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Theory Models of Search
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Three experiments tested a signal-detection theory (SDT) mode! of visua! search (e.g., as described in J.
Paimer. C. T. Ames. & D. T. Lindsey, 1993). In Experiment 1, participants searched for a 0° line among
distractors at (a) 30°: (b) V4 at 30°, ¥ at 50°; (c) ¥ at 30°, 50°, and 70 and (d) ¥ at 30°, %3 at 70°. The
SDT mode! predicts improved performance in the more heterogeneous conditions, as some distractors are
more discriminable from the target. In contrast, in Experiment ] human performance degraded in the
more heterogeneous conditions (¢ and d). In Experiment 2, sparser displays improved the performance
of the SDT model. In Experiment 3, search for 6° among homogeneous § + 20° distractors was compared
with search for ° among 8 = 20° distractors. Performance in the latter condition was often worse.
relative to performance in the homogeneous condition, than predicted by the SDT model: however, this

depended greatly on the identity of the target.

People’s daily lives are permeated by the sorts of visual activ-
ities that fit under the rubric of visual search. They search their
bookcases for a particular book or look for a familiar face ina
crowd. In many cases, people search for a target item in very
complex scenes with highly heterogeneous distracting items.

Researchers have proposed a number of models for visual
search. One popular class of models is an extension of signal-
detection theory (SDT) models of detection and discrimination
(see, e.g., Green & Swets, 1966; Melsa & Cohn, 1978). The SDT
model is an ideal observer model for visual search on the basis of
the assumption that the observer makes noisy observations of each
stimulus. An ideal observer model makes decisions that are based
on a minimum probability-of-error criterion. This criterion has
been shown to be equivalent to the maximum a posteriori criterion,
and. in the particular case of flat priors (in which each display
element is equally likely to be the target element), has also been
shown to be equivalent o the maximum-likelihood decision
criterion.

In the basic SDT model considered in this article, the observer
makes noisy, independent observations of each target or distractor
in each display. An important consequence of the noisy represen-
wtion of the stimulus is that a distractor may be mistaken for the
target. A useful intuition is that search becomes more difficult
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when it is more likely that one of the distractors may be confused
with the target.

The basic SDT model has been shown to predict a number of
visual search results (e.g., Bennett & Jaye, 1995, Eckstein,
Thomas, & Shimozaki, 2000; Palmer, 1994; Palmer, Ames, &
Lindsey, 1993; Palmer & McLean, 1995: Shaw, 1980; Verghese &
Stone, 1995). However, much of this modeling of visual search
results has dealt with search among homogeneous distractors. This
article further investigates how well the SDT model predicts
results of search among heterogeneous distractors.

How do human observers perform on search tasks with betero-
geneous distractors? Duncan and Humphreys (1989) suggested the
following general rule for human performance on such tasks:
Search difficulty increases as the target—distractor similarity in-
creases and as distractor—distractor similarity decreases.

SDT has been shown (Palmer et al., 1993) to correctly predict
the increase in search difficulty as targel~distractor discriminabil-
ity decreases. If adding variability to the distractors (and thus
reducing their similarity to each other) reduces the difference
between the target and some of the distractors, one would expect
that SDT might predict an increase in search difficulty, in agree-
ment with results from psychophysics research and Duncan and
Humphreys's (1989) general rule. But, what happens if distractor
variability is increased by making some of the distractors more
discriminable from the target? Intuitively, SDT would predict that
this increase would make the search task easier because those
distractors would be less likely to be confused with the target. But
according to Duncan and Humphreys's general rule. one should
expect human performance to worsen.

In the section titled Experiment 1. 1 added variability to the
distractors by making some of them more distinct from the target.
This manipulation did degrade human performance. whereas the
SDT model incorrectly predicts improved performance. In the
section titled Experiment 2, 1 investigated whether the basic SDT
model continued to make incorrect predictions in a less-crowded
display. The section titled Experiment 3 describes an experiment in
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which 1 introduced different heterogeneity into the distractor dis-
tribution and again compared the results with the predictions of the
model. The Modifications to the Basic SDT Model section dis-
cusses possible modifications to the model that incorporate some
of the intuitions of Duncan and Humphreys’s (1989) general rule.
The General Discussion section discusses the implications for
models of visual search.

The SDT model of visual search, as it has typically been
implemented, is inappropriate for modeling the search experiments
presented in this article. First, previous implementations have been
appropriate for observations with a linear distribution, such as
observations of luminance, line length, and so on. However, my
experiments involve observations of orientations, which wrap
around, so that a line segment at angle 0 is the same as one at angle
6 + 180°. Thus, orientation has what is known as a circular or
directional distribution (see, e.g., Mardia, 1972). Second, previous
implementations are inappropriate for conditions in which the
target feature value may not be strictly larger than that of the
distractors, like the conditions in Experiment 3, in which distrac-
tors were tilted both slightly clockwise and slightly counterclock-
wise from the target. In this article, the implementation of the SDT
model is generalized to make predictions for arbitrary distributions
of target and distractor observations. The Appendix elaborates on

how these more general predictions were made, and it includes
MATLAB (1993) code.

Experiment 1

The first experiment was designed to investigate effects of
distractor heterogeneity when variability is added to the distractors
by making some of them more distinguishable from the target.
Search was for a horizontal line (0°) among lines of different
orientations. Percent correct performance was measured on a two-
interval forced-choice (2IFC) task for four conditions (see Figure
1): (a) homogeneous task, distractors at 30°;, (b) one third of
distractors at 30° and two thirds at 50°; (c) one third of distractors
at 30°, one third at 50°, and one third at 70°; and (d) one third of
distractors at 30° and two thirds at 70°.

