only a few of those songs.) Likewise, Intuit
might have used a simple survey to learn howmuch at
least some consumers would pay for software to
prepare their tax returns.
One might argue that it is unlikely that a firm will

know its maximum price exactly. The firm can esti-
mate the maximum price, but that estimate will be
subject to error. What does that do to our results? We
explore this question in Section 3 of the paper and
show that althoughuncertainty over themaximumprice
can reduce the performance of our pricing rule, unless
the uncertainty is very large, the firm will still do well.

1.3. The Firm Need Not Know the Quantity It Will Sell
How can a firm set price without also having an es-
timate of the quantity it will sell? For new (bio-
chemical) drugs,marginal cost is near zero, so thefirm
can produce a large amount of pills and discard
whatever is not sold. (We are assuming there is no
capacity limitation.) Of course selling more is better
than selling less, but the only decision the firm must
make is what price to charge. For music or video
downloads and streaming services, as well as soft-
ware, no factories have to be built and marginal
production cost (net of royalties) is zero. This as-
sumption is also satisfied in settings where produc-
tion lead times are short relative to product life. An
example is Intel’s production of processors for per-
sonal computers. Building the fabrication facility
involves a large sunk cost, and amajormodification of
the facility is needed for each new generation of
processor. But for each generation, the firm moves
down its learning curve rapidly (in about sixmonths),
and from then on marginal production cost is very
low. Thus, the firm can produce more chips than it
expects to sell, and discard whatever it doesn’t sell.
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1.4. The Pricing Rule
We propose that if the three conditions discussed
hold, the firm can use the following rule: Given the
maximum price Pm, set price as though the actual
demand curve were linear, that is,

P(Q) � Pm − bQ. (1)
With constant marginal cost c, the firm’s profit-
maximizing price is P∗ � (Pm + c)/2, which we refer
to as the linear price. This price is independent of the
slope b of the linear demand curve, although the
resulting quantity,Q∗

L � (Pm − c)/2b, is not. But as long
as the firm does not need to invest in production
capacity or plan on a particular sales level, knowledge
of b, and thus the ability to predict its sales, is im-
material. For any price strictly above c, more sales are
better than less, but the only problem at hand is to set
the price. We denote the resulting price and profit
from using Equation (1) by P∗ and Π∗, respectively.

How well can the firm expect to do if it sets P∗?
Suppose that with precise knowledge of its true de-
mand curve, the firm would set a different price P∗∗
and earn a (maximum) profit Π∗∗. The question we
address is simple: How close can we expect Π∗ to be
relative toΠ∗∗, that is, howwell is the firm likely to do
using this simple pricing rule? As one would expect,
the answer depends on the true demand function. In
this paper, we derive closed-form bounds on the profit
performance for several commondemand functions and
compute numerically the performance for randomly
generated demands. We will show that in many cases
this simple pricing rule performswell, that is,Π∗ is close
toΠ∗∗. We will also identify cases where the rule does
not perform well.

The basic idea behind this paper is quite simple and
is illustrated in Figure 1. The demand curve labeled

“Actual demand” was drawn so it might apply to a
new drug, or to music downloads in the early years of
the iTunes store. A pharmaceutical company might
estimate a price Pm at which some doctors will pre-
scribe and some consumers will buy its new drug,
even if insurance companies refuse to reimburse it. As
the price is lowered and the drug receives insurance
coverage, the quantity demanded expands consid-
erably. At some point, the market saturates so that
even if the price is reduced to zero there will be no
further increase in sales. For music downloads, at
prices above Pm, it is more economical to buy the CD
and “rip” the desired songs to one’s computer. At
lower prices demand expands rapidly, and at some
point the market saturates.
If the firm knew this curve, it would set the profit-

maximizing price P∗∗ and expect to sell the quan-
tity Q∗∗. (In the figure, P∗∗ and Q∗∗ are computed
numerically.) But the firm does not know the actual
demand curve. A linear demand curve that starts
at Pm has also been drawn and labeled DL. This linear
demand curve implies a profit-maximizing price P∗
and quantity Q∗

L, where the subscript L refers to the
quantity sold if DL were the true demand curve. Note
that P∗ does not depend on the slope of the demand
curve, b; any linear demand curve that begins at Pm

will yield the same profit-maximizing price P∗.
How badly would the firm do by pricing at P∗

instead of P∗∗? For the demand curve and marginal
cost (c � 100) shown in Figure 1, the profit and price
ratios (determined numerically) are Π∗∗/Π∗ � 1.023
and P∗∗/P∗ � 1.069, that is, the resulting profit is
within a few percent of what the firm could earn if it
knew the actual demand curve and used it to set price.
(The firm would do a bit worse if c � 0, in which case
Π∗∗/Π∗ � 1.084.)
There are certainly demand curves for which this

pricing rule will perform poorly. For example, sup-
pose the true demand curve is a rectangle, that is,
P � Pm for 0 ≤ Q ≤ Qmax and P � 0 forQ > Qmax. Then,
the profit-maximizing price is clearly Pm and the
resulting profit is Π∗∗ � (Pm − c)Qmax. Setting a price
P∗ � (Pm + c)/2 yields a much lower profit; in fact
Π∗∗/Π∗�2.0. We want to know how well our pricing
rule will perform (that is, what is Π∗∗/Π∗) for alter-
native “true” demand curves.

1.5. Related Literature
There is a large literature on optimal pricing with
limited knowledge of demand, much of which deals
with experimentation and learning. An early example
is Rothschild (1974), who assumes that a firm chooses
from a finite set of prices (exploration phase), ob-
serves outcomes, and because each trial is costly,
eventually settles on the price that it thinks (perhaps
incorrectly) is optimal (exploitation phase). Thefirm’s

Figure 1. (Color online) Illustration for a Representative
Demand Curve
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choice is then the solution of a multiarmed bandit
problem. (In the simplest version of the model, the
firmprices high or low.) The solution does not involve
estimating a demand curve.

The marketing literature has also considered the
problem of pricing for new products. Examples in-
clude classical works such as Urban et al. (1996) that
consider premarket forecasting, as well as Krishnan
et al. (1999) that consider a variation of the general-
ized Bass model that yields optimal pricing policies
that are consistentwith empirical data.More recently,
Handel and Misra (2015) introduce a dynamic non-
Bayesian framework for robust pricing of newproducts.

Other studies focus on learning in a parametric or
nonparametric context. Several papers address the
use of learning to update estimates of parameters of a
known demand function (see, e.g., Aviv and Pazgal
2005, Bertsimas and Perakis 2006, Lin 2006, Farias and
Van Roy 2010). A second stream examines the in-
terplay between learning demand and optimizing
revenues over time without imposing a parametric
form. Following Rothschild (1974), several authors
assume the seller first sets a price to learn about de-
mand, and then adjusts the price to optimize revenues
(see, e.g., Balvers and Cosimano 1990, Besbes and
Zeevi 2009, Araman and Caldentey 2011).

