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1 Introduction

We examine the diffusion process characterizing a set of pharmaceutical innovations: H2-

antagonist antiulcer drugs, which avoid costly hospitalizations and surgeries, and also are

effective in treating rather common ailments such as heartburn. We treat the origins of

these innovations as largely exogenous, and focus on demand-side factors that affect long-

run market saturation, not only for the overall therapeutic class, but also for particular

brands within the class. In particular, we examine consumption externalities, i.e., ways in

which the demand for a branded pharmaceutical by patients and physicians depends on the

number of other patients that have taken or are taking the drug.

Consumption externalities arise when the use of a drug by others inßuences perceptions

about its efficacy, safety, and �acceptability,� and thus affects its valuation and rate of

adoption. Unlike computer software and telecommunications systems where consumption

externalities stem from direct external beneÞts, in pharmaceutical markets these externalities

are largely informational in nature: The widespread use of a drug may convey information

to physicians and patients about its safety and efficacy, and, for physicians, may imply

�accepted practice� and hence greater immunity to malpractice lawsuits.1 For example, the

fact that a drug has been widely used may be evidence that it is at least somewhat efficacious

relative to its side effects and risks. Or, physicians might conclude that the probability of a

malpractice suit is lower when a widely used drug is prescribed, whatever the actual efficacy

and risks of the drug.

If they are strong enough, consumption externalities could lead to the dominance of one

drug � not necessarily the most efficacious or safest � despite the availability of close

substitutes. Consumption externalities also affect the rate at which a new product diffuses

into the market: As more people use the product, word-of-mouth communication increases,

accelerating the rate at which others become aware of it. In either case, the result can be a

1There is evidence of this dependence from early sociological studies of the diffusion of new drugs and
medical technologies; see, e.g., Coleman, Katz, and Menzel (1966). For a recent study of the effects of
potential malpractice liability on physician behavior, see Kessler and McClellan (1996). Temin (1980) has
shown that physicians do not have well-organized information on the comparative effectiveness and riskiness
of substitute drugs, and make decisions based largely on the customary behavior of other doctors.
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market outcome that is inefficient.2

We distinguish between externalities that inßuence consumers� valuations of a drug, and

those that inßuence the rate of diffusion in the market.3 Consumers� valuations are affected

when the use of a drug by others inßuences its perceived efficacy and safety. One of our

goals is to identify and quantify the magnitude of this effect. A second goal is to assess the

importance of past sales as a determinant of the rate of product diffusion.

Pharmaceutical markets are usually bounded in terms of therapeutic classes of drugs,

the members of which are substitutes. Thus it is important to distinguish between con-

sumption externalities at two levels. The Þrst is with respect to a therapeutic class, e.g.,

H2-antagonist antiulcer drugs, SSRI antidepressants, or cholesterol-lowering drugs. We ex-

pect that physicians may be more willing to prescribe and patients to take a drug the more

the drug�s therapeutic class has been �accepted,� where �acceptance� can be measured at

least in part by the number of other people that have taken drugs in that class. The second

is with respect to a speciÞc brand of drug within a therapeutic class. We might expect that

physicians and patients are more willing to use Zantac (as opposed to Tagamet, Axid, or

Pepcid) the greater is its �acceptance,� which might be measured by its market share or

cumulative sales.

Although we focus on demand, the issues we examine have broad implications for the

structure and performance of pharmaceutical markets, as well as other markets in which

buyers decide whether to adopt new products or technologies. For example, consumption

externalities may give Þrms the incentive to compete very aggressively in the early stages of

market evolution, as they struggle to win a future position with substantial market power.

Even if externalities do not affect consumers� valuations of a product, an initially large

2This is analogous to inefficient herd behavior resulting from informational externalities in technology
adoption and investment decisions. The inefficiency arises when agents rationally try to free ride on the infor-
mation generated by the adoption decisions of others; see, e.g., Scharfstein and Stein (1990) and Bikhchan-
dani, Hirshleifer, and Welch (1998). Goolsbee and Klenow (1999) present evidence of very similar spillover
effects in consumers� purchases of home computers. Gandal, Kende, and Rob (2000) estimate a dynamic
demand model of technology adoption for compact disc players and CD titles.

3Decisions to utilize a drug can be made or inßuenced by both patients and physicians. We do not try
to differentiate their roles in the adoption decision, and include both when we refer to �consumers.�
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market share can lead to �tipping� by affecting the rate of diffusion. Suppose there are two

competing products and switching costs are high. If the rate of diffusion for each product

depends positively on the number of consumers already using the product, the Þrm with an

initial market share advantage could increase that advantage as the market saturates.

When they occur at the brand level, consumption externalities can create an incentive to

price low initially and advertise heavily, and later provide the owner of a dominant brand the

ability to raise price above those for other brands. They also affect the reward for being the

Þrst drug in a new therapeutic category, making it worthwhile to invest heavily to accelerate

the development of a new drug. Conversely, when they occur at the therapeutic class level,

they can create second-mover advantages, whereby later entrants free-ride on the information

and awareness generated by the pioneering brand. If this effect dominates, Þrms might Þnd

it optimal to arrive second on the market, and try to develop a drug with better attributes

(e.g., less frequent dosing or fewer side effects) than those of the Þrst mover.4

We focus on a particular therapeutic class, namely the H2-antagonist antiulcer drugs:

Tagamet, Zantac, Pepcid, and Axid.5 These four drugs comprise a well-deÞned market

because they all function in roughly the same way � they cause the stomach to produce

less hydrochloric acid than it would otherwise. They differ in dosing frequency, side effects,

and interactions with other drugs, but for most patients they could readily be substituted

for each other. Our analysis covers the time period from 1977, when Tagamet was Þrst

introduced, through 1993, the year before Tagamet lost patent protection and two years

before over-the-counter versions of the H2-antagonist drugs were introduced. Prilosec, a

proton-pump inhibitor used to treat similar disorders, was introduced in the United States

in 1989. However, until 1995 the FDA required Prilosec to carry a warning on its label

4Indeed, as we will see, this appears to be the case with H2-antagonist antiulcer drugs. Zantac arrived
second but with better attributes than Þrst-mover Tagamet, and soon attained a dominant share of the
market. For discussions of Þrst-mover advantages in prescription drug markets, see Bond and Lean (1977),
and Berndt, Bui, Reilly, and Urban (1995, 1997). For an empirical study of pricing strategies in these
markets, see Lu and Comanor (1998).

5Tagamet (the chemical compound cimetidine) went off patent in May 1994, and Zantac (ranitidine) in
July 1997. More recently, the market was enlarged by the introduction of Prilosec, a proton pump inhibitor,
which in 1996 became the world�s top-selling drug. Here we conÞne our attention to the period prior to
Tagamet patent expiration.
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concerning safety in long-term treatment, so that it was not a strong substitute for the

H2-antagonist drugs.

Because the four drugs were introduced sequentially, this data set allows us to address

important issues related to brand diffusion and competition. How important, for example,

is the Þrst-mover advantage resulting from an �installed base� of patients? How does that

installed base affect a brand�s rate of diffusion, and substitution across brands? What portion

of a drug�s value can be attributed to brand-level versus therapeutic class-level consumption

externalities? We can also examine strategic issues speciÞc to this industry. Zantac was

introduced at a higher price than Tagamet and had the disadvantage of being a �second

mover,� but overtook Tagamet in sales after about four years. To what extent was this due

to Zantac�s better attributes and higher level of marketing?

