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1.  Introduction  
This paper examines the behavior of natural gas and crude oil price volatility in the U.S. 

since 1990.  Prices of crude oil and especially natural gas rose sharply (but temporarily) during 

late 2000, and natural gas trading was buffeted by the collapse of Enron in late 2001, suggesting 

to some that volatility in these markets has increased.  Whether or not this is true, volatility has 

been high, and (like prices themselves) fluctuates dramatically.   

Understanding volatility in natural gas and crude oil markets is important for several 

reasons.  Persistent changes in volatility can affect the risk exposure of producers and industrial 

consumers of natural gas and oil, and alter the incentives to invest in natural gas and oil 

inventories and facilities for production and transportation.  Likewise, volatility is a key 

determinant of the value of commodity-based contingent claims, whether financial or “real.”  

Thus the behavior of volatility is important for derivative valuation, hedging decisions, and 

decisions to invest in physical capital tied to the production or consumption of natural gas or oil.    

In addition, volatility plays a role in the short-run market dynamics for natural gas and oil.   

As discussed in my recent paper (2004), volatility can affect the demand for storage, and can also 

affect the total marginal cost of production by affecting the value of firms’ operating options and 

thus the opportunity cost of current production.  In particular, greater volatility should lead to an 

increased demand for storage, and an increase in both spot prices and marginal convenience 

yield.1  Thus, changes in volatility can help explain changes in these other variables.  

With this in mind, I address the following questions:  First, has natural gas and/or crude oil 

price volatility changed significantly since 1990, and in particular, are there measurable trends in 

volatility?  Related to this, have the events surrounding the collapse of Enron affected volatility, 

i.e., was there a significant short-term increase in volatility around the time of the collapse?  

Second, are natural gas and crude oil volatilities interrelated, i.e., can changes in one help predict 

changes in the other?  Third, although volatility clearly fluctuates over time, how persistent are 

the changes?  If changes are very persistent, then they will lead to changes in the prices of 

options and other derivatives (real or financial) that are tied to the prices of these commodities.  

                                                 
1 Using weekly data for the petroleum complex, I show in Pindyck (2004) that the theoretical relationships between 
volatility and other variables are well supported for heating oil, but less so for crude and gasoline.  The role of 
volatility in the opportunity cost of production is also spelled out and tested by Litzenberger and Rabinowitz (1995).   
For an introduction to the interrelationships among price, inventories, and convenience yields, see Pindyck (2001). 
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But if changes in volatility are highly transitory, they should have little or no impact on market 

variables or on real and financial option values.  Finally, extending the analysis in Pindyck 

(2004), I revisit the question off whether changes in volatility are predictable.  

To address these questions, I use daily futures price data for natural gas and crude oil to infer 

daily spot prices and daily values of the net marginal convenience yield.  From the log price 

changes (adjusted for non-trading days) and marginal convenience yield, I calculate daily and 

weekly returns from holding each commodity.  I then estimate volatility three different ways.  

First, using a five-week overlapping window, I estimate weekly series for price volatility by 

calculating sample standard deviations of (adjusted) daily log price changes.  As Campbell et. al. 

(2001) point out in their study of stock price volatility, in addition to its simplicity, this approach 

has the advantage that it does not require a parametric model describing the evolution of 

volatility over time.  Second, I estimate series for conditional volatility by estimating GARCH 

models of the weekly returns on the commodities, and I compare the volatility estimates from 

these models to the sample standard deviations.  Third, I estimate a daily series for conditional 

volatility by estimating GARCH models of the daily returns on the commodities.2 

I study the behavior of volatility in two different ways.  First, using the estimated weekly 

sample standard deviations, I test for the presence of time trends, I test whether volatility was 

significantly greater during the period of the Enron collapse, and I examine whether gas (oil) 

volatility is a significant predictor of oil (gas) volatility.  I also use these series to estimate the 

persistence of changes in volatility.  Second, I address these same questions using weekly and 

daily GARCH models of commodity returns.  For example, I test whether a time trend or a 

dummy variable for the Enron period is a significant explanator of volatility (and/or returns) in 

the GARCH framework.  Likewise, the estimated coefficients from the variance equation of each 

GARCH model provide a direct estimate of the persistence of volatility shocks. 