The operations research literature examines dy-
namic pricing using robust optimization, where the
functional form of the demand curve is known but
one or more parameters are only known to lie in an
uncertainty set. For example, demand might depend
on two unknown parameters α1 and α2, so the profit
function is Π(α1, α2, p). The price p is chosen to max-
imize the worst possible outcome over the uncer-
tainty set, that is, maxp minα1,α2 Π(α1, α2, p).2 In related
work, Bergemann and Schlag (2011) consider a single
consumer’s valuation, with a distribution that is un-
known but assumed to be in a neighborhood of a given
model distribution. The authors characterize robust
pricing policies that maximize the seller’s minimum
profit (maximin), or that minimize worst-case regret
(difference between the true valuation and the real-
ized profit). Although robust optimization incorpo-
rates uncertainty, its focus on worst-case scenarios
may yield conservative pricing strategies.

There is an extensive literature on mechanism de-
sign and auctions that is tangentially related to our
paper. This literature considers simple mechanisms
and demonstrates their performance relative to the
optimal (often very complicated) mechanism. For
example, Segal (2003) examines the profitability of
bidding mechanisms relative to posted pricing. The
author considers the case where the bidders’ valua-
tions are drawn from an unknown distribution and

shows that the deterministic optimal price auction is
asymptoticly optimal when the valuations come from
distributions with bounded support. Hartline and
Roughgarden (2009) show that simple approxima-
tion mechanisms remain almost optimal in general
single-parameter agent settings.
Our paper is also related to studies of model mis-

specification. In particular, we study the performance
of a simple linear demand model even if the true
demand curve is far from linear. Others have shown
that linear models can perform well (e.g., Dawes
(1979) in clinical prediction and Carroll (2015) in
contract theory). Besbes and Zeevi (2015) study the
“price of misspecification” for dynamic pricing with
demand learning. The authors propose a dynamic
pricing algorithm in which the seller assumes de-
mand is linear, and chooses a price to maximize
revenue based on this linear demand function. They
show that although themodel ismisspecified, one can
achieve a good asymptotic regret performance. In our
setting, however, the firm chooses a price and does
not have the option to experiment over time. In ad-
dition, our paper investigates how consumer welfare
is affected by demand misspecification.

1.6. What This Paper Does
Our approach to pricing is quite different from the
studies cited earlier, and is related to the prescriptive
rules of thumb found, for example, in Shy (2006).
Managers often seek simple and robust rules for
pricing (and other decisions such as levels of advertising
or research and development), and other studies have
shown that simple rules can be very effective.3 The
pricing rule we suggest is certainly simple; the extent
to which it is effective is the focus of this paper.
The pricing rule P∗ � (Pm + c)/2 follows from a

linear approximation to the true demand curve. Note,
however, that the same pricing rule can be obtained
from a different set of modeling assumptions. Sup-
pose the firm plans to sell the product to a repre-
sentative consumer with a random valuation that is
uniformly distributed U[c,Pm]. In this case, to max-
imize expected profits, the optimal price is also
P∗ � (Pm + c)/2. (The proof is presented in the ap-
pendix.) The equivalence of the two models (linear
demand curve and uniform consumer valuation) is
well known, and provides an alternative way of
justifying the pricing rule studied in this paper.
In some cases, estimating the maximum price Pm is

difficult or impractical. However, one can extend the
results and analysis of this paper to situations where
the firm can determine a price P̄ < Pm, such that at P̄
the firm can still sell to a small set of customers who
are not very price sensitive. The pricing rule then
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becomes P∗ � (P̄ + c)/2. The basic insights of this
paper will still hold, although at the expense of a
pricing rule that does not perform quite as well.
Obviously, the performance deteriorates when the
gap between P̄ and Pm increases.

In the following sections, we characterize the per-
formance of our pricing rule by deriving analytical
bounds for the profit ratioΠ∗∗/Π∗ for several classes of
demand curves. We also find bounds forΠ∗∗/Π∗ for a
general concave demand, and treat the case of a
maximum price that is not known exactly. We then
examine randomly generated “true” demand curves
and determine computationally the expected profit
ratio Π∗∗/Π∗ and confidence bounds for the ratio.
Finally, we examine the welfare implications of our
pricing rule.

2. Common Demand Functions
Here we examine several demand models—quadratic,
monomial, semilog, and log-log.We also consider the
case of a general concave demand. These demand
models are used in many operations management
and economics applications.4 For each, we compare
the profits from our pricing rule to the profits that
would result if the actual demand function were
known. We will see that the profit ratio is often close
to one.

Before proceeding, note that the relationship be-
tween the linear price P∗ and the optimal price P∗∗
depends on the convexity properties of the actual
demand function. In the appendix, we show that if the
actual inverse demand curve is convex (concave)with
respect to Q,5 the linear price is greater (smaller) than
the optimal price.

Theorem 1. If the actual inverse demand curve PA(Q) is
convex with respect to Q, then P∗∗ ≤ P∗, and if PA(Q) is
concave, P∗∗ ≥ P∗.

Note that we only need PA(Q) to be convex (or
concave) in the range [0,Q∗∗] and not everywhere.
The value of Q∗∗ might not be known but this result
can still be useful in that it tells us whether our simple
rule will over- or underprice relative to the optimal
price, and it might be possible to correct for this error
by adjusting the price up or down.

2.1. Quadratic Demand
Suppose theactual inversedemandfunction is quadratic:

PA Q( ) � Pm − b1Q + b2Q2, (2)
where, as before, Pm is the maximum price. Equiva-
lently, the actual demand function is given byQA(P)�
0.5[b1−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21−4b2(Pm−P)√ ]/b2.Wewantanalyticalbounds

for the profit ratio Π∗∗/Π∗ and price ratio P∗∗/P∗. The
bounds depend on the convexity properties of the

function in Equation (2) and are summarized in the
following result. (Proofs are in the appendix.)

Proposition 1. For the quadratic demand curve of Equa-
tion (2), for any marginal cost c ≥ 0, the profit and price
ratios satisfy the following:
• Convex case: b1, b2 ≥ 0 and b2 ≤ b21/4Pm,

1 ≤ Π∗∗
Π∗ ≤ 8

̅̅
2

√

27
̅̅
2

√ − 1
( ) � 1.0116,

8
9
≤ P∗∗

P∗ ≤ 1.

• Concave case: b1 ≥ 0 and b2 ≤ 0,

1 ≤ Π∗∗
Π∗ ≤ 4

̅̅
2

√

3
̅̅
3

√ � 1.0887,

1 ≤ P∗∗
P∗ ≤ 2

3
2Pm + c
Pm + c

( )
≤ 4
3
� 1.33.