Our model has three components. First, we estimate an hedonic price equation that

accounts for the price impacts of objective attributes such as the number of side effects,

dosing, etc. We also include cumulative lagged sales of a brand and/or the therapeutic class

as additional attribute variables. This allows us to measure the importance of a drug�s past

usage, as well as conventional attributes, as components of its current value.

Second, we use the quasi-residuals from this hedonic price index as a quality-adjusted

price, and, based on data for the last four years of our sample, estimate an equilibrium

model of brand shares. During this period we can reasonably expect that all four brands

have fully diffused through the market, so we can measure the equilibrium dependence of

sales on relative (quality-adjusted) prices and marketing levels.

Third, we estimate a set of dynamic diffusion equations that explains the adjustment of

sales to their equilibrium, or saturation, levels. These endogenous saturation levels depend

on prices, advertising levels, and population, and thus change over time as these variables

evolve. Rates of diffusion for the brands depend indirectly on drug attributes through the

hedonic residuals, as well as on prices and marketing efforts. But rates of diffusion also

depend directly on past sales of the therapeutic class and/or the particular brand, reßecting

learning and word-of-mouth effects. Thus variables reßecting past sales can affect rates of

diffusion and equilibrium market shares through multiple channels.
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This approach has the virtue that it Þts the data quite well: Dynamic simulations of

the model yield time paths for brand sales that track the actual time paths very closely.

However, this goodness of Þt comes at the expense of structural assumptions that we impose

to identify key parameters (e.g., that the last four years of our sample represents a period

of market equilibrium). This framework is discussed in the next section. Section 3 discusses

the data and estimation methods. Estimates of the hedonic price equations, the equilibrium

share model, and the dynamic diffusion equations are presented and discussed in Sections 4,

5, and 6 respectively. Section 7 presents simulation results, and Section 8 concludes.

2 Modelling Pharmaceutical Demands

As explained above, the past sales of a drug can affect its current demand by directly affecting

its value to consumers, and by increasing awareness of the drug�s existence and thereby

accelerating its rate of diffusion. Our model, which accounts for these two mechanisms at

both the therapeutic class and brand levels, is structured as follows.

First, perceptions of a drug�s efficacy, safety, and medical �acceptability� are essentially

perceptions of its quality, so if past sales of a drug affect these perceptions, they should

affect the drug�s quality-adjusted price. This suggests that one could estimate the perceived

value of a drug�s past sales from an hedonic price regression that includes a variable such

as past sales in addition to other product attributes. We therefore begin by estimating an

hedonic price equation using an (unbalanced) panel of prices and attributes for the four

H2-antagonist drugs. Included among the attributes are measures of the numbers of patients

that are taking or have taken the drug in the past.6 We thereby test whether variables

that reßect the acceptance of a drug help to explain prices as expected, and we estimate

their contribution to perceived value. Also, we employ the quasi-residuals of this hedonic

regression as a quality-adjusted price in the other two components of our model.

6Gandal (1994) and Brynjolfsson and Kemerer (1995) employed such an approach to estimate the magni-
tude and value of network effects in spreadsheet software programs. Berndt, Cockburn, and Griliches (1996),
Cockburn and Anis (1998), and Suslow (1996) have estimated hedonic price indexes of pharmaceutical prod-
ucts, but did not test for the presence of consumption externalities.
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Second, using the hedonic quasi-residuals, along with data on brand advertising, we

estimate equations for the equilibrium market shares of the four brands. To do this, we use

data only for the last 4 years of our sample, when the market was mature and adjustment to

equilibrium was largely complete. Because the number of drugs on the market changed during

the years prior to this period, we use a multinomial logit model. This restricts the equilibrium

cross-price elasticities to be the same for drugs with equal shares, but yields partial (i.e.,

subject to a constant total industry demand) own-price and advertising elasticities that

depend on market shares but not on the number of drugs in the market. Using these

equilibrium share equations, we calculate Þtted equilibrium shares for the entire sample

period. For example, we calculate what the Tagamet and Zantac equilibrium shares would

have been in, say, 1985, when these were the only drugs on the market.

Third, we estimate a set of dynamic diffusion equations for the four individual brands.

These equations explain changes in the sales of a particular brand in terms of adjustment to

that brand�s equilibrium share of an industry saturation level (which is estimated), where

the adjustment is partly due to the inßuence of an �installed base� of patients that are using

or have used the drug, and partly independent of that base. Furthermore, the installed base

is measured both with respect to the entire therapeutic category and with respect to the

individual brand. In this way we estimate the relative importance of category-speciÞc versus

brand-speciÞc spillover effects on the rate of diffusion.

This three-step approach has the distinct disadvantage that it imposes strong structural

assumptions � most notably that we can identify a period of market equilibrium. An

alternative approach would be to substitute functional expressions for the brands� equilibrium

shares directly into the diffusion equations, and then estimate those equations over the entire

sample. We have pursued that approach, but found that it is not possible to precisely identify

key parameters. By imposing identifying assumptions, our three-step approach has a number

of advantages. First, it lets us measure the importance of spillover effects as a component

of perceived value, and in terms of its inßuence on the rate of product diffusion. Second,

we can model the structure of inter-brand competition in a parsimonious way, without the

usual problem of having to sacriÞce the dynamic aspects of demand. Third, the three parts
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of the model each provide information regarding a different aspect of demand, and allow

us to address questions raised in the Introduction, such as the extent to which Zantac�s

performance can be attributed to its better attributes and higher rate of advertising.

2.1 Hedonic Price Equation

We estimate hedonic price equations that relate the price of product i at time t, pit, to a set of

measured quality characteristics, Cit, a set of time dummy variables, Dt, and two measures of

product acceptance: the depreciated stock of cumulative patient days of therapy of brand i

to time t,XSit, and the corresponding depreciated stock for the therapeutic class as a whole,

XSt. We employ both linear and semi-log speciÞcations. The linear speciÞcation is

pit = C
0
itβ +D

0
tγ + ω1XSi,t−1 + ω2XSt−1 + ηit , (1)

where β, γ, and ω contain parameters to be estimated, and η is a stochastic disturbance

term. The depreciated stock of cumulative patient days of therapy is computed as

XSit =
tX

τ=0

(1− δ)τXi,t−τ , (2)

and similarly for XSt, but using Xt =
P
iXit. Here, δ is a monthly depreciation rate and

Xi,t−τ is sales of patient days of therapy of drug i in month t− τ . As discussed in Section 3,
we set δ = .05.

To obtain measures of quality-adjusted prices, we compute the quasi-residual:

Pit = pit − C 0it �β − �ω1XSi,t−1 − �ω2XSt−1 . (3)

Note that variations in Pit over time and across products net out the impacts of quality

differences, including valuations of past sales as measured by XSi,t and XSt.