Predictions

The internal observation noise is assumed to have a wrapped-
normal distribution (Mardia, 1972)—an orientation distribution
with many of the properties of the normal distribution. Like the
normal distribution, the wrapped-normal distribution has two pa-
rameters: mean and standard deviation. Figure 2 shows a family of
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Figure I. Scale drawings representative of stimuli for Experiment 1. The target was always a horizontal (0°)
line. A: Condition 1: Homogeneous distractors at 30°, B: Condition 2: one third of distractors at 30°, two thirds
at 50°; C: Condition 3: one third of distractors at 30°, 50°, and 70°; D: Condition 4: one third of distractors at
30°, two thirds at 70°.




curves representing predictions of the basic SDT model for inter-
nal noise standard deviations between 4° and 30°. For a wide range
of internal noise parameters, the model predicts worst performance
in the homogeneous Condition 1, with roughly identical perfor-
mance in Conditions 2, 3, and 4. Intuitively, in the homogeneous
case, there are more confusable distractors (with orientation close
to the target orientation) and roughly the same number of most-
confusable distractors (at 30°) in the remaining three conditions.
For very small amounts of internal noise, the predicted perfor-
mance saturates at roughly 100% for all four conditions. For very
large amounts of internal noise, the predicted performance is
roughly at chance for all four conditions.

Method

On each trial, observers viewed a fixation square in the center of the
screen, thern pressed the space bar on the computer keyboard to begin the
trial. One stimulus appeared for 75 ms and was followed by a masking
stimulus for 150 ms. Another fixation square followed, for 500 ms, ther the
second stimulus, also for 75 ms, and the second mask, for 150 ms. A blank
screen replaced the mask, and observers indicated which of the two stimuli
contained the target (0°) line, by typing / or 2. We used Brainard’s (1997b)
Psychophysics Toolbox (for further information, see Brainard, 1997a) to
design and control the experiments.

Each session consisted of a block of 100 trials for each of the four
conditions listed above. The order of the conditions was determined by a
Latin square design. At the beginning of each block, observers could freely
view a sample stimulus for that block. Each observer participated in three
sessions following a training session; thus, the results shown represent 300
trials for each condition.

Each stimulus consisted of 36 high-contrast white lines, 0.25 degrees in
length, drawn or a black background and displayed on an Apple Multiple
Scan 20 monitor.” The lines were arranged in concentric rings at radii equal
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Figure 2. Predictions from the basic signal-detection theory model for
Experiment 1. Each curve shows the predictions for a different value of the
internal noise parameter, from 4° standard deviation to 30°. Distributions
of the distractors for the four conditions are shown below the x-axis. T =

target.
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Figure 3. Results of Experiment 1 for observers R.E.R. and B.L.B., along
with best-fit predictions from the basic signal-detection theory (SDT)
model (solid line: R.ER., dashed line: B.L.B.). Distributions of the dis-
tractors for the four conditions are shown below the x-axis. The target (T)
was always a horizontal (0°) line.

to three, five, and seven times the line length, with 6, 12, and 18 lines in
the three rings, respectively. In addition, the x- and y-positions of each line
were jittered, with jitter uniformly distributed over * line length/4. The
total stimulus size was roughly 3.75 degrees in diameter, viewed binocu-
larly from 6 ft (1.83 m). Figure 1 shows representative stimuli for the four
conditions (shown with black lines on a white background for ease of
reproduction). The target appeared in each location with equal probability.

The mask consisted of “stars” at each jittered line element location in the
stimuli; each star was formed by line elements of twice the length used in
the stimuli and positioned at every 10 degrees in orientation.

Two observers with corrected-to-normal vision participated in the ex-
periment: myself (RER.) as well as an experienced psychophysics par-
ticipant (B.L.B.) who was naive to the purpose of the experiment.

Results

The experimental results are shown in Figure 3. RER. per-
formed significantly better in both the homogeneous Condition 1
and the low variability Condition 2 compared with either of the
two more heterogeneous conditions, Conditions 3 and 4 (p < .05,
z test). R.ER. showed no significant difference between Condi-
tions 3 and 4 (p > .05, z test). B.L.B. performed significantly
better in Condition 2 than in any of the other conditions, including

' When referring to size on the screen, I have used degrees (spelled out);
when referring to the orientation of lines, I have used the symbol for

degrees, °.
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the homogeneous one, and significantly better in the homogeneous
condition than in Condition 4 (p < .05, z test).

Though the 2 observers had different performance in Condition
1 relative to Condition 2, both showed a strong trend of decreasing
performance across Conditions 2, 3, and 4, and the basic SDT
modei did not predict this trend. The curves in Figure 3 show the
best-fit SDT model predictions to both observers’ data. The SDT
mode! predictions, although significantly correlated with the data
(r=.73,v =6, p < .05), provided a poor qualitative fit. The SDT
model has one parameter: the internal noise standard deviation (see
Appendix). The value of this parameter in the fit of the data was
9.2° for R.E.R. and 15.6° for B.L.B.

Discussion

The basic SDT model failed to predict the experimental results
on search among heterogeneous distractors when distractor vari-
ability was added by making some of the distractors more distinct
from the target. The SDT model predicted worst performance in
the homogeneous condition and roughly equal performance in the
remaining conditions; however, observers performed better in the
two more homogeneous conditions than in the two more hetero-
geneous ones.

Palmer, Verghese, and Pavel (2000) advocated testing simple
models of visual search under more restricted conditions than
those presented in Experiment 1. The stimuli in Experiment 1 were
relatively crowded and might have been perceived as textures
rather than individual elements, suggesting that perhaps masking
may have occurred between elements of the display, or that other
sorts of texture processing in the visual system might have come
into play. Although the position of the targets and distractors was
randomly jittered, their placement was still fairly regular, and
perhaps there were some configural effects. Finally, each of the
displays was followed by a mask, which might have introduced
temporal interactions not accounted for by simple models of visual
search.

Palmer et al. (2000) suggested that models of visual search
should first be tested using widely separated stimuli, to minimize
spatial interactions between elements of the display, and with no
mask following the stimuli, to minimize complex temporal inter-
actions. Palmer et al. reasoned that if simple models can ade-
quately predict search results under these restricted conditions,
then the models provide a reasonable starting point for generaliz-
ing to more complex stimuli. The basic SDT model has accurately
predicted the results of visual search experiments within these
restricted conditions (Eckstein et al., 2000; Palmer et al., 1993;
Palmer & McLean, 1995; Verghese & Stone, 1995). The model
has less accurately predicted results for more complex stimuli
{(Morgan, Ward, & Castet, 1998; Palmer, 1994; Verghese & Na-
kayama, 1994). Note, however, that a number of models of visual
search incorporate interactions between elements of the display as
an important part of the model (e.g., Duncan & Humphreys, 1989;
Rosenholtz, 1999; Wolfe, 1994). From the point of view of these
models, it is arguable that the sparse displays advocated by Palmer
et al. (2000) do not provide the critical test of a model of visual
search. In Experiment 2, I tested visual search with the same
combinations of target and distractors as in Experiment 1, under
more restricted conditions, with sparser, less-regular displays and
no mask following the stimuli.