Note that the restrictions on the values of b1 and b2 are
necessary and sufficient conditions to guarantee that
the inverse demand curve is nonnegative and non-
increasing everywhere.

If demand is convex, the simple pricing rule
yields a profit that is only about 1% less than what
the firm could achieve if it knew the true demand
curve. Also, this is a worst-case result that applies
when c � 0; if c > 0, the ratioΠ∗∗/Π∗ is even closer to 1.
The price P∗ can be as much as 12% lower than the
optimal price P∗∗, but the concern of the firm is (or
should be) its profit. (Also, P∗∗/P∗ deviates the most
from 1 when c � 0.)
If demand is concave, the resulting profit Π∗ is

within 8.87% of the optimal profit, irrespective of the
parameters b1 and b2. In the proof of Proposition 1 in
the appendix, we show that the largest value of
Π∗∗/Π∗ (1.0887) occurswhen b1 � 0; for positive values
of b1, the profit ratio is closer to 1. The reason is that
when b1 increases, the curve becomes closer to a linear
function. In addition, one can show that the profit
ratio becomes closer to 1 for the concave case when
either c or b2 increase (recall than b2 ≤ 0).

2.2. Monomial Demand
Now suppose the actual inverse demand curve is a
monomial of order n:

PA Q( ) � Pm − γQn, γ > 0. (3)
Equivalently, the actual demand is given by QA(P) �
[(Pm − P)/γ]1/n. Note that all functions of the form of
Equation (3) are concave and decreasing, given that
γ > 0. The appendix shows that the profit and price
ratios are now as shown in Proposition 2.
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Proposition 2. For the inverse demand curve of Equa-
tion (3), the profit and price ratios satisfy:

1 ≤ Π∗∗
Π∗ � 2

1
n+1n

n + 1( )1n+1 ≤ 2,

1 ≤ P∗∗
P∗ � 2 nPm + c( )

n + 1( ) Pm + c( ) ≤ 2.

Thus for anymonomial demand curve, the profit ratio
only depends on the order of the monomial n; it does
not depend on the values of Pm, c, or γ. (The price ratio
does depend on Pm, c, and n, but not on γ.) Both ratios
are monotonically increasing with the degree of the
monomial n and converge to 2 and 2Pm/(Pm + c) ≤ 2,
respectively, as n → ∞. For monomials of order 3
and 4, the profit ratios are 1.19 and 1.27, respectively.

2.3. Semilog Demand
Now consider the semilog inverse demand curve:

PA Q( ) � Pme−αQ, α > 0, (4)
or equivalently, Q(P) � 1

α log(Pm/P). The following re-
sult (proof in appendix) bounds the profit and price
ratios when the marginal cost c � 0 and when c > 0.

Proposition 3. For the semilog inverse demand curve of
Equation (4),

• When c � 0, the profit and price ratios are

Π∗∗/Π∗ � 2e−1/ log 2( ) � 1.0615,

P∗∗/P∗ � 2e−1 � 0.7357.

• When c > 0, the ratios are closer to 1:

1 ≤ Π∗∗/Π∗ < 1.0615,

0.7357 < P∗∗/P∗ ≤ 1.

When c � 0, both ratios can be computed exactly and
do not depend on α or Pm; in this worst case, the
simple pricing rule yields a profit that differs from the
optimal profit by only 6.15%, even though the prices
differ by 26.5%. When c > 0, one cannot compute the
ratios in closed form. Instead, we solve numerically
for Π∗∗ and P∗∗ and present the results in Figure 2,
where we plot the ratios as a function of c/Pm. (The
ratios are independent of α.) Note that as c increases,
both ratios approach 1.

2.4. Log-Log Demand
We turn now to the commonly used log-log (isoe-
lastic) demand model:

PA Q( ) � A0Q−1/β; β > 1, (5)
where −β is the (constant) elasticity of demand. Be-
cause this demand curve has no maximum price, we

truncate it so that P(0) � Pm. Setting PA(Q0) � Pm, the
corresponding quantity is Q0 � (Pm/A0)−β. We there-
fore work with the following modified version of
Equation (5):

PA Q( ) � Pm if Q < Q0,

Pm Q/Q0( )−1/β if Q ≥ Q0. (6)
{

We require that β > βmin � Pm/(Pm − c) for the optimal
price P∗∗ to be less than the maximum price Pm.

Proposition 4. For the demand curve of Equation (6), the
profit and price ratios are as follows:

Π∗∗
Π∗ � 2

Pm/c − 1( ) β − 1
( ) 2β

Pm/c + 1( ) β − 1
( )

[ ]−β
,

P∗∗
P∗ � 2β

Pm/c + 1( ) β − 1
( ) .

Note that these ratios are exact and depend only on
the elasticity β and Pm/c. Also, there is a unique value
of β∗ � (Pm + c)/(Pm − c) forwhich both ratios equal 1.6

There are two limiting cases to note: c large and c
very small. If c is large, that is, c → Pm, βmin → ∞. If
βmin is very large, β (> βmin) is also very large (i.e., de-
mand is elastic), so both the profit and price ratios will
be close to 1. At the other extreme, as c → 0, P∗∗ → 0,
whereas P∗ → 0.5Pm, and Π∗∗/Π∗ is unbounded. But
an isoelastic demand curve would then make little
sense, because Q∗∗ → ∞.
The general case is illustrated in Figure 3, which

shows the profit and price ratios as a function of Pm/c
for β = 1.5, 2.0, and 2.5. If β � 1.5, Π∗∗/Π∗ is always
close to 1. But if β � 2.5,Π∗∗/Π∗ can exceed 2 for large

Figure 2. (Color online) Profit and Price Ratios for the
Semilog Inverse Demand Curve as a Function of c/Pm
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enough values of Pm/c. Note that P∗∗ can be larger or
smaller than P∗.7 As a result, if demand is very elastic
(i.e., β is large) or the marginal cost c is very small, our
pricing rule will not perform well. One limitation of
our pricing rule for the log-log demand model is the
fact that the performance crucially depends on the
price elasticity, which is not known by firm.

Table 1 summarizes these results. It shows that our
pricing rule works well for a variety of underlying
demand functions, but not all. For example, if the true
demand is a truncated log-log function, Π∗∗/Π∗ can
deviate substantially from 1 if demand is very elastic
and/or the marginal cost is small. This follows from
the convexity of this function and the fact that (unre-
alistically) the quantity demanded expands without
limit as the price is reduced toward zero.

We conclude this section by deriving the perfor-
mance of our pricing rule for a general concave de-
mand function.

2.5. Concave Demand

Proposition 5. For any concave demand curve, we have:

1 ≤ Π∗∗/Π∗ ≤ 2 , 1 ≤ P∗∗/P∗ ≤ 2.