2.2 Equilibrium Shares

We use a simple multinomial logit model to describe equilibrium brand shares. Denoting the

quantity share of brand i at time t by s∗it, equilibrium shares are given by

log(
s∗it
s∗T,t

) = ai0 + a1(Pit − PT,t) + a2(MINSTKit −MINSTKT,t) + ²it , (4)
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where i = Z (Zantac), A (Axid), and P (Pepcid), T denotes Tagamet, Pit is the quality-

adjusted price from eqn. (3), and MINSTKit is the depreciated stock of detailing minutes,

our measure of marketing. Variation in patient and physician �tastes� occurs through the

error term ²it.

This parsimonious model imposes restrictions on equilibrium demands � for any two

drugs, cross-price elasticities with respect to a third drug can differ only to the extent that

the Þrst two have different market shares. In our case these restrictions are less problematic:

There are only four products in the market, and they are close substitutes. The difference

between any two H2 drugs is far smaller than the difference between, say, a Ford Escort and a

Lexus, so there is less need to use the more complex approach of Berry, Levinsohn and Pakes

(1995). Also, note that this demand model does not include an outside good. The reason

is that our dynamic diffusion equations explain the adjustment to an endogenous saturation

level X∗
t (see below), and thus account for consumers� outside treatment options.

2.3 Saturation Levels

Given estimates of equilibrium shares, we can determine saturation levels for each brand,

i.e., the level of sales that a brand would reach once in equilibrium. These saturation levels

vary over time for two reasons. First, the equilibrium market shares on which they depend

change as relative prices and advertising levels evolve. Second, they also depend on the

saturation level for sales of the overall therapeutic category, which varies as the population

grows and as the average industry price changes.

We denote the industry saturation level by X∗
t , and we model it as a function of the

average industry quality-adjusted price P t, the total stock of depreciated detailing minutes

for the industry MINSTKTOTt, and population POPt:

logX∗
t = b0 + b1 logP t + b2 log POPt + b3 logMINSTKTOTt (5)

Given the equilibrium shares s∗it and this industry saturation level, the saturation level for

each brand is just X∗
it = s

∗
itX

∗
t .
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2.4 Dynamic Diffusion Equations

The third part of our model is a set of equations describing product diffusion at the brand

level, i.e., how sales of each brand, Xit, approach the saturation level X
∗
it = s∗itX

∗
t . These

equations are not derived from a formal dynamic optimization model, in part because of

difficulties of dealing with moral hazard (due to insurance) and principal-agent issues (the

physician-patient relationship) without transaction-level data. Instead, we adapt a set of

models that have been widely used in marketing studies of new product diffusion, in a way

that allows us to distinguish among alternative sources of sales growth.7 SpeciÞcally, we

work with versions of the generalized logistic equation:

dXt
dt

= α(X∗
t −Xt) + βXt(X∗

t −Xt) , (6)

and the generalized Gompertz equation:

dXt
dt

= α(logX∗
t − logXt) + βXt(logX∗

t − logXt) . (7)

The Þrst term on the right-hand side of eqns. (6) and (7) represents sales growth (towards

the saturation level) that is independent of usage of the drug by others. (It may be due to

advertising, a willingness of physicians to experiment with a new drug, etc.) The second term

represents sales growth that is due to the inßuence of current sales (and in our speciÞcation

below, past sales). As discussed above, the saturation level X∗
t will vary over time as prices,

demographics, and levels of marketing activity change.

If α = 0 and X∗
t is constant, the solutions to both of these equations are S-shaped

�saturation� curves, where sales Þrst increase slowly, then accelerate, and Þnally level out

as Xt approaches X
∗
t . If α > 0, sales can accelerate faster early on, because sales growth is

not dependent solely on current or past sales. If X∗
t is not constant, i.e., the saturation level

is varying over time, sales pursue a moving target.

We adapt these diffusion equations by noting that the saturation level for brand i is

given by s∗itX
∗
t , where s

∗
it is the equilibrium share of brand i (which in turn is a function of

7For an overview of diffusion models of this type and their application, see Mahajan and Muller (1979),
Mahajan, Muller, and Bass (1990), and Geroski (2000).
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relative prices and advertising levels). In order to allow for consumption externalities at both

the brand and the therapeutic category levels, we estimate the following two discrete-time

versions of the continuous-time diffusion processes above:

Xit −Xi,t−n = [log(�s∗itX∗
t )− logXi,t−n] ·

"
Ci +

12X
k=2

θkmkt + d0XSt−n + d1XSi,t−n

#
(8)

and

Xit−Xi,t−n = [log(�s∗itX∗
t )− logXi,t−n] ·

"
Ci +

12X
k=2

θkmkt + d0 log XSt−n + d1 log XSi,t−n

#
(9)

The parameters d0 and d1 measure the effects of industry-level and brand-speciÞc spillovers,

respectively, on the rate of diffusion of each brand. Note that when estimating these equa-

tions, we use both the in-sample and out-of-sample Þtted values of the equilibrium shares,

�s∗it. The industry saturation level, X
∗
t , is endogenous, and is given by eqn. (5).

3 Data and Estimation

Here we brießy summarize the construction of our data set. (Much of our data are described

in more detail in the Data Appendix of Berndt, Bui, Reiley, and Urban (1997).)

To aggregate over the various strengths and presentational formulations of each drug,

we divide monthly sales in total milligrams of active ingredient by the recommended daily

dosage, in milligrams, for duodenal ulcer treatment. This yields patient days of therapy Xit,

expressed in millions. By 1993, total monthly sales was about 120 million patient days of

therapy, which is roughly equivalent to 4 million patients. To obtain the nominal price per

day of patient therapy, we divide total revenue from sales of drug i in month t by Xit. We

deßate this nominal price by the Producer Price Index for Þnished goods (1982 = 1.00) to

obtain the real price for drug i in 1982 dollars. In 1993, the average real price was about $1.50

per patient day of therapy. Both price and quantity measures refer to sales from wholesalers

to retail drug stores, as computed by IMS America.

Our measure of marketing effort is the number of minutes that physicians in the United

States were �detailed� by pharmaceutical sales representatives, obtained from IMS Amer-

ica. In the 1990s, monthly minutes of detailing varied from about 40,000 to 250,000 across

10



products and over time. We construct a cumulative depreciated stock of detailing minutes,

MINSTKit, for each brand. This stock is expressed in millions of minutes, and is computed

analogously to eqn. (2), with δ = .05, which is approximately the rate estimated in Berndt et

al. (1997) and King (1997). Also, we performed a grid search for δ by repeatedly estimating

the equilibrium share equations using generalized method of moments estimation (GMM).

The GMM objective function is quite ßat over values of δ between .02 and .08, and has two

local minima; the value of .05 lies midway between those minima.

To compute the quality-adjusted average price for the H2 class, P t, we weight each of

the products on the market at that time by the average patient-day share during the period.

These average shares are computed separately for epochs when there were two, three, and four

H2 products on the market. We also compute a total level of advertising for the therapeutic

class, MINSTKTOTt, by summing MINSTKit over all four products.