Experiment 2
Method

The stimuli and viewing conditions were similar to those used in the first
experiment, with a few modifications as described below. The task was
again a 2IFC task, with timing as described for Experiment 1, except the
duration of each stimulus was shortened to 50 ms, and no mask followed
the stimuli. (In a preliminary experiment with no mask and eight display
elements, a 75-ms stimulus duration led to performance saturated near
100% correct for all conditions.) Each stimulus consisted of eight high-
contrast white lines on a black background. The lines were 0.4 degrees in
length and were positioned on a circle with a radius of eight times the line
length. The positions were jittered uniformly, in both the x- and
y-directions, about *1.4 X line length. The overall stimulus size was
roughly 7.9 degrees in diameter. Representative stimuli are shown in
Figure 4. An audible tone provided feedback.

Each session consisted of a block of 100 trials for each of the four
conditions described in Experiment 1. The order of the conditions was
determined by a Latin square design. Both of the observers participated in
a training session followed by three experimental sessions; again, the
results shown represent 300 trials for each condition. The observers in this
experiment were not those who had participated in Experiment 1. Both had
corrected-to-normal vision and were naive as to the purpose of the
experiment.

Results

The results are shown in Figure 5, along with curves showing
the best-fit predictions of the basic SDT model. The internal noise
parameters of the model were 14.5° and 12.9° for observers J.A.K.
and J.O.E,, respectively. None of the differences between the four
conditions are significant. The basic SDT model predicts a differ-
ence of roughly 7% or 8% correct between the homogeneous
condition and the mean of the heterogeneous conditions—a dif-
ference that would be statistically significant-—whereas the differ-
ence in the experimental data is only 1% or 2% correct. However,
this difference between the predictions and the experimental re-
sults is rather small and inconclusive. Standard Pearson product—
moment correlation squared (r*) measures of goodness of fit break
down in this situation because there is virtually no variability in the
data to explain. The error in the fit is larger than the variability in
the data.

Discussion

In Experiment 2, the stimuli were designed to be nearly optimal
for the basic SDT model, with few display items, sparse displays,
and no mask following the displays. In these conditions, the basic
SDT model better predicts experimental results for the four con-
ditions tested, though it still arguably predicts subtly different
results, both qualitatively and quantitatively. The effect of heter-
ogeneity increases with larger numbers of items and/or more
crowding—in some ways this makes sense because with more
items, estimates of heterogeneous distributions become more trust-
worthy. A complete model of visual search will need to explain
this dependence of heterogeneity effects on the number or crowd-
ing of items in the display.

In Experiment 3, I tried a different manipulation of distractor
heterogeneity to attempt a larger effect of heterogeneity versus
homogeneity and thus to better test models of visual search. The
motivation behind this experiment was consideration of a possible
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Figure 4. Scale drawings representative of stimuli for Experiment 2, with the same target and distractor
distributions as in Experiment 1. A: Condition 1: Homogeneous distractors at 30°; B: Condition 2: one third of
distractors at 30°, two thirds at 50°; C: Condition 3: one third of distractors at 30°, 50°, and 70°; D: Condition

4: one third of distractors at 30°, two thirds at 70°.

interpretation of Duncan and Humphreys's (1989) general rule for
search among heterogeneous distractors: Search becomes easier as
experimenters make either the target more distinguishable from the
distractors or as they decrease the variability of the distractors.
This suggests a measure in which search ease is related to the
difference between the target and the mean of the distractors,
relative to the standard deviation of the distractors; this measure is
reminiscent of a d prime measure of discriminability. In a previous
study (Rosenholtz, 1999), I showed that such a saliency measure is
a good qualitative predictor of a number of results in motion and
color search.

In an experiment in which search for a target at T° among
distractors at T + 20° (homogeneous condition) is compared with
search for the same target among distractors at T = 20° (symmet-
ric flanking condition), the saliency rule suggested above would
predict much worse performance in the latter case relative to the
former; in the former case, the saliency would be positive, and in
the latter case, it would be zero. The SDT model should predict
only a modest decrease in performance. Wolfe, Friedman-Hill,
Stewart, and O’Connell (1992) performed a similar experiment
measuring reaction time. In this study, I replicated their experi-
ment in a 2IFC paradigm, measuring percent correct performance,
$o as to model the results with the basic SDT model while avoiding
the complex issues of modeling reaction time data.

To model the results of this experiment with the basic SDT
model, it was necessary to use a different implementation of the
SDT model. The standard implementation of the basic SDT model
assumes that all distractors have feature values less than the feature
value of the target, and this is clearly not true in the flanking
conditions of Experiment 3.

Experiment 3
Method

The viewing conditions and experimental method were the same as in
Experiment 2. We studied four conditions: (a) homogeneous horizontal,
target = 0°, distractors = 20°; (b) symmetric flanking horizontal, target =
0°. distractors = *20°; (c) homogeneous oblique, target = 45°, distrac-
tors = 65% (d) symmetric flanking oblique, target = 45° distractors =
25°, 65°.

Representative stimuli are shown in Figure 6. Again, the observers
participated in one training session with 100 trials per condition, which was
followed by three sessions, each consisting of 100 trials per condition. The
4 observers had normal or corrected-to-normal vision. and 3 were naive as
to the purpose of the experiment. | was the fourth observer.