In the worst case, the profit and price ratios will equal 2
if the true demand curve is a rectangle. For other
concave functions, Π∗∗/Π∗ < 2, but except for specific
functional forms, we cannot say how much less.

We might expect that in some cases the inverse
demand curvewill not be concave andmay even have
a flat area (plateau), as in Figure 1. In this case,Π∗∗/Π∗
will be sensitive to whether the plateau is below or
above P∗. If the plateau is below P∗ and very long,
Π∗∗/Π∗ can be arbitrarily large; by pricing at P∗, the
firm is missing a large mass of consumers. But if the
plateau is above P∗, Π∗∗/Π∗ will usually be close to 1.
Thus if the firm believes there is such a plateau, it
might set price below P∗ to account for it.

Figure 3. (Color online) Profit and Price Ratios as a Function of Pm/c for the Log-Log Demand Curve

Table 1. Price and Profit Ratios for Several True Demand Curves

Inverse demand function P∗∗/P∗ Π∗∗/Π∗

Quadratic convex:
PA(Q) � Pm − b1Q + b2Q2 8

9 ≤ P∗∗/P∗ ≤ 1 ≤ 1.0116
b1, b2 ≥ 0 and b2 < b21/4Pm

Quadratic concave:
PA(Q) � Pm − b1Q + b2Q2 1 ≤ P∗∗/P∗ ≤ 4Pm+2c

3Pm+3c ≤ 1.33 ≤ 1.0887
b1 ≥ 0 and b2 ≤ 0

Monomial: PA(Q) � Pm − γQn 2(nPm + c)/(n + 1)(Pm + c) 2(n+1)/nn/(n + 1)(n+1)/n
n � 3 ≤ 1.5 1.19
n � 3 ≤ 1.6 1.27

Semilog: PA(Q) � Pme−αQ
c � 0 0.7357 1.0615
c > 0 < 0.7357 < 1.0615

Log-log (truncated):

PA(Q) � Pm if Q < Q0
Pm(Q/Q0)−1/β if Q ≥ Q0

{
2β/(Pm/c + 1)(β − 1) 2

(Pm/c − 1)(β − 1)
( 2β
(Pm/c + 1)(β − 1)

)−β
β ≥ βmin � Pm/(Pm − c)
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3. Uncertain Maximum Price
So far, we have assumed that although the firm does
not know its true demand curve, it does know the
maximumprice Pm it can charge and still expect to sell
some units. Suppose instead that the firm only has an
estimate of the maximum price:

P̂m � Pm 1 + ε( ), (7)
where ε lies in some interval [−B,B], with 0 ≤ B ≤ 1.
Our pricing rule is now P∗ � (P̂m + c)/2, and suffers
from two misspecifications: the form of the demand
curve and the value of the intercept. To see how this
second source of uncertainty affects the profit ratio
Π∗∗/Π∗, we derive the profit ratios as closed-form
functions of ε for the demand models we considered
in Section 2. (Details are in the appendix.) To simplify
matters, we assume here that c � 0. (Recall from the
previous section thatΠ∗∗/Π∗ deviates from 1 themost
when c � 0 for the demand curves we considered.)

Under a moderate misspecification of Pm (i.e., small
values of ε), our pricing rule still performs well.
However, depending on the draw for ε, the actual
profit ratio could be farther from 1. To see how much
farther, we use the closed-form expressions in the
appendix to plot the profit ratios as a function of ε for
−0.2 ≤ ε ≤ 2. As Figure 4 shows, the monomial de-
mand (with n � 3) is most sensitive to the value of ε,
withΠ∗∗/Π∗ reaching 1.5 when ε � −0.2. For the other
demand curves,Π∗∗/Π∗ < 1.25 over the range of εwe
consider. Thus a misspecification of the maximum
price increases Π∗∗/Π∗, but only moderately.

4. Random Demand Curves
In this section, we consider randomly generated de-
mand functions. In practice, a firm introducing a new

productmay know little or nothing about the shape of
the demand curve. Indeed, that is the motivation for
this paper. The firm might have no reason to expect
that demand is characterized by one of the commonly
used functions we examined earlier, or any other par-
ticular function. If the firm uses our pricing rule—with
no knowledge at all of the true demand curve, other
than the maximum price Pm—how well can it expect
to do?
We address this question by randomly generating a

set of true demand curves. For each randomly gen-
erated curve, we compute (numerically) the profit-
maximizing price and profit, P∗∗ and Π∗∗, and com-
pareΠ∗∗ to the profitΠ∗ the firmwould earn by using
our pricing rule, that is, by setting P∗ � (Pm + c)/2. We
generate 100,000 such demand curves and examine
the resulting distribution of Π∗∗/Π∗. The only re-
striction we impose on these demand curves is that
they are nonincreasing everywhere.
We generate each demand curve as follows. We

assume the maximum price Pm is known and so is the
maximum quantity Qmax that can be sold at a price of
zero (i.e., the maximum potential size of the market).8

We divide the segment [0,Qmax] into S equally spaced
intervals and generate a piece-wise nonincreasing de-
mand curve by drawing random values for the different
pieces. Since P(0) � Pm and P(Qmax) � 0, there are S − 1
breaking points between 0 and Pm. (One might in-
terpret this partition of the market as representing
customer segments, or simply an approximation to
a continuous curve.) With this partition, we draw a
random value for the end of the first segment from a
distribution between 0 and Pm, which we will call P1
(see one realization for P1 in Figure 5). More precisely,
we draw a random variable X1 between 0 and 1 and
P1 � PmX1. Next, we independently draw a value for

Figure 4. (Color online) Profit Ratios as a Function of ε for
Different Demand Curves

Figure 5. (Color online) Randomly Generated Inverse
Demand Curve with S � 5 Pieces
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the end of the second segment, but now between 0
and P1. Call this P2 � P1X2, where X2 is drawn be-
tween 0 and 1. We repeat this process S − 1 times,
drawing a total of S − 1 independent random vari-
ables Xi; i � 1, . . . ,S − 1 between 0 and 1, generating
a random demand curve with S segments. Figure 5
shows an example of such a randomly generated
demand curve that has five segments (for Pm � 500
and Qmax � 5). Given this demand curve, we nu-
merically calculate P∗∗, Π∗∗, and the profit ratio
Π∗∗/Π∗ for c � 0 and c � 0.5Pm.

We draw the random variables Xi; i � 1, . . . ,S − 1
using a power distribution of the form X1/α, where
α ≥ 1 is a skewing parameter and X is uniformly
distributed between 0 and 1. Note that when α � 1,
this reduces to the uniform distribution. For sim-
plicity, we present the results for the case of a uniform
distribution (i.e., α � 1); we obtained similar results
when α � 1.5.