I focus on the volatility of prices, but there are other measures of volatility.  Putting aside 

issues of data availability, one could instead examine the volatility of consumption, production, 

or inventories.  That would indeed be useful if the objective was to explain the determinants of 

inventory demand, e.g., the role of production and/or consumption smoothing, and production-

                                                 
2 Schwartz (1997) and Schwartz and Smith (2000) use futures and spot prices to estimate a mean-reverting price 
process and value commodity-based options, an approach that also yields implicit time-varying estimates of 
volatility.  Haigh and Holt (2002) estimate GARCH models to study volatility spillovers across the components of 
the petroleum complex (crude oil, heating oil, and gasoline). 
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cost smoothing.3  My concern, however, is with the overall market, and the spot price is the best 

single statistic for market conditions.  Spot price volatility reflects the volatility of current as well 

as expected future values of production, consumption, and inventory demand.4 

My results can be summarized as follows: (1) There is a statistically significant positive 

trend in volatility for natural gas (but not for crude oil).  However, this trend is of little economic 

importance; over a ten year period, it amounts to about a 3-percent increase in volatility.  (2) 

There is no statistically significant increase in volatility during the period of the Enron collapse.  

(3) The evidence is mixed as to the interrelationship between crude oil and natural gas returns 

and volatilities.  Using daily data, crude oil returns are a significant predictor of natural gas 

returns (but not the other way around), and crude oil volatility is a significant predictor of natural 

gas volatility.  Using weekly data, however, these results are less clear-cut.  (4) Shocks to 

volatility are generally short-lived for both natural gas and crude oil.  Volatility shocks decay 

(i.e., there is reversion to the mean) with a half-life of about 5 to 10 weeks.  

In the next section I discuss the data and the calculation of returns and weekly sample 

standard deviations.   All of the empirical work is presented in Section 3.  Section 4 concludes. 

2.  The Data 
I begin with natural gas and crude oil futures price data covering the period May 2, 1990 

through February 26, 2003.  (The start date was constrained by the beginning of active trading in 

natural gas futures.)  To obtain a weekly series for volatility, I use the sample standard deviations 

of adjusted daily log price changes in spot and futures prices.  As discussed below, I also obtain 

estimates of conditional volatility from GARCH models of weekly and daily returns.  

2.1. Spot Prices and Weekly Volatility 

For each commodity, I compiled daily futures settlement price data for the nearest contract 

(often the spot contract), the second-nearest, and the third-nearest.  These prices are denoted by 

F1, F2, and F3.  The spot price can be measured in three alternative ways.  First, one can use 

cash prices, purportedly reflecting actual transactions.  But daily cash price data are usually not 

                                                 
3 Pindyck (1994) addresses these issues; also see Eckstein and Eichenbaum’s (1985) study of crude oil inventories. 
4 Furthermore, one cannot actually put aside issues of data availability.  Although weekly data are available for U.S. 
production, consumption, and inventories of natural gas and crude oil, daily data are not. 
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available, and a cash price can include discounts and premiums that result from relationships 

between buyers and sellers, and need not reflect precisely the same product (including delivery 

location) specified in the futures contract.  A second approach is to use the price of the spot 

futures contract, i.e., the contract that expires in month t.  But the spot contract often expires 

before the end of the month, and active spot contracts do not always exist for each month. 

The third approach, which I use, is to infer a spot price from the nearest and the next-to-

nearest active futures contracts.  This is done for each day by extrapolating the spread between 

these contracts backwards to the spot month as follows:   

 0 1/1 ( 1 / 2 ) tn n
t t t tP F F F=  (1) 

where Pt is the spot price on day t, 1tF , and 2tF  are the prices on the nearest and next-to-nearest 

futures contracts, and 0tn  and n1 are the number of days from t to the expiration of the first 

contract, and the number of days between the expiration dates for the first and second contracts.   

Given these daily estimates of spot prices, I compute weekly estimates of volatility.  To do 

this, one must take into account weekends and other non-trading days.  If the spot price followed 

a geometric Brownian motion, this could be done simply by dividing the log price changes by 

the square root of the number of intervening days (e.g., three days in the case of a weekend), and 

then calculating the sample variance.  However, as is well known, on average the standard 

deviation of n-day log price changes is significantly less than n  times the standard deviation of 

one-day log price changes, when n includes non-trading days.5  To deal with this, I sort the daily 

price data by intervals, according to the number of days since the last trading day.  For example, 

if there were no holidays in a particular period, prices for Tuesday, Wednesday, Thursday, and 

Friday would all be classified as having an interval of one day, and Monday would be assigned 

an interval of three days because of the weekend.  Because of holidays, some prices are assigned 

to intervals of two, four, or even five days (if a weekend was followed by a two-day holiday).  

