Hardcore LATEX Math

RSI 2011 Staff

June 18, 2011

Part I: basic features

- Review
- Theorems and proofs such

Entering math mode

Use $\$ \ldots$. . or $\backslash(\ldots . . \backslash)$ for text math mode and $\backslash[\ldots \backslash]$ or $\$ \$ \ldots \$$ for display math mode:

This sentence refers to integers $\$ \mathrm{n} \$$ and $\backslash(m \backslash)$ and
reminds you that

\[\int_0^\infty $\left.e^{\wedge}\{-t\} d t=1 . \\right]$

This sentence refers to integers n and m and reminds you that

$$
\int_{0}^{\infty} e^{-t} d t=1
$$

It's probably better to use \$...\$ than
(...
), because dollar signs are more traditional, and thus easier to read. But for displayed equations, $$
...
$$ is preferable.

Punctuation

Inline equations should not contain punctuation belonging to the sentence.

Because the ideal \$I\$ contains \$x\$, ...

Displayed equations that end sentences should contain a period.

Therefore, the value of the integral is

$$
\int_0^\infty \(e^{\wedge}\{-t\} d t=1\).
$$

Numbered equations

Use the equation environment to create a numbered equation. Put a label inside it using \label\{foo\} and then use \ref\{foo\} to typeset the equation number. Preferred: You can type \eqref\{foo\} to add parentheses automatically.

It follows that
\begin\{equation\} }
\label\{verywrong\}
6 \times $9=42$.
\end\{equation\} }
From \eqref\{verywrong\} we can deduce we screwed up somewhere.

It follows that

$$
\begin{equation*}
6 \times 9=42 \tag{1}
\end{equation*}
$$

From (1) we can deduce we screwed up somewhere.

Variables

For most variables with one-character names, just type the character in math mode: $\$ \mathrm{x}+\mathrm{y} \$$ for $x+y$.

For Greek letters, backslash their names: $\$ \backslash a l p h a, ~ \ b e t a, ~ \ G a m m a \$ ~$ for α, β, Γ. (There is no $\$ \backslash$ Alpha\$; simply use $\$ \mathrm{~A} \$$.)

For long names, there are two tasteful options:

$$
\mathit\{long_variable_name\} + \text\{roman name\} = 240
$$

$$
\text { long_variable_name }+ \text { roman name }=240
$$

Don't just type a long name into math mode or you'll get

$$
\text { long }_{v} \text { ariable }_{n} a m e .
$$

Variables in other fonts

A \mathbf\{A\}
\mathcal{F} \mathcal\{F\} (capitals only)
$\mathbb{Z} \quad$ \mathbb $\{Z\} \quad$ (capitals only)
$\mathfrak{a b}$ \mathfrak\{ab\}
\mathscr{L} \mathscr\{L\} (capitals only; requires mathrsfs package)
Put only the variable inside the font-changing command:

$$
\mathfrak\{c\}(\mathfrak\{a\} + \mathfrak\{b\})
$$

$$
\mathfrak{c}(\mathfrak{a}+\mathfrak{b})
$$

Roman operators

Many notations like $\sin (x)$ and $\log (x)$ are typeset in upright characters. Say $\backslash \sin (x), \backslash \log (x)$, etc. For comparison, $\sin (x)$ produces $\sin (x)$, which is italicized.

For the condition under \lim, \max, or the like, use a subscript:

$$
\lim_\{x\to \infty \(1 / x=0 \backslash]\)
\[
\lim _{x \rightarrow \infty} 1 / x=0
$$

(Note that subscripts and superscripts which are more than one character need brackets. For instance, 10^10 appears as $10^{1} 0$.)

Defining your own operators

To define your own, say
\DeclareMathOperator\{\spec\}\{Spec\}
in preamble.tex and then use $\$ \backslash$ spec $\mathrm{A}[\mathrm{x}] \$$ for Spec $A[x]$. You
can also type $\$ \backslash$ operatorname $\{S p e c\}$ A $[x] \$$ to get the same result without defining a command.