Results

The results are shown in Figure 7, along with the best-fit
predictions of the basic SDT model. I allowed the model to have
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Figure 5. Results of Experiment 2 for observers J.A.K. and J.O.E., along
with best-fit predictions from the basic signal-detection theory (SDT)
model (solid line: J.A.K.; dashed line: 1.0.E.). Distributions of the distrac-
tors for the four conditions are shown below the x-axis. The target (T) was
always a horizontal (0°) line.

a different internal noise parameter for horizontal target Condi-
tions 1 and 2 than for oblique target Conditions 3 and 4 because
internal noise might have been different when observing a hori-
zontal line than when observing one at 45°. This allowed improved
quality of fit for the basic SDT model. The internal noise param-
eters for Conditions 1 and 2 were 8.4°, 9.7°, 9.7°, and 10.6°, and
for Conditions 3 and 4 were 10.3°, 10.2°, 10.1°, and 10.2°, for
observers RE.R., MK., BD.W., and CRB., respectively.

For all 4 observers, the basic SDT model gave a very poor fit to
the results of the oblique target conditions. For the 45° target, there
was a large effect of heterogeneity and the basic SDT model was
unable to replicate this. With this target, observers performed, on
average, at 92% correct in the homogeneous condition and at 55%
correct in the symmetric flanking condition, as opposed to 80%
correct and 69% correct, respectively, as predicted by the model.
The basic SDT model predicts a much smaller difference between
the two oblique conditions than the data show. For RER., the
model also gave a poor fit to the horizontal target conditions. For
M.K.. the model fit fell outside of the error bars for the data for
these conditions, but the difference was small. For the other 2
observers, data for the horizontal target conditions was well fit by
the SDT mode] predictions. Overall, the fit of the basic SDT model
was not significantly correlated with the data of Experiment 3 (r =
46, v = 8, p > .05).

Sutter, dela Cruz, and Sheft (2000) showed that a larger internal
noise variance for oblique lines than for vertical lines can explain
the asymmetry that it is easier search for an oblique target among

vertical distractors than it is to search for a vertical target among
oblique distractors. One might ask whether the results of Experi-
ment 3 might also be explained by a different internal noise for
observations of oblique lines than for horizontal lines.

To test this hypothesis, I assumed, as before, that observation
noise was distributed according to a wrapped normal distribution
and parametrized by a mean and standard deviation. I modeled the
data with a three-parameter model, with parameters 0o, 45, 020,25
which are the noise standard deviations when observing a hori-
zontal line, a line at 45° and a line at either 20° or 25°,
respectively.

This model is not significantly correlated with the data (r = .19,
v =4, p > .05). In addition, the best fit yielded nonintuitive values
for the three parameters, with average values across subjects of
oy = 13.8°% 045 = 21.7°, and Gy0,s = 8.35°. These numbers
imply that humans are more accurate at observing a 20° or 25° line
than at observing a horizontal line. Explaining the results of this
experiment is not merely a matter of allowing different internal
noise for the different line orientations.

Discussion

The results of Experiment 3 were somewhat mixed. For 3 out of
4 observers, the basic SDT model provided a reasonable fit of the
data when the target was a horizontal line, yet for all 4 observers,
the model provided a very poor fit to the data when the target was
a 45° line. As noted above, the increased effect of heterogeneity
for an oblique target is not simply a matter of different observation
noise for the different line orientations. Instead, there seems to be
an issue of ease of representation of the target given the distribu-
tion of distractors. The strength of the effect of distractor hetero-
geneity depends on the identity of the target. Furthermore, observ-
ers reported that in the symmetric flanking oblique condition, even
with unlimited viewing time, it was difficult to determine whether
or not a particular line was at 45° without comparing it to others in
the display to ensure that it had neither the shallowest nor the
steepest slope. Issues of target representation are further discussed
in the General Discussion section of this article.

Modifications to the Basic SDT Model

The results of modeling the heterogeneous search experiments
presented in article with the basic SDT model remain ambiguous.
The model provided a poor fit to data of Experiment 1. For
Experiments 2 and 3, the conditions were designed to be closer to
the optimal conditions for making predictions using the SDT
model. In Experiment 2, the model still produced predictions that
differed both qualitatively and quantitatively from the resuits, but
the difference was subtle. In Experiment 3, the basic SDT model
made reasonable predictions in the two horizontal target conditions
for 3 of the observers. For the other observer, the model fit the data
less well for those two conditions. For all observers, the model
very poorly fit the data for the oblique target conditions. Overall,
however, the basic SDT model was significantly correlated with
the data (r = .68, v = 20, p < .O).

In all of these cases, the pattern of the data seems qualitatively
to match Duncan and Humphreys's (1989) general rule and the
saliency rule mentioned in the Discussion of Experiment 2 (and in
Rosenholtz, 1999). The saliency rule predicts easier search when
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Figure 6. Scale drawings representative of stimuli for Experiment 3. A: Homogeneous horizontal condition; B:
symmetric flanking horizontal condition; C: homogeneous oblique condition; D: symmetric flanking oblique

condition.

the difference between the target orientation and the mean distrac-
tor orientation is large relative to the standard deviation of the
distractors. This rule can also be thought of as a version of Duncan
and Humphreys’s (1989) general rule, which relates search ease to
ill-defined target-distractor and distractor-distractor similarities.
In this section of the article, I fit the data with models that mimic
the qualitative predictions of the saliency rule and compare their
fits to that of the basic SDT model.

The Best-Normal Model

The signal-detection theory model of visual search allows one to
make predictions of percent correct performance given the distri-
bution of target and distractor observations. In this article, an
alternate model is tested. the best-normal model, which operates
much like the basic SDT model. To understand the alternate
model, it is best to have some understanding of the basic SDT
model. SDT models make certain assumptions about the distribu-
tion of observations of the target and distractors. The only differ-
ence between the basic SDT model and the best-normal model is
in the assumed distribution of the distractor observations. The
basic SDT model assumes that the distractor observations are
drawn from a distribution that equals the true, discrete distribution
of distractors (i.e., the distribution from which the distractor ori-
entations are drawn when generating the stimuli) plus added noise.

The best-normal mode! assumes that distractor observations are
instead drawn from the wrapped-normal distribution that best fits
the true distribution of distractor orientations plus added noise.
One might think of this as if the visual system was unable, under
certain conditions such as short display times, to represent com-
plex distributions and instead represented them using only their
mean and variance.