We generate 100,000 demand curves and compute
100,000 corresponding values for Π∗∗/Π∗. We calcu-
late the mean value of Π∗∗/Π∗, as well as the 80% and
90% points (i.e., the value ofΠ∗∗/Π∗, such that 80% or
90% of the randomly generated ratios are below this
number). The number of segments S can affect the
resulting Π∗∗, so in Table 2 we show results for dif-
ferent values of S and for c/Pm equal to 0 and 0.5.

Observe that whatever the number of segments, S,
the average profit ratio is less than 1.14 if c � 0 and less
than 1.08 if c � 0.5Pm. Also, for 80% (90%) of the de-
mand curves, the profit ratios are less than 1.22 (1.41)
if c � 0 and less than 1.13 (1.37) if c � 0.5Pm. In Figure 6,
we plot histograms of the 100,000 profit ratios for S � 5
and both c � 0 and c � 0.5Pm. When c � 0 (c � 0.5Pm),
more than 40% (75%) of the ratios are less than 1.01,
and 54% (79%) are less than 1.05. Thus it is reasonable
to expect our pricing rule to yield a profit close towhat
would result if thefirm knew its actual demand curve.

5. Welfare Implications
We now compare the total welfare (consumer plus
producer surplus) obtained from our pricing rule
P∗ � 0.5(Pm + c) to the welfare that would have re-
sulted if the firm knew the true demand curve and set
the price at P∗∗. We also look at consumer surplus
separately to see how our pricing rule affects con-
sumers. The total welfare, denoted by W(P), is

W P( ) � Π P( ) + CS P( )
� P − c( )Q +

∫ Q

0
PA y

( )
dy − PQ

[ ]
.

(8)

We are interested in W(P∗∗)/W(P∗) ≡ W∗∗/W∗ and
CS(P∗∗)/CS(P∗) ≡ CS∗∗/CS∗. Note that these ratios can

Table 2. Profit Ratios for Randomly Generated Demands

c � 0 c � 0.5Pm

S Mean 80% 90% S Mean 80% 90%

2 1.0672 1.1625 1.2442 2 1.0748 1.1255 1.3696
5 1.1332 1.2057 1.3926 5 1.0525 1.0645 1.2271
10 1.1351 1.2081 1.3979 10 1.0523 1.0647 1.2254
50 1.1379 1.2161 1.4071 50 1.0525 1.0621 1.2264
100 1.1344 1.2124 1.4045 100 1.0525 1.0628 1.2265

Figure 6. (Color online) Histogram of Profit Ratios When S � 5 for c � 0 and c � 0.5Pm
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be less than 1, that is, our pricing rule can increase the
total welfare and/or the consumer surplus relative to
that when the profit-maximizing price P∗∗ is used. In
particular, we have the following result.

Proposition 6. If the actual demand is convex, thenW∗∗≥W∗
and CS∗∗ ≥ CS∗; whereas if it is concave, W∗∗ ≤ W∗ and
CS∗∗ ≤ CS∗.

Indeed, as long as P ≥ c, W(P) is nonincreasing, so
that the inequalities on W follow immediately from
Theorem 1. The inequalities on CS also follow from
Theorem 1 and from the fact that the consumer sur-
plus is a nonincreasing function of the price (for
P ≤ Pm). If the demand is concave, we know from
Theorem 1 that P∗ ≤ P∗∗, so in this case using the
“wrong” price P∗ improves both the total welfare and
consumer surplus (i.e., the benefit to consumers ex-
ceeds the loss to the firm). However, if the demand is
convex, both the firm and consumers are worse off.

Next, we calculate the welfare and consumer sur-
plus ratios (i) analytically for the demand models in
Section 2 (see Proposition 7), and (ii) computationally
for randomly generated demand curves following the
approach of Section 4. To simplifymatters,we assume
that c � 0. We do not report the details of the deri-
vations for conciseness. The closed-form expressions
are as follows.

Proposition 7. The welfare and consumer surplus ratios,
W∗∗/W∗ and CS∗∗/CS∗, for the different demandmodels are
as follows:

• Quadratic convex: PA(Q) �Pm−b1Q+b2Q2; b1, b2 ≥ 0
and b2 ≤ b21/4Pm:

W∗∗
W∗ ≤ 1.26045 and

CS∗∗
CS∗ ≤ 1.5756.

• Quadratic concave: PA(Q) �Pm−b1Q+b2Q2; b1 ≥ 0
and b2 ≤ 0:

W∗∗
W∗ ≤ 16

̅̅
2

√

15
̅̅
3

√ � 0.8709 and
CS∗∗
CS∗ ≤ 0.544.

• Monomial: PA(Q) � Pm − γQn:

W∗∗/W∗ � 2n + 1 − 1/ n + 1( )
3 − 1/ n + 1( )

2
n + 1

( )1
n+1

and

CS∗∗
CS∗ � 2

n + 1

( )1
n+1

.

• Semilog: PA(Q) � Pme−αQ:

W∗∗/W∗ � 2 1 − e−1
( ) � 1.2642 and

CS∗∗
CS∗ � 1.722.

We omitted the truncated log-log demand as the
welfare and consumer surplus ratios are complicated

expressions that depend on Pm/c and β. For the ex-
ponential demand, CS∗∗/CS∗ ≤ 1.6487 (the welfare
ratio is unbounded). For the monomial demand, when
n � 3 and n � 4, W∗∗/W∗ is 0.974 and 0.999, respec-
tively, and CS∗∗/CS∗ is 0.397 and 0.318, respectively.
Also, as the order of themonomial n increases,W∗∗/W∗
approaches 4/3, whereas CS∗∗/CS∗ approaches 0.
Indeed, as n increases, the inverse demand curves
become more concave so there is a greater transfer of
welfare from the firm to consumers. One can see that
for these demand models, the loss in total welfare
from using our approximation is at most 26%, but in
some cases the loss (or gain) in consumer surplus can
be quite large. (For example, for the semilog demand,
when c � 0, the loss in profit is 6.16% but the decrease
in consumer surplus is 72%.)

We next calculate W∗∗/W∗ and CS∗∗/CS∗ for ran-
domly generated demand curves following the ap-
proach of Section 4. As before, we fix Pm, c, and Qmax
and compute the ratios for c/Pm = 0 and 0.5, using
100,000 randomly generated demand curves. (The
results are similar for different values of S.) The av-
erage welfare ratio for c � 0 and c � 0.5Pm are 1.139
and 0.993, respectively. As for CS∗∗/CS∗, the average
ratios for c � 0 and c � 0.5Pm are 1.1885 and 0.9148,
respectively (see Figure A.1 in the appendix). As one
can see from the histograms, although CS∗∗/CS∗ is
close to 1 on average, for a significant fraction of
demand curves, consumers will be either better off or
worse off. Thus although our pricing rule often yields
profits close to optimal, the misspecification of de-
mand can have a significant (positive or negative)
impact on consumer surplus.