We used several quality characteristics in our hedonic equations. The Þrst, DOSAGE,

is the number of tablets normally required per day. When Zantac appeared in 1983, it had

twice-a-day dosage, in contrast to Tagamet�s four-times-a-day version. Lower DOSAGE im-

plies higher quality, because it leads to greater patient compliance. Note that the DOSAGE

variable changes over time as manufacturers obtained FDA approval to market more conve-

nient dosages, which ultimately became once-a-day formulations for all four brands.

These drugs have also differed in terms of the medical conditions for which they obtained

FDA marketing approval (the �approved indications�). Zantac was the Þrst H2-antagonist

to obtain approval for GERD (gastro-esophageal reßux disease), a common ailment whose

symptoms vary from mild heartburn to intense pain. Although all four H2-antagonists had

obtained approval at product launch date for active duodenal ulcer treatment, FDA approval

times varied for active gastric ulcer treatment, duodenal ulcer maintenance treatment, and

stress ulcer prophylaxis. We compute SUMATT as the sum of the indications, other than

GERD and active duodenal ulcer treatment, for which the drug had FDA approval.

Another important attribute of prescription drugs is the extent to which they might

interact adversely with other medications. For each H2-antagonist we construct a variable,

INTER, that sums up the number of major drugs with which it had adverse interactions,
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as reported in annual editions of PhysiciansÕ Desk Reference. By late 1993, Tagamet had

registered ten adverse interactions, while Zantac, Pepcid, and Axid had either zero or one.

Finally, we construct a monthly time counter, TIME, starting at one in August 1977,

and take U.S. population data from the U.S. Census Bureau web site, www.census.gov (in

millions of people).

Figure 1 shows monthly sales of each drug. Although Tagamet was the pioneer and

only H2-antagonist drug on the market for six years, Zantac captured market share rapidly

following its entry in July 1983. Total industry sales continued to increase after Zantac�s

entry, but Tagamet�s sales began to fall after peaking at about 46 million patient days in

April 1984. Tagamet�s share continued to decline when Pepcid and Axid entered, but these

drugs were far less successful than Zantac; Pepcid�s share one year after entry was only

about 8 percent, and Axid�s about 4 percent. By the end of our sample in May 1993, Zantac

held about a 55-percent market share, Tagamet 21 percent, Pepcid 15 percent, and Axid 9

percent.

Tagamet�s real (quality-unadjusted) price gradually decreased from about $1 per day at

entry to $0.80 per day when Zantac entered. As shown in Figure 2, Zantac entered with a

considerable price premium over Tagamet, and thereafter prices of both Zantac and Tagamet

rose over time. Prices of the third and fourth entrants, Pepcid and Axid, were in between

those of Zantac and Tagamet.

Finally, Figure 3 shows the depreciated stock of detailing minutes for each brand, com-

puted using a monthly depreciation rate of 5 percent. The stocks for all four brands rose

steadily most of the time that they were on the market, but Tagamet�s fell during the last

two years, perhaps in expectation of the imminent loss of patent protection in May 1994.

The data used to estimate the hedonic and brand diffusion equations form an unbalanced

panel, while those used for the equilibrium share equations form a balanced panel. We

estimate the parameters of the hedonic price equation by ordinary least squares, and compute

heteroscedasticity-consistent and ARMA(2,2) serial correlation-consistent standard errors.

We estimate the logit equations for the equilibrium brand shares three ways: as a seemingly

unrelated regression (SUR), by three-stage least squares (3SLS), and by generalized method
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of moments (GMM). The brand diffusion equations are nonlinear in the parameters, so

we estimate them using nonlinear least squares. Since the share weights of the individual

drugs are constant arithmetic means within each epoch, we treat the industry average price

as exogenous. For each brand i, we form the vectors Xi with components that begin at

different time periods for each i (e.g., August 1977 for Tagamet, July 1983 for Zantac, etc.).

We stack the Xi�s into a vector X which comprises our unbalanced panel.

Table 1 shows summary statistics for the variables used in the model. Part A includes

aggregate industry variables, and Parts B to E include brand-speciÞc variables. Part F

shows summary statistics for each brand�s market share, price, and marketing for the last

53 months of our sample (the �equilibrium� period).

4 Hedonic Price Equations

Table 2 presents the results of estimating linear and semi-log hedonic price equations for our

unbalanced panel of four drugs. We Þrst estimate the hedonic price equation by OLS. There

may be serial correlation in the residuals, but we have no basis for making assumptions

about its structure. We therefore re-estimate the model using GMM, with an instrument set

composed of all of the right hand side variables. The point estimates do not change, but the t-

statistics are robust to the presence of heteroscedasticity and ARMA(2,2)-serial correlation

in the residuals. All of the regressions include annual and quarterly time dummies (not

shown). These dummies are highly signiÞcant, and show that real, quality-adjusted prices

fell from 1977 through 1981, and then rose gradually through 1993.

We work with four basic attribute variables, whose construction and interpretation was

discussed in Section 3: GERD, SUMATT, INTER, and DOSAGE. As can be seen from the

table, GERD, INTER, and DOSAGE are all highly signiÞcant and have the expected signs;

SUMATT is usually insigniÞcant, and has the wrong sign, which may reßect the fact that

much prescribing is �off-label,� i.e., permitted but not formally approved by the FDA.8

8It is unclear whether marketing effort should be included in the hedonic equation. One could argue that
our measures of consumption externalities fully incorporate the effects of marketing and other informational
investments. In our data, the simple correlation between XSit and MINSTKit is .802, .954, .849, and .945 for
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Each equation also has one or two variables that measure the effects of past sales at the

brand-speciÞc and therapeutic category levels. The Þrst variable, XSi,t−1, is the depreciated

stock of past sales of brand i, calculated using a monthly depreciation rate of 5 percent.

The second variable, XSt−1, is the corresponding depreciated stock of past sales for the

therapeutic category. Note in Table 2 that the brand-speciÞc variable XSi,t−1 is always

positive and highly signiÞcant in both the linear and semi-log versions, while the variable for

the therapeutic category, XSt−1, is insigniÞcant. We infer from this that the use of a drug

by others affects its valuation, and that this effect operates at the brand rather than the

therapeutic class level.9

To see the magnitude of this effect, consider column (1) in Table 2, where the coefficient

on XSi,t−1 is about .00018. Just prior to Zantac�s introduction in August 1983, Tagamet

had a depreciated stock of past sales of 786 million patient days. Had this Þgure been about

200 million (25 percent) less, the value of Tagamet would have been reduced by $0.036 (i.e.,

200×.00018), or about 5 percent of its approximately $0.75 price at that time. This implies a
brand-speciÞc valuation elasticity of .2 (.05/.25), which is positive but modest. The semi-log

hedonic equation yields even smaller elasticities. In all of the calculations that follow, we

use Model (1) of Table 2, i.e., the linear hedonic equation.

Figure 4 shows quality-adjusted real prices for the four drugs. The sharp movements

in these prices are largely due to changes in the drugs� attributes. For example, increases

in the quality-adjusted price of Tagamet during 1980�82 are due to Þndings of additional

interactions with other drugs that reduced its effective quality. The sharp drops in the price

of Tagamet in January 1985 and January 1987 are due to changes in dosing from four daily

doses to two, and then to one. Zantac�s quality-adjusted price also dropped in January 1987

the four brands, suggesting that it would be very difficult to estimate the separate effects of marketing efforts
and consumption externalities as components of the hedonic price. However, when we instead included in
the hedonic equation the residual of a simple regression of the stock of detailing minutes on the stock of
patient days (the brand-speciÞc consumption externality measure), the results were little affected.