The best-normal model, as a literal description of what happens
in the visual system, is somewhat odd. It requires not only the
highly plausible error that the observer misjudges the distribution
of the distractors—perhaps because of an inability to represent
complex distributions—but also the less plausible error that this
misjudgment of the distribution affects observations of the distrac-
tors but not of the target. This model is more intended as one way
of making quantitative predictions that qualitatively mimic the
observation that search becomes more difficult as the variability of
the distractors increases relative to the difference between the
target and the mean of the distractors. I explored whether a model
with this property can better fit the data from my experiments.

Figure 8 shows the results of Experiment 1, along with predic-
tions of the best-normal model. This model has one parameter, the
internal noise standard deviation. The best-fit values of this pa-
rameter were 7.1° and 14.2° for RER. and B.L.B., respectively.
The best-normal model fits the data better, both quantitatively (r =
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Figure 7. Results of Experiment 3 for observers RER., MK., BD.W,,
and C.R.B., along with best-fit predictions from the basic signal-detection
theory (SDT) model. Distributions of the distractors for the four conditions
are shown below the x-axis. The target (T) was at 0° for the first two
conditions and 45° for the last two conditions.

.89, v = 6, p < .01) and qualitatively, than the basic SDT model;
however, the fit is still somewhat poor, especially for Condition 4.

In the initial discussion of the results of Experiment 1, it seemed
that the observers gave inconsistent performance on Condition 1
relative to Condition 2, and it was unclear as to in which condition
one should expect better performance. For the best-normal model,
different values of the internal noise parameter yield qualitatively
different curves. The model can predict both results like those of
R.ER., in which performance is very similar in Conditions 1 and
2, and results like those of B.L.B., in which performance is better
in Condition 2 than in the homogeneous Condition 1. The quali-
tative predictions of the model depend on internal noise because
the saliency of the target in the two conditions depends on the
internal noise. In Condition 2, the target feature value lies farther
from the mean of the distractors than it does in Condition 1; one
might expect this to make search easier. However, the distractors
in Condition 2 also have higher variability; one might expect this
to make search more difficult. Which of these two effects domi-
nates depends on the internal noise.

Figure 9 shows the results of Experiment 2, along with predic-
tions of the best-normal model. The best-fit values of the internal
noise parameter are 14.1° and 12.4° for observers J.AK. and
J.O.E., respectively. Strong conclusions are difficult to draw from
the data of this experiment, but the fit of the model is reasonable,
both qualitatively and quantitatively. As with the basic SDT
model, the best-normal model predicts larger differences between

the conditions than are in the data and the error in the fit is larger
than the variability in the data; therefore, the ~* measures break
down.

Figure 10 shows the results of Experiment 3, along with pre-
dictions of the best-normal model. As with the fit of the basic SDT
model to these data, the fit of the best-normal model allowed a
different internal noise for the 0° target conditions than for the 45°
target conditions. The internal noise parameters for Conditions |
and 2 were 6.3°, 8.7°, 9.3°, and 10.1°, and for Conditions 3 and 4
they were 7.8°, 8.2°,7.6° and 7.9°, for RE.R., M.K., B.D.W_, and
C.R.B., respectively. This model yields a nearly perfect fit to the
data of 3 observers for the 0° target conditions, and an only slightly
poorer fit to B.D.W.’s data for these conditions. The model yields
a noticeably better fit to the 45° conditions than the fit of the basic
SDT model; however, the fit is still poor, and it fails to predict the
near-chance performance in the symmetric flanking condition. The
fit of the best-normal model is significantly correlated with the
data of Experiment 3 (r = 81, v = 8, p < .05). Overall, the
correlation of the best-normal model with the data of the three
experiments was significant and performs better both quantita-
tively and qualitatively than the basic SDT model (r = .87, v = 20,
p < .01, as compared with r = .68 for the basic SDT model).

The Relative Coding-With-Reference Mode!

Recently, Palmer, Verghese, and Pavel (2000) have suggested
another modification to the basic SDT model, related to the feature
coding theory of Nothdurft (1991, 1992, 1993). In this model,
referred to in this article as the relative coding model, observers
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Figure 8. Results of Experiment 1 and best-fit predictions of the best-
normal (B-N) model. Distributions of the distractors for the four conditions
are shown below the x-axis. T = target.
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make an observation for each display element, of the difference
between the features of that element and the features of some
randomly chosen other element of the display. The observer
makes—for the purposes of the visual search task—a measurement
of each element relative to some other display element, but no
absolute measurement of the element features.

On the basis of these measurements of the differences between
elements, the observer in, for example, a 2AFC task, makes a
decision about which display contains the target. In Palmer et al.
(2000), observers use a maximum-of-differences decision rule. In
this experiment, a more general ideal observer decision rule was
used. To a first approximation, using this rule amounts to conduct-
ing basic SDT as if the observer has observed differences between
elements rather than the elements themselves. (There are important
yet subtle differences between the implementations of the basic
SDT model and the relative coding model because in the latter,
some distractors might be compared with a target, whereas others,
in a display with no target, would only be compared with other
distractors; these subtleties are not discussed in this article.)

The relative coding model performs roughly the same as the
basic SDT model. It is significantly correlated with the data overall
(r = .64, v = 20, p < .01). As with the basic SDT model, the
relative coding model performs worst on the data of Experiment 3,
for which it is not significantly correlated with the data (r = .41,
v = 8§, p> .05)

However, when the relative coding model is applied to a set size
of one, then this one element cannot be compared to any other
elements in the display because there are no other elements in the
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Figure 9. Results of Experiment 2 and best-fit predictions of the best-
normal (B-N) model. Distributions of the distractors for the four conditions
are shown below the x-axis. T = target.
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Figure 10. Results of Experiment 3 and best-fit predictions of the best-
normal (B-N) model. Distributions of the distractors for the four conditions
are shown below the x-axis. T = target.

display. Obviously, researchers need a modification to the model
to allow it to function under these conditions. I suggest it be
modified so that sometimes display elements are compared with
other elements of the display. and some fraction of the time they
are compared with a reference, in memory, of the desired target.
Incorporating this notion into the relative coding model greatly
improves its performance, and this new model is called the relanve
coding-with-reference model (RCref). The best fit to my data was
a model in which the observer compared a display element with
the reference target 30% of the time.” This model yielded a
significant correlation with the data (r = 87, v = 19, p < .01),
comparable to the best-normal model. Figures 11, 12, and 13 show
the fit of this model to the data.