6. Future Research and Related
Open Questions

One might argue that because of the three conditions
we imposed, our pricing rule is too narrow in terms of
its range of applications. Here, we discuss several
possible extensions of our work, which are left for
future research. The first and most obvious extension
is to relax each of the three conditions and determine
whether an alternative pricing rule that is still rela-
tively simple can be derived.
Second, our focus has been on a linear pricing rule

(i.e., a price that is linear in the parameters Pm and c). It
would be interesting to investigate to what extent a
nonlinear rule (e.g., a quadratic function of Pm and c)
yields a profit ratio closer to 1 relative to the linear rule.
Third, instead of assuming that the maximum price

is known, it would be interesting to examine what
happens if the firm knows a different point on the
demand curve, that is, the firm knows a specific pair
of points (P0,Q0), instead of (Pm, 0). This is a relevant
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case in practice, as firms often have access to a single
price-demand realization.

Perhaps one of the most important caveats is the fact
that our analysis is entirely static. We assumed the true
demand curve is fixed; it does not shift over time, po-
tentially in response to network effects (which can be
important for new products). We also assumed that the
firm sets andmaintains a single price; it does not change
price over time to intertemporally price discriminate or
to respond to changing market conditions, nor does it
offer different prices to different groups of customers.

An additional limitation of our analysis is the fact
that we assumed that capacity is not a relevant op-
erational decision. (We provided several examples to
justify this.) Extending the analysis for products that
require capacity planning is an interesting avenue for
future research. Finally, we have ruled out learning
about demand, either passively or via experimentation,
which has been the focus of the earlier literature on
pricing with uncertain demand (learning and earning).
To the extent that such dynamic considerations are
important, our pricing rule can be viewed as a starting
point. Managers often seek simple and robust rules for
pricing; the rule we suggest is certainly simple, and we
have seen that it is also often effective.

7. Conclusions
Setting price is one of the most basic economic de-
cisions firms make. Introductory economics courses
make this decision seem easy; just write down the
demand curve and set marginal revenue equal to
marginal cost. But of course firms rarely have precise
knowledge of their demand curves. When introduc-
ing new products (or existing products in new mar-
kets),firmsmay know little or nothing about demand,
but must still set a price. Price experimentation is
often not feasible, and the price a firm sets is often the
one it sticks with for some time.

We have shown that under certain conditions the
firm can use a simple pricing rule. The conditions are
(i) marginal cost c is known and constant, (ii) the firm
can estimate the maximum price Pm it can charge and
still expect to sell some units, and (iii) the firm need
not predict the quantity it will sell. These conditions
hold for many new products and services, especially
those introduced by technology companies. The firm
then sets a price of P∗ � (Pm + c)/2.

How well can the firm expect to do if it follows this
pricing rule? We studied this question when the true
demand curve is one of several commonly used de-
mand functions, or even if it is a more complex
function (e.g., randomly generated). Often, the firm
will earn a profit reasonably close to the optimal profit
it could earn if it knew the true demand curve.We also
identified cases where the profit loss is significant.
Our results can help us understand why linear demand

functions are so popular in many applications (e.g.,
Koushik et al. 2012, Pekgün et al. 2013).
As mentioned in the introduction, the results of this

paper can be extended to cases where the firm does
not know Pm, but it can estimate a price P̄ < Pm, such
that at P̄ the firm can sell to a small set of customers.
However, as one would expect, the pricing rule
P∗ � (P̄ + c)/2 will not perform as well. For example,
the profit ratio for the semilog demand used in Sec-
tion 2.3 will be now at most 1.181 for any value of P̄
(the proof follows the same logic as the proof of Prop-
osition 3 by translating the inverse demand curve).
The reader might be under the impression that the

firms we are thinking about must be pure monopo-
lists, but this is not the case. The firm cannot be a
perfectly competitive one, because such a firm is not
able to affect the price, which is determined as a
market equilibrium. The firmmust have somemarket
power, so that it can set a price and expect to sell some
quantity at that price. But we are not assuming that
the firm is a monopolist.
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Appendix. Equivalence with the Valuation Model
Consider a representative consumer with a random valu-
ation for the product. The valuation is assumed to be be-
tween the cost c and the maximal price Pm. We assume that
the seller knows the valuation distribution, represented by
the cumulative distribution function F(·) and the proba-
bility density function f (·). We also assume that the seller
seeks to maximize its expected profit, given by

Π p
( ) � p − c

( )
P p < v
( ) � p − c

( )
1 − F p

( )[ ]
, (A.1)

where p denotes the price set by the seller and v denotes
the valuation of the consumer (unknown to the seller).
If the price is below the valuation, the consumer will
purchase the item and the seller extracts a profit of p − c.
Otherwise, there is no sale and zero profit for the seller. One
can take the first-order condition and obtain the following:

P∗ � c + 1 − F P∗( )
f P∗( ) . (A.2)

Equation (A.2) is a well-known result called the virtual
valuation. If we further assume that the valuation distri-
bution is uniform in [c,Pm], we have f (p) � 1/(Pm − c) and
F(p) � (p − c)/(Pm − c). Therefore, Equation (A.2) becomes
P∗ � (Pm + c)/2.
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Proof of Theorem 1. The actual inverse demand curve,PA(Q),
satisfies PA(0)�Pm. One can write PA(Q)�Pm−bQ+f (Q), with
f (0) � 0 and P′′

A(Q) � f ′′(Q). Equating marginal revenue with
marginal cost, we have:

Q∗∗ � Pm − c + f Q∗∗( ) + f ′ Q∗∗( )Q∗∗
2b

.

This yields an expression for the optimal price as a
function of Q∗∗:

P∗∗ � PA Q∗∗( )
� Pm − 1

2
Pm − c + f Q∗∗( ) + f ′ Q∗∗( )

Q∗∗[ ] + f Q∗∗( )
.

Recall that P∗ � (Pm + c)/2 and thus P∗∗ �P∗ +0.5[f (Q∗∗)−
f ′(Q∗∗)Q∗∗]. From thefirst-order Taylor expansion,wehave for
any differentiable function f (·): f (x) � f (a) + f ′(a)(x − a) + R1,
where R1 � 0.5f ′′(ζ)(x − a)2, for some ζ ∈ [x, a]. Then,

f Q∗∗( ) − f ′ Q∗∗( )
Q∗∗ � −R1 � f ′′ ζ( )

2
Q∗∗( )2� P′′

A ζ( )
2

Q∗∗( )2.
Consequently, P∗∗−P∗�−P′′

A(ζ)(Q∗∗)2/4,forsome ζ∈[0,Q∗∗].
Therefore, if PA(Q) is convex, P′′

A(·)≥0 so that P∗∗≤P∗; and if
PA(Q) is concave, P′′

A(·) ≤0 so that P∗∗ ≥P∗. Q.E.D.