9To explore possible strategic pricing, we also ran regressions adding as a regressor the number of Þrms
competing in the market that month, initially as a single count variable, and then as three dummy variables
for the duopoly, three-Þrm, and four-Þrm epochs. The parameter estimates on these variables were always
insigniÞcant, and often of the wrong sign.
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because its daily dosing dropped from two to one. Pepcid�s quality-adjusted price dropped

in December 1991 when it received approval for treatment of GERD.

Note that at the time of Zantac�s entry in 1983, its quality-adjusted price was close

to that of Tagamet. This can help us understand the pricing of Zantac. Ignoring quality

differentials, Zantac was priced about 61 cents above Tagamet (in 1982 dollars). One might

argue that this higher price was intended to signal higher quality. Zantac indeed had quality

advantages over Tagamet, in particular fewer interactions and less frequent dosing. However,

it also had a disadvantage insofar as Tagamet�s installed base gave Tagamet a perceived value

premium. Our hedonic equation implies that Zantac had a 72-cent advantage from its better

dosing and interaction proÞle, and a 12-cent disadvantage from the consumption externality,

implying a net price premium of only 61− 72 + 12 = 1 cent.

5 Equilibrium Share Equations

Using the hedonic equation (1) from Table 2, we construct quasi-residuals that represent

quality-adjusted prices for each brand. With these quasi-residuals, along with the depreciated

stock of detailing minutes for each brand, we estimate a multinomial logit model using the last

53 months of data for our sample. During this period, all four brands were well established

and their efficacy and side-effects were well known. Thus it is reasonable to impose the

identifying assumption that the market was in equilibrium during this period, so that any

changes in market shares were due to changes in prices and marketing efforts.10

Because price and marketing levels are likely to be endogenous, we need a set of instru-

mental variables for consistent estimation. We use four instruments: (i) the log of the wage

rate in the pharmaceutical industry, (ii) the PPI for intermediate goods, (iii) the cumulative

stocks of detailing minutes for each of the four Þrms on all their other products (calculated

the same way as MINSTKit), and (iv) quality-adjusted prices for each of the Þrms for H2-

10To test the assumption that the market was in equilibrium during this period, we examined whether the
residuals of the demand system exhibited any brand-speciÞc time trends. In a model that also included drug
and year effects, we were unable to reject the hypothesis that the brand-speciÞc time trends were individually
or jointly equal to zero.
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antagonist drugs sold to hospitals.11 Note that the Þrst two of these instruments vary only

over time, and the second two vary over time and across Þrms.

Estimation results are in Table 3. Columns (1) and (2) show the SUR and 3SLS estimates,

respectively. A Hausman speciÞcation test on the 3SLS estimates fails to reject exogeneity of

price and advertising; the test statistic is 6.486 (p = .090). Column 3, our preferred model, is

estimated by GMM, with t-statistics based on heteroscedasticity-consistent and ARMA(1,1)

serial-correlation-consistent standard errors. The J-statistic used to test the overidentifying

restrictions is 16.618; with 10 degrees of freedom (Þve instruments, including the constant,

times three equations, minus Þve parameters), the p-value is .093.

Table 3 also shows price and detailing elasticities computed at the point of means for the

1989�1993 sample period. Focusing on column (3), note that the own-price elasticities are

in the range of about �0.3 to �0.6. These elasticities are based on holding the total quantity

of H2-antagonist drugs constant when the price of a single drug changes, i.e., they only

reßect substitution within the therapeutic category, so the total own-price elasticities will

be larger in magnitude. The estimated detailing elasticities are close to unity, which might

seem large. After launch ramp-up, the advertising-to-sales ratio for these drugs was about 15

to 20 percent, so even if the own-price elasticities were �1, the advertising elasticity should

be about 0.2 if the marginal cost of detailing were constant. (Detailing accounted for about

80 percent of total pharmaceutical marketing.) It is likely, however, that the marginal cost

of detailing rises sharply as it becomes increasingly difficult for detailers to get additional

minutes of physicians� time, and is much higher than the average cost. This is consistent

with our large elasticity estimates.

As can be seen from Table 3, our elasticity estimates are robust to the choice of estimation

method. Although not shown in the table, both the price and detailing elasticities are also

robust to the monthly depreciation rate used to compute the stock of detailing minutes.

11The hospital and drugstore segments can plausibly be considered independent. Hospitals administer
these drugs intravenously to emergency room patients in order to reduce acid secretion induced by severe
trauma. On the other hand, drugstores sell oral preparations to outpatients suffering from a wide range
of ulcer-related and chronic conditions. Since both markets experience common manufacturing cost shocks,
hospital price changes are likely to be uncorrelated with unobserved determinants of drugstore demand. We
also used hospital quantity sales as an additional instrument, with no change in the results.
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Depreciation rates between 2 percent and 8 percent yield very little change in the parameter

estimates or the optimized value of the GMM objective function.

Using column (3) from Table 3, we construct Þtted values of equilibrium shares for the

four drugs. By �equilibrium shares,� we mean the shares that each of these drugs would

have had at any point in time had the market already reached equilibrium. For the months

prior to 1989, we generate out-of-sample backcasts of the equilibrium shares. For example,

let k denote the number of drugs competing in the market at a point in time. When k = 4,

we can write the Þtted shares from model (3) in Table 3 as

�s∗it(4) =
exp(δit)

1 +
P
j exp(δjt)

(10)

where δit = �ai0 + �a1(Pit − PT,t) + �a2(MINSTKit −MINSTKT,t), and the subscript T denotes
Tagamet. When k < 4, �s∗it(k), the Þtted share of drug i, is computed as

�s∗it(k) =
exp(δit)

1 +
P
j exp(δjt)

. (11)

6 Diffusion Equations

The third component of our model is a set of equations describing the diffusion of the brands

as they approach their equilibrium levels. We estimate modiÞed Gompertz equations (8)

and (9), using the hedonic quasi-residuals and equilibrium shares described above.12

These equations explain the change in sales; at issue is how large a time interval this

change should represent. In principle, we could estimate a model describing monthly changes

in sales. However, it is unclear whether the accounting of sales in the data is free of lags, and

there is high-frequency noise due to ordering and stocking decisions by drugstores, so we use

three-month changes in sales.13 Also, we estimate models in which the depreciated stock of

past sales (of the brand and the therapeutic category) are in linear and in logarithmic form.

Estimation is by NLS, combining the data for the four brands to form an unbalanced panel.

The results are shown in Table 4.

12We also estimated logistic versions of the model, with little change in the results.