Big operators

For big operators such as sums (\sum), products (\prod), and integrals (\int), use subscripts and superscripts to get the limits:
$\backslash[$ int_\{1\}^\{\infty $\left.\} \backslash f r a c\{d x\}\left\{x^{\wedge} 2\right\}=1 . \backslash\right]$

$$
\int_{1}^{\infty} \frac{d x}{x^{2}}=1
$$

$\backslash[\backslash$ sum_\{k=1\}^\{\infty $\left.\} \backslash f r a c\{1\}\left\{k^{\wedge} 2\right\}=\backslash f r a c\{\backslash p i \wedge 2\}\{6\} . \backslash\right]$

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Theorems and such

After a couple of declarations, you can do this:
\begin\{theorem\} }
Herding cats is hard.
\end\{theorem\} }
Theorem 1. Herding cats is hard.
\begin\{lemma\}[Smith, 1972] }
Herding alligators is harder,
and much more dangerous besides.
\end\{lemma\} }
Lemma 1 (Smith, 1972). Herding alligators is harder, and much more dangerous besides.

Creating theorem types

Before using theorem and lemma, I had to do this:
\newtheorem\{theorem\}\{Theorem\}
\newtheorem\{lemma\}\{Lemma\}

The first argument is the internal name, so the word you put in the \begin\{\} and \end\{\} statements. The second argument is } the external name, so it appears in the document before the number.

Each theorem type has its own counter (hence Theorem 1 and Lemma 1 in the previous example).

Put these declarations in preamble.tex.

Several types, one counter

\newtheorem\{prop\}\{Proposition\}
\newtheorem\{propdef\}[prop] \{Proposition-Definition\}

The optional argument [prop] says that Proposition-Definitions should be numbered in the same series as Propositions.
\begin\{prop\}[Lucas, 1977] }
Swordplay obviates acting.
\end\{prop\} }
\begin\{propdef\}[Lucas, 1999] }
There exist painfully inane characters. A maximal such character in a film is \emph\{of Jar-Jar type\}.
\end\{propdef\} }

Several times, one counter (continued)

Proposition-Definitions and Propositions are not numbered separately:
Proposition 1 (Lucas, 1977). Swordplay obviates acting.
Proposition-Definition 2 (Lucas, 1999). There exist painfully inane characters. A maximal such character in a film is of Jar-Jar type.

Note also that we used emph instead of textit.

Counting within sections, subsections, etc.

You can do
\newtheorem\{remark\}\{Remark\}[section]
to make Remarks numbered separately within each section ("Remark 5.3" for the third Remark in Section 5).

Similarly \newtheorem\{remark\}\{Remark\}[subsection] would make "Remark 5.2.1" and the like.

More with theorems: styles and numbering

You can use three built-in "styles" to specify how you want your theorem heading to appear. You can also define your own if these aren't enough. Additionally, using an $*$ makes a theorem type unnumbered.
\theoremstyle\{plain\}\% default
\newtheorem\{thm\}\{Theorem\}[section]
\newtheorem\{lem\} [thm] \{Lemma\}
\newtheorem\{prop\} [thm] \{Proposition\}
\newtheorem*\{cor\}\{Corollary\}
\newtheorem*\{KL\}\{Kleins Lemma\}

More with theorems (continued)

\theoremstyle\{definition\}
\newtheorem\{defn\}\{Definition\}[section]
\newtheorem\{conj\}\{Conjecture\}[section]
\newtheorem\{exmp\}\{Example\}[section]
\theoremstyle\{remark\}
\newtheorem*\{rem\}\{Remark\}
\newtheorem*\{note\} \{Note\}
\newtheorem\{case\}\{Case\}

Proof environment

The proof environment automatically places a QED symbol at the end of your proof:
\begin\{proof\}[Proof of the Main Theorem] } Combining Lemma~\ref\{lem:smith\} and Definition~\ref\{def:smith\}, we see that $\$ \backslash \mathrm{mu}(\mathrm{x})=17 \$$.
\end\{proof\} }

Proof of the Main Theorem. Combining Lemma 1 and Definition 3, we see that $\mu(x)=17$.