For each interval set, I calculate the sample standard deviation of log price changes for the 

entire sample for each commodity.  Letting ˆns  denote this sample standard deviation for log 

price changes over an interval of n days, I compute the “effective” daily log price change: 

                                                 
5 If tP  follows a geometric Brownian notion, logt tp P=  follows an arithmetic Brownian notion, so that 

1var ( ) var( )t n t t tp p n p p+ +− = − . 
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For each week, I then compute a sample variance and corresponding sample standard deviation  

using these “effective” daily log price changes for that week and the preceding four weeks: 
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where N is the number of “effective” days in the five-week interval.  Eqn. (3) gives the sample 

standard deviation of daily percentage price changes; to put it in weekly terms, I multiply by 

30 / 4  = 7.5 .  The resulting weekly series is a measure of volatility, σt . 

2.2. Daily and Weekly Returns 

An important advantage of using the weekly estimates of volatility discussed above (besides 

its simplicity) is that it does not require a parametric model of the evolution of volatility over 

time.  However, there are also disadvantages.  The first is that the use of overlapping intervals 

introduces serial correlation as an artifact, which makes it more difficult to discern the time-

series properties of volatility.  A second disadvantage is that even the use of a five-week interval 

yields imprecise estimates of the standard deviation.  Hence, I also estimate volatility from 

GARCH models of commodity returns.  These models can include parameters that test for time 

variation (such as trends or an “Enron effect”), and have the additional advantage that the time-

series properties of volatility (the ARCH and GARCH components, which determine the 

persistence of volatility shocks) are estimated along with the volatility itself. 

Marginal Convenience Yield.  One part of the total return on the commodity is the net 

marginal convenience yield, tψ , i.e., the value of the flow of production- and delivery-

facilitating services from the marginal unit of inventory, net of storage costs.  Net marginal 

convenience yield can be measured from spot and futures prices as follows: 

     1(1 )t t t tr P Fψ = + − ,     (4) 

where F1t is the futures price at time t for a contract maturing at time t + 1, and tr  is the one-

period riskless interest rate.  I calculate values of tψ  for every trading day using the futures price 

corresponding as closely as possible to a 1-month interval from the spot price.  (When there are 

few or no trades of the nearest futures contract, as sometimes occurs with natural gas, the next-
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to-nearest contract is used instead.)  Also, I use the yield on 3-month Treasury bills, adjusted for 

the number of days between Pt and F1t, for the interest rate rt.   

In what follows, I use both daily and weekly series for the marginal convenience yield, so I 

convert tψ  into daily terms, i.e., dollars per unit of commodity per day.  For days followed by 

another trading day (e.g., a Monday), I simply divide the values of tψ calculated above by the 

number of days between Pt and F1t.  For days followed by n non-trading days, I multiply these 

values by n+1.  (Thus for a Friday, which is typically followed by n = 2 non-trading days, the 

convenience yield is the flow of value from holding a marginal unit of inventory over the next 3 

days.)   This daily series is used to compute daily returns from holding the commodity.   

To obtain a weekly series, I use the calculated values of tψ  for the Wednesday of each week, 

and multiply those values by 7 so that the convenience yield is measured in dollars per unit of 

commodity per week.  (If Wednesday is a holiday, I use Thursday’s price.)  I then use this 

weekly series to calculate weekly returns from holding the commodity. 

Calculating Returns.  The total return from holding a unit of a commodity over one period 

is the capital gain or loss over that period, plus the “dividend,” which is the net marginal 

convenience yield, i.e., the flow of benefits to producers or consumers from holding the marginal 

unit of inventory, net of storage costs.  I calculate a series of daily (weekly) returns by summing 

the “effective” daily log price changes over each day (week) and adding to this the estimate of 

daily (weekly) convenience yield.  The weekly return, for example, is calculated as: 

 
1

T

t tR τ
τ

δ ψ
=

= +∑  (5) 

where τδ is given by eqn. (2), and T is the number of days in the week.  A series for the daily 

return is calculated by using the effective daily log price change for each effective trading day 

and adding the daily flow of marginal convenience yield.  (Because I use effective trading days, 

the daily series will have about 20 data points per month.) 