13We also estimated the model using one-month and six-month changes. The results using six-month
changes are very close to those reported here, but one-month changes yield a worse Þt.
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Note that individual brand prices affect the average quality-adjusted price for the thera-

peutic category, P t, which in turn affects the industry saturation level. In addition, relative

prices affect brand saturation levels through the equilibrium shares. Finally, the long-run

own-price elasticity for the therapeutic category is given by the estimated coefficient, b1, and

ranges from �0.3 to �0.9. The total own-price elasticity for each individual brand is

EPi =
∂ log s∗i
∂ logPi

+ b1si4 = a1(1− s∗i )Pi + b1si4

Likewise, the total detailing elasticity for each individual brand is given by

EAi =
∂ log s∗i

∂ logMINSTKi
+ b3

MINSTKi
MINSKTOT

= a2(1− s∗i )MINSTKi + b3
MINSTKi
MINSKTOT

Here, si4 is the average share of drug i during the period in which all four drugs are present.

In this model, consumption externalities attributable to past sales of the therapeutic

category are captured by the coefficient d0, while those attributable to past sales of the

individual brand are captured by d1. Note that d1 is positive and signiÞcant, while d0 is

insigniÞcant. We infer from this that the effect of past consumption on the rate of product

diffusion occurs primarily at the brand level.

Table 4 also shows estimated total own-price and detailing elasticities. The price elas-

ticities are on the order of �0.5 to �0.7, and the detailing elasticities are 1 to 1.3. Given

that marginal production cost for these antiulcer drugs is very small (about 10 cents to 20

cents per daily dose), we would expect the own-price elasticities to be close to �1 if produc-

ers maximize proÞts, so our estimated price elasticities seem somewhat low. As explained

earlier, the large detailing elasticities may reßect a rising marginal cost of detailing.

7 Simulations

Simulations of the complete model are used for two purposes. First, in-sample simulations

test the model�s validity: Using historical values for the attributes, prices, advertising levels,

and population, we can solve for all of the other variables endogenously in a dynamic frame-

work, and compare the results to the actual data. Second, we use the model to simulate the

effects of alternative strategies for pricing, detailing, and quality improvement.
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Because the model is highly nonlinear, the convergence and stability of the simulations

are sensitive to initial conditions. To deal with this, we simulate the full model using the

actual values of sales for each brand for the Þrst 12 months following the entry of the brand.

Figure 5 shows the simulated and actual sales for all four brands. The simulated series

comes from a dynamic simulation in which real prices, detailing minutes, attribute levels,

and population are exogenous, and all other variables (quality-adjusted prices and average

price, equilibrium shares, the industry saturation level, and sales of each brand) are solved

for endogenously. Note that overall, the simulated values are very close to the actual values.

We also use the model to simulate three different changes in market conditions:

� We set Zantac�s nominal price in each month equal to that of Tagamet.

� We set Zantac�s detailing minutes in each month equal to that of Tagamet.

� We reduced d1, the coefficient in the brand diffusion model that determines the impact
of past sales on the rate of growth of current sales, by 50 percent (from 0.018 to 0.009).

The results of these simulations are summarized in Table 5, which shows the change in sales

for each brand (the experiment minus the base case) in May 1993, and the resulting change

in cumulative proÞts for Zantac and Tagamet.

Because Zantac had better attributes than Tagamet, setting Zantac�s nominal price equal

to Tagamet�s makes its quality-adjusted price lower than Tagamet�s. The result is that

Zantac�s sales are about 20 percent higher, because its lower quality-adjusted price results

in an increase in its equilibrium share. However, the sales of Tagamet, Pepcid, and Axid are

also higher than in the base case simulation. The reason is that even though their equilibrium

shares are lower, the average industry price is now lower, so that the industry saturation

level, X∗
t , is higher, which outweighs the equilibrium share reductions.

Next, we set Zantac�s detailing level equal to Tagamet�s. Recall that Zantac detailed

much more heavily than Tagamet, so in effect we are decreasing Zantac�s detailing. The

result is that Zantac�s sales are much lower by the end of the period, and the sales of

Tagamet, Axid, and Pepcid are all higher. This is due to the large estimates (about 1.0)
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of the advertising elasticities of demand in the equilibrium share model. Table 5 shows the

impact on Zantac�s cumulative gross proÞts, ignoring production costs (which are small), but

accounting for detailing costs, which are estimated annually from aggregate pharmaceutical

industry data.14 Observe that although Zantac�s detailing expenditures drop, its sales drop

by so much that its cumulative proÞts fall by almost $700 million.

Lastly, we evaluate the effect of past sales on the rate of brand diffusion. This effect is

captured by the coefficient d1 in the diffusion equations; note from column (1) of Table 4

that the estimated value for d1 is 0.0180. We reduce this by half, i.e., to 0.0090. The results

are shown in Figure 6. Because past sales of Tagamet now contribute less to the growth

of sales, Tagamet�s sales grow much more slowly than in the base case. The same is true,

however, for Zantac, Pepcid, and Axid. As a result, by late 1984 Tagamet�s sales are higher

than in the base case simulation. As Table 5 shows, Tagamet�s cumulative gross proÞts fall

by about $25 million, but Zantac�s cumulative gross proÞts fall by nearly $900 million. Thus

past sales play a signiÞcant role in brand diffusion and proÞtability.

8 Conclusions

In order to examine the ways in which consumption externalities inßuence the demands

for prescription drugs, we have estimated a three-stage model of quality-adjusted prices,

equilibrium market shares and saturation levels, and rates of brand diffusion. Consumption

externalities are captured by introducing the depreciated stock of past sales, for the brand

and for the therapeutic class, in both an hedonic price equation and an equation for brand

diffusion. The resulting model Þts the data well � dynamic simulations yield time paths

for brand sales that track the actual time paths very closely. Furthermore, we are able to

14We used average �Cost per Call� data, estimated each year for the entire pharmaceutical industry by
IMS (IMS, 1996, pp. 7�47 and A-20), from a survey of manufacturers who estimate the cost of keeping a
representative �in the Þeld� � salary, bonus, car, insurance, expenses, training, etc. IMS indicates that, on
average, a call involves from two to four �product details,� i.e., individual products discussed by the sales
representative. In addition to the number of detailing minutes for each drug, we have data on the number
of details per month for each drug. Aggregating these two series to the level of the H2-antagonist class and
assuming that each �call� comprises three �details,� we compute an average annual cost per detailing minute
from 1977 to 1993. In 1982 dollars, this average cost increases from $3.28 in 1977 to $8.09 in 1993.
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identify the sources of consumption externalities, and measure their magnitudes.

We Þnd that consumption externalities operate at the brand-speciÞc level. Although

statistically signiÞcant, their economic importance is mixed. In our hedonic equations, past

sales contribute to the value of a brand, but only explain a few percent of that value.

However, past sales have an economically signiÞcant effect on the rate of diffusion. Our

simulations imply that had the magnitude of the effect of past sales been 50 percent smaller,

Zantac would have earned $882 million less in gross proÞts, an amount roughly equivalent

to three months of 1992 sales.

These results have important strategic implications. Our hedonic price equations suggest

that pioneering Þrms beneÞt (in terms of consumer valuation) by being Þrst to market and

establishing a large installed base before another Þrm enters, but that this effect is modest.

On the other hand, we Þnd that rates of diffusion can be accelerated by a larger brand-

speciÞc installed base. Thus, even if the ultimate saturation level for a second entrant is

close to that of a Þrst entrant with similar attributes, the more rapid rate of diffusion can

result in much greater proÞts.