Proof of Proposition 1.
Convex case: We have:

Π∗ � Pm − c
2

1
2b2

b1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 2b2 Pm − c( )

√( )[ ]
,

P∗∗ � Pm − b1
3b2

b1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 3b2 Pm − c( )

√[ ]

+ 1
9b2

b1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 3b2 Pm − c( )

√[ ]2
,

Q∗∗ � b1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 3b2 Pm − c( )√

3b2
.

The optimal profit is Π∗∗ � (P∗∗ − c)Q∗∗. One can ex-
press the profit and price ratios as functions of c and b2 and
check themonotonicity to conclude that the profit and price
ratios are largest when c � 0 and b2 � b21/4Pm, in which case

P∗∗ � (4/9)Pm and Q∗∗ � (2Pm)/(3b1). Finally, we can now
compute both profits:

Π∗ � b1Pm

4b2
1− 1̅̅

2
√

( )
� P2

m

b1
1− 1̅̅

2
√

( )
, Π∗∗ �2b1Pm

27b2
� 8P2

m

27b1
.

Then the profit and price ratios are Π∗∗/Π∗ � 8
̅̅
2

√
/

[27( ̅̅
2

√ − 1)] � 1.0116, P∗∗/P∗ � 8/9. These are the largest
values for the ratios, so the corresponding inequalities hold.

Concave case: The optimal Q∗∗ is obtained by equating
marginal revenue to marginal cost:

Q∗∗ � −b1 ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 3b2 Pm − c( )√
−3b2 .

Since Q∗∗ > 0, the positive root applies. Then the optimal
price is given by

P∗∗ � PA Q∗∗( ) � 2Pm + c
3

− b21
9b2

+ 1
9b2

b1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 3b2 Pm − c( )

√
.

Finally, the optimal profit as a function of Pm, c, b1,
and b2 follows from Π∗∗ � (P∗∗ − c)Q∗∗. Our pricing rule is
P∗ � (Pm + c)/2, so

QA P∗( ) � −b1 ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 2b2 Pm − c( )√
−2b2 .

We select the positive root so as to satisfy Q∗ > 0. The
profit is then

Π∗ � P∗ − c
( )

QA P∗( )
� Pm − c

2
1

−2b2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b21 − 2b2 Pm − c( )

√
− b1

( )[ ]
.

Expressing the profit and price ratios as functions of b1
and checking the monotonicity, one can see that the worst
case for both ratios occurs when b1 � 0. Intuitively, the
larger b1 is, themore linear the function is, making the ratios
closer to 1. If b1 � 0, P∗∗ � (2Pm + c)/3 and P∗ � (Pm + c)/2, so

Π∗∗ � 2 Pm − c( )
3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅−3b2 Pm − c( )√
−3b2 ,

Π∗ � Pm − c
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅−2b2 Pm − c( )√
−2b2 .

Figure A.1. (Color online) Histogram of Consumer Surplus Ratios When S � 5 for c � 0 and c � 0.5Pm
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Then, the profit and price ratios are

Π∗∗
Π∗ � 4

̅̅
2

√

3
̅̅
3

√ � 1.0887,
P∗∗
P∗ � 2

3
2Pm + c
Pm + c

≤ 4
3
� 1.33.

For b1 > 0, we have inequalities for both ratios. Q.E.D.

Proof of Proposition 2. Equating marginal revenue and
marginal cost,MRA(Q∗∗) �Pm−(n+1)γ(Q∗∗)n � c. Thus,Q∗∗ �
[(Pm − c)/(n + 1)γ]1/n and P∗∗ � PA(Q∗∗) � (nPm − c)/(n + 1).
Note that P∗∗ is independent of γ. Next, the optimal profit is

Π∗∗ � P∗∗ − c
( )

Q∗∗ � n

n + 1( )1n+1γ1/n
Pm − c( )1n+1.

Recall that P∗ � (Pm + c)/2, so the corresponding quantity
isQA(P∗) � [(Pm−c)/(2γ)]1/n.Therefore,Π∗ � (P∗ −c)QA(P∗) �
[(Pm−c)1n+1]/[21

n+1γ1/n]. We can now compute both ratios:

Π∗∗
Π∗ � 2

1
n+1n

n + 1( )1n+1 ≤ 2, 1 ≤ P∗∗
P∗ � 2 nPm + c( )

n + 1( ) Pm + c( ) ≤ 2.

Q.E.D.

Proof of Proposition 3. First, suppose c � 0. Equating mar-
ginal revenue and marginal cost, MRA(Q∗∗) � Pme−αQ

∗∗−
αPmQ∗∗e−αQ∗∗ � 0 , soQ∗∗ � 1/α. Then, P∗∗ �Pme−1 andΠ∗∗ �
Pme−1α−1. If the firm prices at P∗, the profit is Π∗ � (P∗ − c)
QA(P∗) � 0.5PmQA(P∗). Since c � 0 and P∗ � 0.5Pm, we obtain
QA(P∗) �−(1/α) log(0.5), and hence Π∗ � 0.5Pm log(2)/α. We
then have the following:

Π∗∗
Π∗ � Pme−12α

αPm log 2( ) �
2e−1

log 2( ) � 1.0615,

P∗∗
P∗ � Pme−1

Pm/2
� 2e−1 � 0.7357.

We now show that when c > 0, both ratios are closer to 1.
We start with the price ratio by showing that ∂

∂c [P
∗∗
P∗ ] ≥ 0,

∀ 0 ≤ c ≤ Pm. We have:

∂

∂c
P∗∗
P∗

[ ]
�

∂P∗∗
∂c P∗ − ∂P∗

∂c P∗∗
P∗( )2 . (A.3)

For Equation (A.3) to be nonnegative, we need ∂P∗∗
∂c

1
P∗∗ ≥

∂P∗
∂c

1
P∗ .Recall thatP∗ � (Pm + c)/2 and therefore, ∂P∗/∂c � 0.5.

As a result, we need to show that

∂P∗∗
∂c

≥ P∗∗
Pm + c

. (A.4)

From the first-order condition, MRA(Q∗∗) � Pme−αQ
∗∗ −

αPmQ∗∗e−αQ∗∗ � P∗∗(1 − αQ∗∗) � c. By differentiating both
sides with respect to c and isolating ∂P∗∗/∂c,

∂P∗∗
∂c

� 1 + αP∗∗ ∂Q∗∗
∂c

1 − αQ∗∗ . (A.5)

Recall that P∗∗ � Pme−αQ
∗∗

and hence by differentiating
with respect to c:

∂P∗∗
∂c

� −αP∗∗ ∂Q
∗∗

∂c
. (A.6)

By combining Equations (A.5) and (A.6), we obtain
∂P∗∗/∂c � 1/(2 − αQ∗∗). Since the demand curve is convex,
from Theorem 1, P∗∗ ≤ P∗ � (Pm + c)/2 and therefore, P∗∗/
(Pm + c) ≤ 0.5. From the first-order condition, 0≤1−αQ∗∗≤1
(so that P∗∗ ≥ c). Thus, 1≤ 2−αQ∗∗ ≤ 2, so 1/(2 − αQ∗∗) ≥ 0.5,
implying that Equation (A.4) is satisfied. This concludes the
proof for the price ratio.