3.  The Behavior of Volatility and Prices  
To examine the behavior of natural gas and crude oil price volatility, I first use the weekly 

time series of sample standard deviations of adjusted log price changes.  These time series show 

little evidence of either a trend in volatility or a significant increase in volatility during the period 
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of the Enron collapse.  In addition, changes in volatility appear to be highly transitory, with a 

half-life of several weeks.  As an alternative way of measuring volatility, I estimate GARCH 

models of the weekly returns to holding the commodity, which yields estimates of the weekly 

conditional standard deviations.  I test for changes in volatility over time by introducing a time 

trend and an Enron dummy variable in the variance equations of the GARCH models, and obtain 

results that are similar to those obtained from the weekly sample standard deviations.  Finally, I 

use the daily adjusted return series to estimate daily GARCH models.  These provide estimates 

of conditional standard deviations on a daily basis, and are also used to test for time trends and 

an Enron effect, and to estimate the persistence of changes in volatility. 

3.1.  Weekly Sample Standard Deviations 

Figures 1 and 2 show the weekly series for the spot price and volatility, where volatility is 

measured as the sample standard deviations of adjusted log price changes.  Note that for both 

commodities, volatility is high, and is itself volatile.  The mean values of volatility are 12.8 

percent per week for natural gas and 5.9 percent per week for crude oil; the corresponding 

standard deviations are 7.0 percent for natural gas and 3.2 percent for crude oil.  Natural gas and 

crude oil volatilities are correlated, but only weakly; the coefficient of correlation for the two 

series is 0.169.  As expected, both volatility series have high degrees of skewness and kurtosis; 

the skewness coefficient and degree of kurtosis are 1.60 and 6.99 respectively for natural gas, 

and 1.76 and 7.77 for crude oil. For the log of volatility, these coefficients are –0.46 and 3.99 for 

natural gas, and 0.23 and 2.84 for crude oil, which are roughly consistent with a normal 

distribution.  However, a Jarque-Bera test rejects normality at the 1-percent level in both cases. 

As Figures 1 and 2 illustrate, periods of unusually high volatility tend to accompany sharp 

increases in the spot price.  In the case of crude oil, for example, volatility was high in late 1990 

and early 1991 following the Iraqi invasion of Kuwait, as spot prices reached $40 per barrel.  

However, there were also periods of high volatility that accompanied unusually low spot prices, 

e.g., during 1998 for both commodities.  Overall, volatility and price are moderately correlated; 

the correlation (in levels) is .27 for natural gas and .37 for crude oil.   

Was there a significant increase in volatility during the period of the Enron collapse?  The 

Enron bankruptcy sharply reduced spot and forward trading in natural gas and electricity, and 

also led to speculation over net long and short positions in natural gas.  This probably caused 
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increased uncertainty over natural gas prices, which could have spilled over into crude oil.  

Pinpointing the beginning of the Enron collapse is difficult, but clearly by September 2001 

analysts began questioning Enron’s valuation.  (On September 26, 2001, Kenneth Lay made his 

famous announcement to employees that the stock is “an incredible bargain.”)  On October 16, 

2001, Enron reported a $638 million third-quarter loss and disclosed a $1.2 billion reduction in 

shareholder equity.  Further financial statement revisions were announced during October and 

November, and Enron filed for Chapter 11 bankruptcy protection on December 2. 

I defined the period of the Enron collapse as August 29 to December 5, 2001, and created a 

dummy variable equal to 1 during this period and 0 otherwise.  Figure 3 shows natural gas and 

crude oil price volatility from the middle of 2000 through the middle of 2002, with the Enron 

period shaded.  Natural gas volatility reached a peak during this period of 38 percent per week, 

and crude oil volatility was also above average.  I examine the significance of these increases in 

volatility in the context of forecasting regressions.   

Using data for crude oil, heating oil and gasoline, I have shown elsewhere (Pindyck (2004)), 

that price volatility cannot be forecasted using market variables for that commodity (such as 

production, inventories, or convenience yields), or using macroeconomic variables (such as 

interest rates).  As mentioned above, there is a contemporaneous positive correlation between 

volatility and the price level itself (and thus between volatility and the contemporaneous 

convenience yield), but little or no correlation with lagged prices or other market variables.  As 

discussed below, the only variables that do have forecasting power for volatility are its own 

lagged values (i.e., volatility can be modeled as an ARMA process), and possibly lagged values 

of volatility for another commodity (e.g., crude oil in the case of natural gas).6 

Table 1 shows simple forecasting regressions for volatility.  In columns (1) and (4), the 

explanatory variables are 6 lags of volatility and the Enron dummy variable.  For natural gas, the 

Enron dummy is marginally significant, and for crude oil it is insignificant.  But even for natural 

gas it has little economic significance, temporarily adding about 1.5 percent to an average 

volatility of about 20 percent.  In columns (2) and (5), a time trend is added; in both cases it is 

insignificant, and has almost no effect on the other estimated coefficients.  Finally, columns (3) 

and (6) test whether lagged values of crude oil volatility help explain natural gas volatility, and 