In the case of antiulcer drugs, consumption externalities were not large enough to prevent

the second entrant from overcoming the pioneering brand. Our results shed light on Zan-

tac�s success. It derived little beneÞt from the information about H2-antagonists generated

by Tagamet: free-riding from inter-brand consumption externalities is negligible. Instead,

delayed entry allowed Glaxo to introduce a product with better quality attributes. This, to-

gether with an unusually large amount of detailing, allowed Zantac to overcome the limited

Þrst-mover advantage that Tagamet obtained from its installed base of patients.15

15Anecdotal evidence suggests that these features are not unique to the antiulcer drug market. In the
anti-hypertensive market, for example, Merck introduced its ACE Inhibitor Vasotec later than Bristol Myers-
Squibb�s pioneer, Capoten. As recounted by Werth (1994), p. 58: �Merck had put scores of chemists on the
task of improving [Capoten], then followed up with a withering sales campaign so effective that it ended up
beating Squibb in the market even though Capoten was launched Þrst and was much the same drug.�
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Table 1. Summary Statistics

Mean Std Dev Minimum Maximum

A. Industry Variables (Nobs = 188)

Xt (patient-days/month, ×106) 51.75 25.57 3.773 99.05
XSt (cumul. patient-days, ×106) 1028.4 619.7 7.715 2099.3
P t (quality-adjusted avg. price) 1.562 0.215 1.155 1.914
pt (real avg. price, 1982$) 1.206 0.441 0.688 1.930
POPt (U.S. population, ×106) 237.3 10.34 219.4 256.2
MINt (detailing minutes, ×106) 0.249 0.171 0.019 0.604
MINSTKTOTt (ind. tot. stock min., ×106) 4.173 3.107 0.263 9.268

B. Tagamet (Nobs = 188)

Xit (patient-days/month, ×106) 27.52 9.087 3.773 46.42
XSit (cumul. patient-days, ×106) 615.0 259.0 7.715 872.6
Pit (quality-adjusted price) 1.562 0.232 1.155 2.004
pit (real price, 1982$) 1.056 0.328 0.688 1.700
MINit (detailing minutes, ×106) 0.094 0.036 0.019 0.199
MINSTKit (stock of minutes, ×106) 1.727 0.656 0.263 2.576
GERDit (GERD dummy) 0.133 0.340 0.000 1.000
SUMATTit (other approved indications) 1.612 0.873 0.000 3.000
INTERit (# adverse drug interactions) 7.096 3.617 0.000 10.00
DOSAGEit (daily dosing frequency) 2.516 1.416 1.000 4.000

C. Zantac (Nobs = 117)

Xit (patient-days/month, ×106) 30.42 14.20 4.190 54.27
XSit (cumul. patient-days, ×106) 537.8 337.9 11.92 1093.2
Pit (quality-adjusted price) 1.733 0.108 1.533 1.961
pit (real price, 1982$) 1.770 0.239 1.309 2.129
MINit (detailing minutes, ×106) 0.133 0.036 0.048 0.212
MINSTKit (stock of minutes, ×106) 2.289 0.667 0.704 3.049
GERDit (GERD dummy) 0.718 0.452 0.000 1.000
SUMATTit (other approved indications) 1.530 0.794 0.000 2.000
INTERit (# adverse drug interactions) 0.145 0.354 0.000 1.000
DOSAGEit (daily dosing frequency) 1.342 0.476 1.000 2.000
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Table 1. Summary Statistics (continued)

Mean Std Dev Minimum Maximum

D. Pepcid (Nobs = 77)

Xit (patient-days/month, ×106) 9.173 3.693 1.947 14.61
XSit (cumul. patient-days, ×106) 141.7 86.62 4.740 284.0
Pit (quality-adjusted price) 1.695 0.117 0.417 1.892
pit (real price, 1982$) 1.616 0.123 1.286 1.844
MINit (detailing minutes, ×106) 0.075 0.023 0.031 0.131
MINSTKit (stock of minutes, ×106) 1.211 0.389 0.295 1.645
GERDit (GERD dummy) 0.234 0.426 0.000 1.000
SUMATTit (other approved indications) 1.727 0.448 1.000 2.000
INTERit (# adverse drug interactions) 0.000 0.000 0.000 0.000
DOSAGEit (daily dosing frequency) 1.000 0.000 1.000 1.000

E. Axid (Nobs = 59)

Xit (patient-days/month, ×106) 4.926 2.344 0.704 9.207
XSit (cumul. patient-days, ×106) 65.16 41.80 4.568 146.6
Pit (quality-adjusted price) 1.778 0.090 1.630 1.964
pit (real price, 1982$) 1.680 0.169 1.456 1.943
MINit (detailing minutes, ×106) 0.114 0.024 0.069 0.217
MINSTKit (stock of minutes, ×106) 1.647 0.517 0.427 2.277
GERDit (GERD dummy) 0.390 0.492 0.000 1.000
SUMATTit (other approved indications) 1.000 0.000 1.000 1.000
INTERit (# adverse drug interactions) 1.000 0.000 1.000 1.000
DOSAGEit (daily dosing frequency) 1.000 0.000 1.000 1.000

F. Balanced Panel, 1989�1993 (Nobs = 53)

Sit � Tagamet 0.293 0.059 0.212 0.407
Sit � Zantac 0.519 0.018 0.478 0.550
Sit � Pepcid 0.130 0.023 0.079 0.169
Sit � Axid 0.058 0.023 0.011 0.094
Pit � Tagamet 1.854 0.093 1.709 2.004
Pit � Zantac 1.808 0.086 1.673 1.961
Pit � Pepcid 1.738 0.106 1.542 1.892
Pit � Axid 1.790 0.088 1.630 1.964
MINSTKit � Tagamet 2.343 0.221 1.713 2.538
MINSTKit � Zantac 2.895 0.099 2.535 3.049
MINSTKit � Pepcid 1.450 0.154 1.030 1.645
MINSTKit � Axid 1.758 0.415 0.914 2.277
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Table 2. Hedonic Price Equation

A. Dependent Variable = Pjt B. Dependent Variable = logPjt

(1) (2) (3) (4) (5) (6)

Const. 1.3535 1.4152 1.3919 0.5113 0.5467 0.5387
(18.82) (18.44) (17.64) (7.47) (7.45) (7.21)

GERDit 0.1816 0.2320 0.1820 0.1245 0.1418 0.1247
(10.72) (13.48) (10.71) (10.50) (13.40) (10.48)

SUMATTit �0.0159 0.0163 �0.0156 �0.0061 0.0050 �0.0059
(�0.98) (1.11) (�0.97) (�0.49) (0.46) (�0.48)

INTERit �0.0452 �0.0375 �0.0452 �0.0286 �0.0259 �0.0285
(�16.62) (�14.37) (�16.59) (�14.33) (�14.56) (�14.29)

DOSAGEit �0.1158 �0.1194 �0.1157 �0.1555 �0.1566 �0.1554
(�6.83) (�7.41) (�6.83) (�9.63) (�9.91) (�9.64)

XSit(−1) .1758×10−3 .1753×10−3 .6030×10−4 .5998×10−4
(5.49) (5.48) (2.72) (2.71)