The same logic applies to the profit ratio, that is,

∂[Π∗∗
Π∗ ]/∂c ≤ 0, ∀ 0 ≤ c ≤ Pm Q.E.D.

Proof of Proposition 4. Equating marginal revenue to
marginal cost, MRA(Q∗∗) � Pm(1 − 1

β)(Q∗∗/Q0)−1/β � c. Thus,
Q∗∗ � Q0[ βc

(β−1)Pm
]−β. Note that Q∗∗ is larger than the trunca-

tion valueQ0. The optimal price and profit are P∗∗ � βc/(β−1)
andΠ∗∗ �Q0c/(β−1)[ βc

(β−1)Pm
]−β. By requiring β≥Pm/(Pm− c),

we ensure thatP∗∗ ≤ Pm.We next compute the profit underP∗:
Π∗ � (P∗ − c)QA(P∗) � 0.5(Pm − c)QA(P∗). We have: QA(P∗) �
Q0(Pm+c

2Pm
)−β ≥ Q0. Then, Π∗ � 0.5Q0(Pm − c)(Pm+c

2Pm
)−β. We can

now compute both ratios:

Π∗∗
Π∗ � 2

Pm/c − 1( ) β − 1
( ) 2β

Pm/c + 1( ) β − 1
( )

( )−β
,

P∗∗
P∗ � 2β

Pm/c + 1( ) β − 1
( ) . Q.E.D.

Expressions for Section 3. The following are the closed-
form expressions of Π∗∗/Π∗ as a function of ε for the de-
mandmodelswe consideredwhen c � 0 (setting ε � 0yields
the expressions in Section 2):

• Linear: PA(Q) � Pm − bQ Π∗∗/Π∗(ε) � 1/(1 − ε2).
• Quadratic convex: PA(Q) �Pm−b1Q+b2Q2, b1, b2 ≥ 0 and

b2 ≤ b21/4Pm:

Π∗∗
Π∗ ε( ) ≤ 8

̅̅
2

√
27 1 + ε( )

1̅̅
2

√ − ̅̅̅̅̅̅̅
1 + ε

√ .

• Quadratic concave: PA(Q) � Pm − b1Q + b2Q2, b1 ≥ 0 and
b2 ≤ 0:

Π∗∗
Π∗ ε( ) ≤ 4

̅̅
2

√

3
̅̅
3

√ 1

1 + ε( ) ̅̅̅̅̅̅̅̅̅
1 − ε( )√ .

• Monomial: PA(Q) � Pm − γQn, Π∗∗/Π∗(ε) � 2
1
n+1n

(n+1)1n+1 ×1
(1+ε)(1−ε)1/n.

• Semilog: PA(Q) � Pme−αQ, Π∗∗/Π∗(ε) � 2e−1
(1+ε) log( 2

1+ε).

• Log-log (truncated): PA(Q) � Pm ; ifQ<Q0
Pm(Q/Q0)−1/β ; ifQ≥Q0

{
,

Π∗∗
Π∗ ε( ) � 2

Pm
c 1 + ε( ) − 1

[ ]
β − 1
( ) 2β

β − 1
( ) Pm

c 1 + ε( ) + 1
[ ]

[ ]−β
.

Proof of Proposition 5. Consider any nonincreasing con-
cave demand curve. We know from Theorem 1 that P∗ ≤ P∗∗.
Recall that P∗ � 0.5(Pm + c) and therefore, P∗ ≤ P∗∗ ≤ Pm �
2P∗ − c ≤ 2P∗. We next show the inequality for the profit
Π∗∗�(P∗∗−c)QA(P∗∗)≤2(P∗−c)QA(P∗∗)≤2(P∗−c)QA(P∗)�2Π∗,
where the last inequality follows form the fact that QA(·) is
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nonincreasing. In conclusion, we have 1 ≤ Π∗∗/Π∗ ≤ 2 and
1 ≤ P∗∗/P∗ ≤ 2. Q.E.D.

Endnotes
1Biotech drugs, based on recombinant DNA technologies, are quite
different. The molecules are extremely complex (often too complex to
even specify precisely, so the production process is patented rather
than the molecule), and production can be expensive. Many of the
new cancer therapies are biotech drugs.
2 See, for example, Adida and Perakis (2006) and Thiele (2009). An
alternative is the distributionally robust approach,where price is robust
with respect to a class of demand distributions with similar parameters
such as mean and variance (see, e.g., Lim and Shanthikumar 2007, Ball
and Queyranne 2009).
3 In related work, Chu et al. (2011) show how bundle size pricing
(BSP) provides a close approximation to optimal mixed bundling. In
BSP, a price is set for each good, for any bundle of two, for any bundle
of three, and so on, up to a bundle of all the goods produced. Profits
are close to what would be obtained from mixed bundling. Also,
Carroll (2015) examines a principal who has only limited knowledge
of what an agent can do, and wants to write a contract robust to this
uncertainty. He shows that the most robust contract is a linear
one—for example, the agent is paid a fixed fraction of output. Hansen
and Sargent (2008) provide a general treatment of robust control, that
is, optimal control with model uncertainty.
4The log-log model is widely used in many retail applications (see,
e.g., Montgomery 1997, Mulugeta et al. 2013, Cohen et al. 2017). The
quadratic and semilog functions are often used in the context of
hedonic pricing (see, e.g., Wilman 1981, Milon et al. 1984).
5Assuming that the inverse demand is a continuous decreasing
convex (respectively, concave), then the demand is also convex
(respectively, concave).
6 If β � β∗, the elasticity of the isoelastic demand equals the elas-
ticity of the linear demand at the optimal price. The latter elasticity
is Ed � bP∗/Q∗

L � (Pm + c)/(Pm − c), so if β � β∗, both the linear and
log-log demand curves have the same profit-maximizing price
and output.
7The log-log demand curve is convex but truncating it modifies its
convexity properties, which affects the relationship between P∗∗ and
P∗ (see Theorem 1). If either β or Pm/c is small, the optimal quantity
Q∗∗ is small and can lie on the truncated—and nonconvex—part of
the curve.
8To generate random demand curves, it is convenient to specify the
maximum quantity Qmax. We tested different values of Qmax and
found similar qualitative insights, so that our results are not sensitive
to the value of Qmax.
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