A number of modifications could be made to further refine and
test the RCref model. T used the same internal noise for comparison
with an element in the display as I did for comparison with a
reference in memory, and the internal noise is likely to differ in the
two cases. Furthermore, the internal noise for the reference in
memory would likely vary with the identity of the target.

2 However, it is not possible from my data to determine whether ob-
servers always compare with the reference the same percentage of the time,
or whether that percentage varies with the number of elements in the
display. Predictions for Experiment 1—the only expeniment with set size
greater than eight—are highly insensitive to the percentage of comparisons
with the reference.
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General Discussion

This article has investigated orientation search among hetero-
geneous distractors with conditions in which heterogeneity was
added by making some of the distractors less like the target
(Experiments 1 and 2), and with conditions in which the distractor
orientations symmetrically flanked the target orientation (Experi-
ment 3). In the dense displays of Experiment 1, search was
significantly more difficult for the two most heterogeneous con-
ditions. The basic SDT model did not predict this result. When I
used the sparse displays of Experiment 2, there were no significant
differences between the four conditions, and results of modeling
the data were inconclusive. In Experiment 3, the basic SDT model
gave a poor fit to the data when the target was a 45° line, though
it gave a considerably better fit when the target was a horizontal
line.

Further work remains to determine whether the results presented
in this article are typical for search on the basis of features other
than orientation. There is some evidence in motion search {Driver,
McLeod, & Dienes, 1992) that increasing the variability of the
distractors by making some of them less like the target impairs
visual search, as in Experiment 1.

Many models of visual search are not sufficiently developed for
testing on the data presented in this article. My data require models
able to predict percent correct performance as a function of the
number of elements in the display—the results of Experiments |
and 2 demonstrate that heterogeneity effects depend greatly on the
number or crowding of elements in the display. Furthermore, for
Experiment 3, many models fit the data qualitatively, but so far,
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Figure 11.  Results of Experiment 1 and best-fit predictions of the relative

coding-with-reference (RCref) model. Distributions of the distractors for
the four conditions are shown below the x-axis. T = target.
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Figure 12.  Results of Experiment 2 and best-fit predictions of the relative
coding-with-reference (RCref) model. Distributions of the distractors for
the four conditions are shown below the x-axis. T = target.

none of them provide a good enough fit quantitatively—for mod-
eling the results of this experiment, a model is required that can
make quantitative predictions of percent correct performance.

Modifications to the basic SDT model are sufficiently devel-
oped to test on our data, and several such modifications fared
somewhat better than the basic SDT model. Figure 14 shows the
data for all three experiments, which is plotted versus the best-fit
predictions of the basic SDT model. Figure 15 shows the data
plotted versus the predictions of the best-normal model. Figure 16
shows the data plotted versus the predictions of the RCref model.
If a model was to fit the data perfectly, the points should all lie
along the diagonal line shown. For all three models, the points are
reasonably well clustered along the diagonal, with the worst de-
viations for conditions in which observers performed particularly
poorly. The points are more tightly clustered around the diagonal
for the best-normal model and relative coding model; the correla-
tion between data and model was r = .68 for the basic SDT model.
r = .87 for the best-normal model, and r = 87 for the relatve
coding model. For all three models, the correlation with the data is
significant (7 test, p < .01).

For quality of fit, it makes little difference whether one consid-
ers all three experiments or only the latter two experiments using
sparse displays. For Experiments 2 and 3, r = .66 for the basic
SDT model, r = .86 for the best-normal model, and r = .86 for the
relative coding model. This suggests that a model of visual search
may not necessarily need an additional component to deal with
crowding in displays—perhaps the different qualitative effects of
heterogeneity may be modeled merely by an increase in set size.
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The two modifications to the basic SDT model, the best-normal
and RCref models, have two things in common. First, they both,
though in different ways, mimic the saliency rule, or, more gen-
erally, Duncan and Humphreys’s (1989) general rule. The intuition
behind the RCref model is that it predicts easier search when the
difference between the target and the distractors is large relative to
differences among the distractors. Second, both the RCref model
and the best-normal model use less of the available information
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Figure 14. Data versus best fit of the signal-detection theory (SDT)
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than the basic SDT model. In the case of the best-normal model,
the true and complex distribution of distractors is ignored and only
their mean and variance is used. The RCref model ignores the
actual feature values of the target and distractors in lieu of the
differences between them. This is less information than the basic
SDT meodel, because one can construct the differences from the
feature values, but one cannot reconstruct the feature values from
the differences. The success of the best-normal and RCref models
over the basic SDT model suggests two things. First, visual search
is better modeled by a system that does not make full use of the
information available in the stimuli. Second, thus far, models seem
to perform better when they mimic a rule that search becomes
easier when the difference between the target and distractors is
large compared with the differences between the distractors.

As shown by the results of Experiment 3, the identity of the
target had a large effect on the observed effects of heterogeneity.
This suggests that a key component of a visual search model
should address the difficulty of representing the target. The ease
with which one can represent a target depends not only on the
features of the target, but also on the distribution of distractors—
merely allowing different internal noise for observations of differ-
ent orientations did not explain the results of Experiment 3. For the
representation of the target to be useful for a search task, that
representation must distinguish the target from the distractors.

By this reasoning, it should be easier to represent the target if it
is in some sense significantly different from the distractors. This
may be why the saliency rule seems to qualitatively describe
search performance in many instances (Rosenholtz, 1999) and why
both the best-normal and RCref models—which mimic this rule—
give improved performance over the basic SDT model. The sa-
liency, which is roughly the difference between the target and the
mean of the distractors relative to the standard deviation of the
distractors, is a measure of the significance of the difference
between the target and the mean of the distractors. Thus, such a
measure might be related to the difficulty of representing the target
such that it is distinguishable from the distractors.