XSt(−1) .4804×10−3 .4265×10−3 .0239×10−3 .3054×10−3
(1.79) (1.50) (1.45) (1.34)

R2 .966 .960 .967 .970 .969 .970

Zantac Price $0.01 $0.35 $0.30 $0.04 $0.27 $0.25
Premium

Note: All regressions include annual and quarterly time dummies; NOB = 441; t-statistics (from
heteroscedasticity-consistent and ARMA(2,2) serial-correlation consistent standard errors) in paren-
theses. Zantac price premium is the estimated quality-adjusted price of Zantac minus that of Tagamet
at the time of Zantac�s entry in July 1983, based on attribute differences with Tagamet. (The actual
deßated price difference was $0.615.)
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Table 3. Estimates of Equilibrium Logit Market Shares, 1989-1993

(Omitted Share is Tagamet, NOBS = 53)

(1) (2) (3)
SUR 3SLS GMM

Intercept�Zantac 0.1983 0.1937 0.2055
(10.47) (10.14) (14.89)

Intercept�Pepcid �0.0817 �0.0788 �0.0957
(�3.33) (�3.16) (�4.31)

Intercept�Axid �1.1067 �1.1045 �1.1047
(�73.38) (�71.23) (�87.50)

a1 �0.2889 �0.3129 �0.3442
(�4.76) (�4.90) (�5.91)

a2 0.7634 0.7697 0.7414
(32.08) (31.53) (43.12)

R2 .78/.81/.96 .78/.81/.96 .77/.81/.96

²P Tagamet �0.385 �0.417 �0.459
(�4.757) (�4.897) (�5.908)

Zantac �0.250 �0.271 �0.298
(�4.757) (�4.897) (�5.908)

Pepcid �0.435 �0.471 �0.518
(�4.757) (�4.897) (�5.908)

Axid �0.485 �0.525 �0.577
(�4.757) (�4.897) (�5.908)

²MIN Tagamet 1.286 1.297 1.249
(32.078) (31.534) (43.119)

Zantac 1.057 1.066 1.027
(32.078) (31.534) (43.119)

Pepcid 0.958 0.966 0.930
(32.078) (31.534) (43.119)

Axid 1.258 1.268 1.222
(32.078) (31.534) (43.119)

Note: For models (1) and (2), t-statistics (from heteroscedasticity-consistent standard errors)
are in parentheses. For model (2), the Hausman test statistic for exogeneity of price and
advertising is 6.486 (p = .090). For model (3), the t-statistics are from heteroscedasticity-
consistent and ARMA(1,1) serial-correlation-consistent standard errors; the J-statistic for
the test of overidentifying restrictions is 16.618, df = 10, p = .083. The price and advertising
elasticities are computed at the point of means for the 1989�1993 sample period.
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Table 4. Brand Diffusion Equations
NOBS = 429

(1) (2) (1) (2)

Past Sales XSt−3 log[XSt−3]

CTagamet 0.5307 �2.6602 Elasticity Estimates
(1.25) (�1.76)

CZantac 2.6309 �3.1004 ²P (Tagamet) �0.7569 �0.8202
(1.46) (�1.11) (�3.73) (�2.76)

CPepcid 4.2109 �2.0477 ²P (Zantac) �0.8266 �0.9388
(1.46) (�0.68) (�2.46) (�1.84)

CAxid 5.1534 �3.9436 ²P (Pepcid) �0.6490 �0.6770
(1.50) (�1.35) (�5.38) (�4.39)

d0 �0.0024 0.0612 ²P (Axid) �0.6357 �0.6483
(�1.04) (0.13) (�6.08) (�5.73)

d1 0.0180 1.3585
(4.04) (4.57)

b0 �26.887 �49.474 ²MIN (Tagamet) 1.3104 1.2794
(�2.41) (�3.05) (36.74) (28.45)

b1 �1.0205 �1.2366 ²MIN (Zantac) 1.1021 1.0639
(�1.59) (�1.26) (31.48) (21.87)

b2 5.7040 9.8617 ²MIN (Pepcid) 0.9677 0.9487
(2.73) (3.25) (38.60) (31.42)

b3 0.2182 0.1069 ²MIN (Axid) 1.2672 1.2442
(2.92) (0.87) (39.29) (32.65)

R2 .293 .200

Note: In each model, the consumption externality is CEt = XSt or log[XSt], and CEit = XSit
or log[XSit]. We estimate the following model by nonlinear least squares, using data for the
four brands, combined to form an unbalanced panel:

Xit −Xit−3 = [log(�s∗itX∗
t )− logXit−3] ·

"
Ci +

12X
k=2

θkmkt + d0CEt−3 + d1CEit−3

#

where logX∗
t = b0 + b1 logP t + b2 log POPt + b3 logMINSTKTOTt. The �s

∗
it�s are the Þtted

equilibrium market shares from model (3) of Table 4, adjusted to account for the number
of competing brands in each of the 4 epochs. The mkt�s are a set of monthly time dum-
mies whose coefficients θk are not reported. Numbers in parentheses are t-statistics from
heteroscedasticity-consistent standard errors.
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Table 5. Simulation Experiments

May 1993

Experiment ∆XT ∆XZ ∆XP ∆XA ∆ΣΠT ∆ΣΠZ

(1)
Zantac Price at 1.5733 10.784 0.7073 0.1710 268.21 �669.6
Tagamet Level 6.87% 22.3% 5.05% 2.79% 5.07% �11.0%

(2)
Zantac Advertising 5.8974 �13.548 2.9091 1.0013 306.54 �662.2
at Tagamet Level 26.0% �27.88% 22.34% 16.25% 5.79% �10.7%

(3)
Coefficient d1 3.5294 �3.5837 �1.6551 �3.1595 �106.12 �882.3
Reduced by 50% 15.7% �7.39% �12.8% �52.9% �2.02% �14.4%

Note: ∆XZ is the difference (absolute and percentage change) in Zantac sales between
the experiment and the base case, in May 1993. Similarly, ∆XT , ∆XP , and ∆XA are
the differences in Tagamet, Pepcid, and Axid sales in May 1993. ∆ΣΠZ is the aggregate
change in gross proÞt for Zantac under the simulation experiment compared to the base case
simulation, and ∆ΣΠT is the aggregate change in gross proÞt for Tagamet. In Experiment
(2), we use an average cost per minute of detailing, which varies from $3.76 in 1983 to $8.09
in 1993, to calculate the savings in reduced advertising expenditures for Zantac.
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Figure 1: Monthly Sales for H2-Antagonist Drugs 
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Figure 2: Real Prices of H2-Antagonist Drugs 
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Figure 3: Detailing Stocks for H2-Antagonist Drugs (�=5%) 
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Figure 4: Quality-Adjusted Real Prices of H2-Antagonist Drugs 
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Figure 5: Full Simulation of Brand Sales versus Actual 
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Note: Uses Brand Model (1) of Table 5B, Equilibrium Shares from Model (3) in Table 3, and Hedonic Prices from Model (1), Table 2.
 

 
 
 
 

Figure 6: Coefficient d1 Set Equal to 50 Percent of Estimated Value 
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