                                                 
6 Herbert (1995) shows that natural gas futures price volatility can be partly explained by the volume of trading in 
the futures contract. 
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vice versa.  For natural gas, the answer is ambiguous: an F-test on the joint significance of the 

lagged crude oil volatility terms in column (3) has a value of 1.84, which is significant at the 10-

percent level.  Lagged values of natural gas volatility, however, are not significant explanators of 

crude oil volatility: the corresponding F-statistic for column (6) is 1.39.7   

The bottom of Table 1 shows the sum of the autoregressive coefficients along with the 

implied half-life for volatility shocks.  The half-life is about five to six weeks for natural gas, and 

eleven to twelve weeks for crude oil.  Thus, although volatility itself fluctuates considerably, 

shocks to volatility appear to be quite transitory, particularly for natural gas.   

The volatility series shown in Figures 1 to 3 and used in the regressions in Table 1 suffer 

from two main problems.  First, the sample standard deviations are estimated from daily log 

price changes for overlapping five-week intervals, so that the series are serially correlated by 

construction.  Second, even with five-week intervals, each sample standard deviation is based on 

at most twenty-five observations.  One way to get around these problems is to estimate GARCH 

models of the commodity returns themselves.  

3.2.  GARCH Models of Weekly Returns  

I estimate models of the following form.  The weekly return to holding the commodity is: 

 
11

0 1 2 3 4
1

RET TBILL ENRON TIME DUM ,t t t t t j jt t
j

a a a a a bσ ε
=

= + + + + + +∑  (6) 

where DUM jt  are monthly dummy variables.  In this equation, the Treasury bill rate should 

affect the return because it is a large component of the carrying cost of holding the commodity.  

Likewise, we would expect the return to increase with its own riskiness, so ,tσ  the standard 

deviation of the error term ,tε  is included in the equation.  Finally, I also include the Enron 

dummy variable and a time trend to test for any systematic time variation in returns.  

The second equation explains the variance of tε  as a GARCH (p,q) process: 

 2 2 2
1 2

1 1
ENRON TIME

p q

t j t j j t j t t
j j

σ α α ε β σ γ γ− −
= =

= + + + +∑ ∑  (7) 

 
                                                 
7 Note that when lagged values of volatility for the second commodity are added to the regression, the Enron dummy 
becomes insignificant.  This may simply reflect the fact that volatility for both commodities was unusually high 
during the Enron period.   
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The Enron dummy and a time trend are included to test for time variation in volatility. 

Table 2 shows maximum likelihood estimates of this model.  Because the return includes the 

current and previous week’s price, the model is estimated with and without a first-order moving 

average error term in eqn. (6).  In all cases the number of lags in eqn. (7) is chosen to minimize 

the Akaike information criteria.   

The results for crude oil (columns 3 and 4 of Table 2) are consistent with the basic theory of 

commodity returns and storage.  Returns have a strong positive dependence on the interest rate 

and on volatility (i.e., the standard deviation of tε ).  For natural gas, however, both the interest 

rate and volatility are statistically insignificant in the returns equation.  For both commodities, 

the time trend is insignificant in the returns equation, but is positive and significant in the 

variance equation, and the Enron dummy is positive but statistically insignificant in the variance 

equation.   Thus, I find a statistically significant positive trend in volatility for both gas and oil, 

but no separate impact of the Enron events.  However, this trend is not economically significant.  

For natural gas, the time trend coefficient is about 77 10−× , which implies a 10-year increase in 

the average variance of .00035.  The mean value of volatility (standard deviation of returns) is 

about .13 for natural gas, so the mean variance is about .017, so the trend represents a roughly 2-

percent increase in the variance over a decade. 

Table 2 also shows estimates of the half-life of volatility shocks.  This is determined by the 

sum of the ARCH and GARCH coefficients in the variance equation, i.e.,  

 Half-life log(.5) / log( ).j jα β= +∑ ∑  (8) 

The half-life of volatility shocks is about seven to ten weeks for natural gas, and seven to eight 

weeks for crude oil.  These numbers differ slightly from the estimates in Table 1, but overall, 

shocks to volatility again appear transitory for both commodities.   