The ease of representation would likely depend on other issues
as well. For example, on one hand, it may be very difficult to
represent a 45° target among distractors that are also oblique when
representation is not aided by a target that significantly differs
from the distractors. This may explain the near-chance perfor-
mance in the symmetric flanking oblique condition. On the other
hand, though a 0° target also may not be significantly different
from flanking distractors at %20°, it may be inherently easier to
represent a horizontal target, thus leading to better performance in
the symmetric flanking horizontal condition.

A model of visual search should include a mode! of both the
ease of representing the target and the effect that a poor represen-
tation of the target has on the observer’'s ability to find that target.
SDT models of visual search provide a framework for modeling
the effect of a poor representation on search performance. One
could medel representational uncertainty as positional uncertainty
in feature space—essentially, as an increase in observation noise.
However, current implementations of SDT models at worst use the
same observation noise for all conditions and at best allow the
observation noise to vary with feature value. Perhaps further
exploration of what determines the ease of representing a target
would allow SDT models of visual search to better explain search
among heterogeneous distractors.
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Appendix

Making Predictions for Signal-Detection Theory

The signal-detection theory model in this article is 2 mode] of visual
search in which the observer makes a decision about the presence or
absence of a target on the basis of an ideal observer criterion. This is
equivalent to using a minimum probability of error criterion or a maximum
a posteriori criterion (see, e.g., Green & Swets, 1966: Melsa & Cohn,
1978). When each display element is equally likely to be the target, the
decision criterion is also equivalent to a maximum likelihood decision. The
model referred to as the basic signal-detection theory (basic SDT) model
assumes that the observer makes noisy, independent observations of each
of the target and distractor elements in the display. All predictions of the
basic SDT model presented in the body of the article assume that the noise
is additive and independently and identically distributed according to a
wrapped-normal distribution (Mardia, 1972). Below, the general theory is
developed for the case of a 2AFC task for arbitrary distributions of target,
distractors, and noise. This theory is applicable for search that is based on
features that wrap around, like orientation, as well as search for standard
features like Juminance and size. The development of this theory closely
follows the development of standard signal-detection theory, except that
this theory makes fewer early assumptions about the distributions of target
and distractor observations. The development of the theory for a yes—no
task proceeds along similar lines but with a different criterion for the
decision (see Palmer et al., 1993, for development of a yes—no decision
criterion under more restrictive assumptions about the distributions of
target and distractor observations).

In the basic SDT model, the observer makes observations of the features
of each of n elements in the display. If the vector of n feature estimates is
assumed to be Z, and m, is the ground-truth message that the ith element is
the target (i.e., if the target is in Location 3, then m; is true, and all other
m; are false), then the ideal observer criterion states that an observer should
pick element I as the target if

p(miz) > p(m%) for all j # i, (A1)
Using Bayes’s rule, this can be written as
P(Em)P(m)/P(Z) > p(Em)P(m)IP(E) ¥ j# i (A2)

and, assuming P(m,) = P(m,) for all i and j (each element of the display is
equally likely to be the target) and simplifying, the criterion becomes

p(Em) > p(Elm) Vj+#i (A3)

The n observations are independent, thus

P(i!mi) =p(Z, = z,]m;)p(Z; = zlm)- - -P(Z, = z,)m), (A4)

where p(Z, = zj]m,-) is the probability that the observation for the jth
element in the display has value 2z, given that the ith element is the target.

Forj # i, p(Z, = zj|mi) is just the probability of drawing value z; from
a distribution of distractor observations. All distractor observations are
assumed to be drawn from the same distribution, f, independent of which-
ever element is being observed. (Multiple distractor types are accommo-
dated by making this distribution multimodal; see Figure A1. This accom-
modation of multiple distractor types represents a minor, though
straightforward, deviation from standard development of signal-detection
theory models.) Similarly, p(Z; = z,|m,) is the probability of drawing value
z; from the distribution of target observations, g. Then the criterion be-
comes

Az)fz)- - -g(z)- - ‘ﬂZj)‘ - Rz
> fzfz) - -Az) - gz} - Az) Vj#i

Canceling terms that appear on both sides of the inequality (assuming f and
g are strictly positive functions, as is the case for all modeling in this
article), the criterion becomes

&(z)flz) > flz)g(z)

This equation specifies a decision region, Z.uon C R For points (z,,
z;) within that decision region, it is more likely that the ith element is a
target and the jth element is a distractor than the ith element is a distractor
and the jth element is a target. For (z, 2;) € Zycision: the ith element with
observation z; “wins” in the pairwise comparison with an element with
observation z, This parallels closely the usual application of detection
theory to modeling visual search, except that as more general distributions
of distractors are allowed, more general decision regions need to be
considered in the development that follows.

Equation A6 means that an observer can make the maximum-likelihood
decision about which element is the target by making a number of simple
comparisons between pairs of observations. The maximum-likelihood de-
cision involves solving a number of two-dimensional problems as opposed
to n-dimensional problems. An ideal observer decides that the ith element
is the target if, for each j # i the point (z, z;) falls within the decision
region Zg, iion- In other words, an ideal observer decides that the ith
element is the target if it “wins” in all paired comparisons with other
observations.
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Figure Al. Distributions of target and distractor observations for homogeneous distractors (A} and heteroge-

neous distractors (B; three equaily likely distractor types, as in Experiments 1 and 2). In all cases, the observation
noise is Gaussian. Solid curves represent distributions of target observations: dashed curves represent distribu-

tions of distractor observations.

(Appendix continues)
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The decision region is a function of only fand g, the distributions of the
target and distractor observations: it is not a function of i or j (the elements
that are observed). So, the same decision region is used for each of the
paired comparisons. Three sample decision regions are shown in Figure
A2. For homogeneous distractors, with additive, normally distributed noise
in the observations of both target and distractors, f ~ NM(up, o) and g~
N(pp o). In this case, when My > jup, the decision region Z,,.,,.., has been
shown to be equal to {(z, 3) 1 4 > g}, This decision region, shown in
Figure A2a, has led to the common maximum rule for visual search. For a
2AFC task, this rule says that the optimal decision is to pick the display that
elicits the largest observation as the one containing the target (Green &
Swets, 1966).

For the experiments in this article, the task is an orientation search task.
Unlike features with linear distributions, such as line length or luminance,
orientation distributions wrap around. Furthermore, in Experiment 3, there
is a target at 0° with distractors at +20°. Clearly, without using a different
internal representation of the observations, the maximum rule is not the
optimal rule for modeling our experiments. The more general ideal ob-
server criterion given in Equation A6 must be used. This is done numer-
ically, rather than analytically, as described below.

First, the decision region must be found numerically. For this, some
range of possible pairs of observations (z, z;) is selected. For a distribution
of line segment orientation, it makes sense to sample within the range z, A
€ [~90°, 90°), because an orientation of —90° — A is the same as an
orientation of 90° — A. The two-dimensional image Ty(z, z) = 8z is
then calculated for each pair of values (2, 2;). The transpose of this image,
T{z, z) = Tz, z.), gives Az)g(z). From Equation A6, the decision region
Zaecision 18 equal t0 {(z, 2) : T}z, 2) > Tz, )}

Figure A2a depicted a typical decision region for homogeneous distrac-
tors with normally distributed noise in both target and distractor observa-
tions. Figure A2b shows what such a decision region looks like once
wraparound of angles is accounted for (and the noise is distributed accord-
ing to a wrapped-normal distribution). Figure A2c shows the decision
region for the case of a 0° target, distractors at +20°, with observation
noise distributed according to a wrapped-normal distribution. This corre-
sponds to a minimum absolute value rule, in which one chooses the
stimulus that yields the observation closest to 0° as the one containing the
target. One can analytically show that this rule is optimal for this condition.

The next step is to use the decision region to make predictions of percent
correct response on a 2AFC task. This requires some additional notation, as
follows. If there is a one-dimensional vertical slice through the decision
1egion Zyeision: as shown in Figure A3, then this slice is a function of the
horizontal position, x, of the slice and consists of points S(x) = {y: (x, y) €

A

Zj (mm)
Zj (degrees)

-90 -60 -30

Zj (mm)

Figure A2.

30 60 90
2; {degrees)

ROSENHOLTZ

-90 60 -30 0 30 60 90
Figure A3. A one-dimensional slice through the decision region, shown
for the particular case of observations of orientation and the decision region
of Graph B of Figure A2. The solid line specifies, for observation x, the
observations, y, for which x is more likely to be the target and y the
distractor than vice versa.

Zyecision}- For a given value of x, F(x) = [ s fy)dy gives the probability
of drawing y from the distribution of distractor observations, such that (x,
) falls within the decision region. In other words, given observation x, this
formula represents the probability of getting a distractor observation, y,
such that it is more likely that x came from a target and y from a distractor
than vice versa (i.e., x wins in the pairwise comparison with y). In a similar
manner, then G(x) = [y, g(»)dy, the probability of drawing y from the
distribution of target observations, such that it is more likely that x came
from a target and y from a distractor than vice versa (again, x wins).

In the 2AFC task, there are 7 items in each of two displays, and exactly
one of those displays contains a target element. All of the other elements
are distractors. Without loss of generality, if the target appears in the first
display, then the ideal observer answers incorrectly if it decides that one of
the n distractors in the second display is the target. This happens when that
distractor observation wins in pairwise contests with all of the other
observations from both displays. If that distractor yields observation z then
the probability of drawing distractor observation z, that distractor winning
in pairwise contests with all other distractors, and that distractor winning in
a contest with the target is

Zj (degrees)

90
90 -60 -30 0 30 60 90
2j {degrees)

Example decision regions. A: Homogeneous distractors, observations (e.g., of length, as shown

here) distributed according to a linear statistical distribution, uy > p, This decision region leads to the common
max rule; B: Typical decision region for observations (e.g.. of orientation as shown here) with a directional
distribution when wraparound of angles is accounted for: C: Target = 0°, distractors at +20°, The shaded portion
of each plot indicates the decision region in which observation z, more likely came from the target and z; from

a distractor than vice versa.
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The probability of mistaking one of the distractors for the target is the
integral of this quantity over all possibie values of the observation z The
ideal observer makes an error if any of the n distractors in the second
display is mistaken for the target. Thus, the probability of error is

n j’ LD G(2)dz, (A8)

and the probability of a correct response is

1-n fﬂz)F(z)z"'zG(z)dz (A9)

In the particular case in which f ~ Mup 0), g ~ My o), and By >
K the decision region is as depicted in Figure A2a, and F(7) and G(z) are
just the cumulative distribution functions for distributions fz) and g(z),
respectively. Thus, in this case, Equation A9 reduces to the usual equation
for probability of a correct response (used by, e.g., Palmer et al., 1993).

Below, is the MATLAB ( 1993) code that makes SDT predictions for
percent correct performance on an orientation search task, given functions
Az) and g(z), which represent the distributions of target and distractor
observations, respectively. (I included the program comments to clarify
some aspects of MATLAB notation and functions—the code itself is only
eight lines long.)

% To solve this problem numerically, we must select a
% set of possible pairs of observations, (z1, z2)

% 21 & 22 are matrices of equal size. Each row of 21 and
% each column of 22 is:

% (-90, -89, —88, . . . , 88, 89, 90) .

[21, 22] = neshgrid(~90:90, —90:90) :

% We alsoneed the 1-Dvector of possible observations.
%z is the vector (—90, —89, —88, ., 88, 89, 90).

z = ~90:90;

% Find the decision region.

% Note that “x.*y” indicates pointwise multiplica-

% tion of matrices x and y (each element (i.3) of

% matrix x is multiplied by element (i,3) of matrixy,
% producing a new matrix of the same size as x and y) .

]

Ti = g(Z1) .* £(22};
Tj =Ti'; %¥Tjis the transpose of Ti.
Zdecision = (Ti > Tj);

% Zdecision is a binary matrix, “1" indicating points
% in the decision region, “0” points not in the
% decision region.

% For each value of x, integrate f and g over (x,y) in
% the decision region.

% Note that “sum” computes the sum within each column
% of amatrix, not the sum over the entire matrix.

% Thus F and G are vectors.

F=sum(£f(Z1) .* Zdecision):
G = sum(g(Z1) .* Zdecision);

% Predicted percent correct performance, from Eqn. A9:

Percent_correct =1 — n*sum(f(z) .* FN2n-2) .+ G);
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