We can compare the volatility estimates from these GARCH models (i.e., the conditional 

standard deviation of tε ) with the sample standard deviations.  Using the GARCH models that 

include the moving average term, i.e., columns 2 and 4 of Table 2, the simple correlation of the 

two volatility series is .593 for natural gas and .665 for crude oil.  Figure 4 shows the two 

volatility series for natural gas.  The two series generally track each other, but the GARCH 

volatility is lower on average (a mean of 8.7 percent vs. 12.8 percent for the sample standard 

deviation) and has a higher degree of kurtosis.  
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3.3.  GARCH Models of Daily Returns 

An advantage of estimating GARCH models of weekly returns is that the resulting estimates 

of the conditional standard deviations can be compared to the weekly sample standard 

deviations.  However, these weekly models do not make use of all of the available daily data.  

Thus I also estimate GARCH models of daily returns.   These models also take the form of eqns. 

(6) and (7), except that I do not include monthly dummy variables in the returns equation.  The 

number of lags is again chosen to minimize the Akaike information criterion.   

As with the weekly GARCH models, the results for crude oil, but not natural gas, are 

consistent with the theory of commodity returns and storage.  (See Table 3.)  Crude oil returns 

have a strong positive dependence on the interest rate and on volatility, but both variables are 

insignificant in the equation for natural gas returns.  And as with the weekly models, there is no 

statistically significant impact of the Enron events on volatility for either commodity.  The time 

trend for volatility is now only marginally significant for natural gas and insignificant for crude 

oil, but even for natural gas it is only of marginal economic importance.  (Using an average 

estimate of 85.35 10−×  for the trend coefficient, the 10-year trend increase in the variance of 

daily returns would be .00020, which is about 9 percent of the mean daily variance of .00228.) 

The estimates of the half-life of volatility shocks vary across the different specifications, but 

overall are close to those in Tables 1 and 2.  The half-life is about 6 to 9 weeks for natural gas, 

and 3 to 11 weeks for crude oil.  Once again, shocks to volatility appear to be largely transitory.   

3.4.  Returns and Volatilities Across Markets 

I turn next to the interrelationship between crude oil and natural gas returns and volatilities.  

The results in Table 1, based on the 5-week sample standard deviations, provide some evidence 

that crude oil volatility has predictive power with respect to natural gas volatility (but not the 

other way around).  To explore this further, I run Granger causality tests between gas and oil 

using the sample standard deviations, and the weekly and daily volatilities from the GARCH 

models.  I also run these tests on weekly and daily gas and oil returns.  These tests are simply F-

tests of the exclusion restrictions 1 2 ... 0Lb b b= = = =  in the regression equation 
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= =

= + +∑ ∑ .  A failure to reject these exclusion restrictions is a failure to reject 

the hypothesis that xt Granger-causes yt.  When running these tests, I use 2, 4, and 6 lags for the 

weekly regressions, and 4, 6, 10, 14, 18, and 22 lags for the daily regressions. 

The results are shown in Table 4.  The first two panels show tests for the weekly and daily 

returns.  The weekly returns show no evidence of causation in either direction, but for the daily 

returns, I can reject the hypothesis that there is no causality from oil to gas.  Given that oil prices 

are determined on a world market, if there is causality in either direction we would expect it to 

run from oil to gas, and not the other way around. 

The next three panels show test results for volatility.  The tests based on the weekly sample 

standard deviations and the daily GARCH models show evidence of causality from oil to gas, 

and not from gas to oil, as expected.  However, the results using the volatility estimates from the 

weekly GARCH models show just the opposite.  But note that the simple correlations of the oil 

and gas volatilities are much higher for the weekly sample standard deviations and the daily 

GARCH estimates (.170 and .146, respectively) than for the weekly GARCH estimates (.092), so 

I discount these latter results.  Overall, these tests (along with the regressions in Table 1) provide 

some evidence that crude oil volatility is a predictor of natural gas volatility.  

4.   Summary and Conclusions 
My results can be summarized as follows.  First, there is a statistically significant positive 

time trend in volatility for natural gas, and to a lesser extent for oil.  The trends, however, are 

small, and not of great economic importance.  Given the limited length of my sample, there are 

certainly no conclusions that can be drawn about long-term trends.  As for the demise of Enron, 

it does not appear to have contributed to any significant increase in volatility. 

Second, there is some evidence that crude oil volatility and returns has predictive power for 

natural gas volatility and returns, but not the other way around.  But this predictive power is 

quite limited; for practical purposes, volatility can be modeled as a pure ARMA process. 

Third, although volatility fluctuates considerably, shocks to volatility are short-lived, with a 

half-life on the order of 5 to 10 weeks.  This means that fluctuations in volatility could certainly 

affect the values of financial gas- or oil-based derivatives (such as options on futures contracts), 

because such derivatives typically have a duration of only several months.  But fluctuations in 
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volatility should not have any significant impact on the values of most real options (e.g., options 

to invest in gas- or oil-related capital), or the related investment decisions.  Of course these 

fluctuations might lead one to think that financial or real options should be valued using a model 

that accounts for stochastic volatility.  However, the numerical analyses of Hull and White 

(1987), among others, suggests that treating volatility as non-stochastic will make little 

quantitative difference for such valuations. 

Sharp (but temporary) increases in the prices of crude oil and natural gas, along with the 

collapse of Enron, have created a perception that volatility has increased significantly, increasing 

the risk exposure of energy producers and consumers.  This does not seem to be the case.  The 

increases in volatility that I measure are too small to have economic significance, and 

fluctuations in volatility are generally short-lived.  
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(1) (2) (3) (4) (5) (6)
Dep. Var. NG NG NG CRUDE CRUDE CRUDE
Const. 0.0149 0.014 0.015 0.0032 0.0027 0.0018

(5.71) (4.62) (4.38) (3.40) (2.40) (1.40)

NGSIG (-1) 1.0550 1.0540 1.0445 -0.0245
(28.12) (28.06) (27.69) (-1.67)

NGSIG (-2) -0.0906 -0.0904 -0.0799 0.0281
(-1.74) (-1.73) (-1.53) (1.38)

NGSIG (-3) -0.0606 -0.0607 -0.0574 0.0141
(-1.17) (-1.17) (-1.11) (0.70)

NGSIG (-4) 0.1969 0.1968 0.1906 -0.004
(3.81) (3.81) (3.68) (-0.20)

NGSIG (-5) -0.5118 -0.5115 -0.5119 0.0065
(-9.82) (-9.81) (-9.81) (0.32)

NGSIG (-6) 0.2930 0.2916 0.2924 -0.0118
(7.84) (7.79) (7.80) (-0.80)

ENRON 0.0149 0.0142 0.0132 0.0046 0.0042 0.0035
(2.00) (1.88) (1.73) (1.63) (1.44) (1.18)

TIME 3.54E-06 4.18E-06 -2.25E-06 1.83E-06
(0.60) (0.70) (0.99) (0.79)

CSIG (-1) 0.2158 1.082 1.0804 1.0794
(2.33) (30.10) (30.03) (29.86)

CSIG (-2) -0.0915 -0.1548 -0.1546 -0.1480
(-0.68) (-2.96) (-2.95) (-2.82)

CSIG (-3) -0.0478 -0.0130 -0.013 -0.0166
(-0.35) (-0.24) (-0.24) (-0.31)

CSIG (-4) -0.1321 0.1122 0.1121 0.1086
(0.98) (2.13) (2.13) (2.06)

CSIG (-5) 0.0905 -0.4755 -0.4756 -0.4812
(0.67) (-9.09) (-9.09) (-9.15)

CSIG (-6) -0.0522 0.3923 0.3908 0.3956
(-0.56) (10.96) (10.91) (10.95)

R2 0.846 0.846 0.849 0.893 0.890 0.891
Σ AR(i) 0.882 0.880 0.878 0.943 0.940 .938

Half-Life (weeks) 5.5 5.4 5.3 11.9 11.2 10.8

Table 1:  Forecasting Equations for Volatility
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(1) (2) (3) (4)
Dep. Var. NG NG CRUDE CRUDE
Const. 0.0160 0.0150 -0.0577 -0.0498

(1.12) (1.11) (-9.55) (-5.75)
σ -0.1005 -0.1085 0.3673 0.2978

(-0.71) (-0.90) (5.21) (3.28)
TBILL -0.1303 -0.1255 0.7694 0.7204

(-1.43) (-1.52) (12.24) (8.01)
ENRON -0.0622 -0.0577 -0.0270 -0.0211

(-1.56) (-1.63) (-0.87) (-0.45)
TIME 1.42E-05 1.67E-05 -1.53E-05 -6.66E-07

(1.05) (1.28) (-1.39) (0.04)
MA (1) -0.1196 0.3432

(-2.96) (10.87)

CONST. 0.0005 0.0004 9.31E-05 7.03E-05
(4.78) (3.93) (0.57) (0.68)

ARCH (1) 0.1237 0.0999 0.2434 0.0400
(2.34) (2.08) (4.79) (1.32)

ARCH (2) -0.0644 -0.0596 0.1488 0.2072
(-1.14) (-1.13) (3.58) (3.15)

ARCH (3) 0.0292 0.0500 0.1446 -0.0429
(0.62) (0.99) (3.96) (-1.02)

ARCH (4) 0.2458 0.2638 0.2504 0.2838
(1.72) (1.48) (5.60) (5.06)

ARCH (5) -0.2217 -0.2463
(-1.87) (-1.63)

GARCH (1) 0.8427 0.9359 0.1174 0.5585
(9.08) (8.79) (1.40) (3.13)

GARCH (2) 0.0510 -0.0127 -0.1699 -0.5046
(0.32) (0.07) (-2.00) (-2.52)

GARCH (3) -0.1301 -0.1470 -0.3591 0.1020
(-1.01) (-0.98) (-4.71) (0.48)

GARCH (4) 0.2778 0.2629 0.5343 0.2690
(3.65) (2.16) (7.44) (2.09)

GARCH (5) -0.2422 -0.2134
(-3.40) (-2.39)   

ENRON 0.0028 0.0022 0.0027 0.0035
(1.06) (0.98) (0.77) (1.09)

TIME 7.56E-07 6.40E-07 2.15E-06 1.46E-06
(4.98) (4.20) (2.58) (4.37)

Half-Life (weeks) 7.5 10.1 7.3 7.6
Note:  Regression equations for weekly returns include monthly dummy variables, which are not
reported.  Number of ARCH and GARCH terms chosen to minimize Akaike information criterion.

Table 2:  GARCH Models of Weekly Returns

VARIANCE EQUATION
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(1) (2) (3) (4) (5) (6)
Dep. Var. NG NG NG CRUDE CRUDE CRUDE
CONST -0.0004 0.0031 -0.0004 -0.0012 -0.0013 -0.0014

(-0.15) (1.35) (-0.13) (-1.46) (-1.52) (-1.77)

σ -0.0960 -0.0838 -0.0867 0.2196 0.2660 0.2266
(-1.79) (-1.70) (-1.60) (3.98) (6.51) (4.15)

TBILL 0.0254 0.0254 0.0237 0.0642 0.0570 0.0610
(0.47) (0.51) (0.51) (2.52) (2.24) (2.39)

ENRON -0.0071 -0.0106 -0.0167 -0.166
(-0.80) (-1.19) (-4.95) (-5.05)

TIME 2.54E-06 2.26E-06 4.86E-07 7.04E-07
(1.98) (1.81) (0.96) (1.44)

(p ,q) (8,7) (4,8) (5,8) (5,9) (4,9) (4,9)

CONST 2.08E-05 4.91E-05  2.06E-05 1.78E-06 9.57E-06 2.57E-06
(111.93) (54.78) (1136.09) (0.53) (3.63) (0.80)

ENRON 0.0005 0.0007 0.0002 0.0002
(1.78) (1.57) (0.97) (0.91)

TIME 7.32E-08 3.37E-08 1.16E-08 1.08E-08
(2.43) (1.55) (1.19) (1.16)

Half-Life (weeks) 8.5 7.8 5.8 3.2 10.7 2.9

Note:  Number of ARCH and GARCH terms chosen to minimize Akaike information criterion.  ARCH
and GARCH coefficients are not shown.

Table 3:  GARCH Models of Daily Returns

VARIANCE EQUATION:  GARCH (p,q)
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Table 4:  Granger Causality Tests 

            
Variable  Lags  NG ���� Crude  Crude ���� NG  
    
Weekly Returns 2 No No 
   (Simple Corr. = .095) 4 No No 
 6 No No 
            
    
Daily Returns 4   Yes*   Yes* 
   (Simple Corr. = .028) 6 No     Yes** 
 10 No     Yes** 
 14 No     Yes** 
 18 No   Yes* 
 22 No No 
            
    
Weekly Volatility,  2 No  Yes* 
   Sample Stand. Dev. 4 No  Yes* 
   (Simple Corr. = .170) 6 No No 
            
    
Weekly Volatility, 2   Yes** No 
   GARCH 4   Yes** No 
   (Simple Corr. = .092) 6 Yes* No 
            
    
Daily Volatility, 4 No No 
   GARCH 6 No   Yes* 
   (Simple Corr. = .146) 10 No No 
 14 No     Yes** 
 18 No     Yes** 
 22 No     Yes** 
            

Note:  Test of x � y is an F-test of the exclusion restrictions 1 2 ... 0Lb b b= = = =  in the regression  

0
1 1

L L

t i t i i t i
i i

y a a y b x− −
= =

= + +∑ ∑ .  A “no” implies a failure to reject the hypothesis that the bi’s  

equal 0, and a “yes” implies rejection at the 5% (*) or 1% (**) level. 
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