For some reason, amsmath doesn't appear to contain the proof environment, so you might need to add hm\}topreamble.tex.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Moving the QED

Sometimes, the box appears on an empty line:

Proof.

$$
G(t)=L \gamma!t^{-\gamma}+t^{-\delta} \eta(t)
$$

\begin\{proof\} }
\begin\{equation*\} }
$G(t)=L \backslash g a m m a!\backslash, t `\{-\backslash g a m m a\}+t へ\{-\backslash d e l t a\} \backslash e t a(t)$ \qedhere
\end\{equation*\} }
\end\{proof\} }

Proof.

$$
G(t)=L \gamma!t^{-\gamma}+t^{-\delta} \eta(t)
$$

Part II: breaking and stacking

- multline, for breaking lines in long equations
- gather and align, for several equations in one display
- pmatrix and variants, for matrices
- \substack, for stacking conditions under big operators

Breaking lines in displayed equations

Don't try to use $\backslash \backslash$ to force a line break in a displayed equation. It won't work. Instead, use the multline environment:

```
\begin\{multline\} }
\(\mathrm{X}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g} \backslash \backslash\)
\(+h+i+j+k+l\)
\end\{multline\} }
```

$$
\begin{align*}
X=a+b+c+d+e+f+ & g+h+i+j+k+l+m \\
& +n+o+p+q+r+s+t+u \tag{2}
\end{align*}
$$

The variant multline* gives an unnumbered equation.

In a display, always break the line before a binary operator.

More lines in multline

More than two lines are allowed. The first is flushed left; the last is flushed right; the others are centered.
\begin\{multline*\} }

$$
\begin{aligned}
& X=a+b+c+d+e+f+g+h+i+j+k+l+m \backslash \backslash \\
& +n+o+p+q+r+s+t+u+v \backslash \backslash \\
& +w+x+y+z+1+2+3+4+691
\end{aligned}
$$

$$
\begin{aligned}
& X=a+b+c+d+e+f+g+h+i+j+k+l+m \\
& +n+o+p+q+r+s+t+u+v \\
& \quad+w+x+y+z+1+2+3+4+691
\end{aligned}
$$

Rejustifying multline

Put a line in \shoveleft\{...\} or \shoveright\{...\} to change the justification.
\begin\{multline*\} }
$\mathrm{X}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}+\mathrm{h}+\mathrm{i}+\mathrm{j}+\mathrm{k}+\mathrm{l}+\mathrm{m} \backslash \backslash$
\shoveright $\{+n+o+p+q+r+s+t+u+v\} \backslash \backslash$
$+\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{z}+1+2+3+4+691$
\end\{multline*\} }

$$
\begin{aligned}
X=a+b+c+d+e+f+ & g+h+i+j+k+l+m \\
& +n+o+p+q+r+s+t+u+v \\
+w & +x+y+z+1+2+3+4+691
\end{aligned}
$$

Several equations in one display

You can use the gather (numbered) or gather* (unnumbered) environments to put several equations in a display, each centered independently of the others.
\begin\{gather\} }
\label\{foo\} $\mathrm{x}+\mathrm{y}=\mathrm{z} \backslash \backslash$
\label\{bar\} $\mathrm{a}=\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}$
\end\{gather\} }

$$
\begin{gather*}
x+y=z \tag{3}\\
a=b+c+d+e+f \tag{4}
\end{gather*}
$$

But it is usually more tasteful to align your equations.

Aligned equations

To align several equations in one display, use align (numbered) or align* (unnumbered).
\begin\{align\} }
$f(x) \&=g\left(x^{\wedge} 2\right) \backslash \backslash$
$a+b+c \&=d+e+f$
\end\{align\} }

$$
\begin{align*}
f(x) & =g\left(x^{2}\right) \tag{5}\\
a+b+c & =d+e+f \tag{6}
\end{align*}
$$

Multicolumn align

You can have several aligned columns; use extra ampersands to separate them.
\begin\{align\} }
$\mathrm{x}+\mathrm{y} \&=\mathrm{z}+\mathrm{w} \& \mathrm{a}+\mathrm{b} \&=\mathrm{c}+\mathrm{d} \backslash \backslash$
$X+Y \&=Z+W \& A+B \&=C+D$
\end\{align\} }

$$
\begin{array}{rlrl}
x+y & =z+w & a+b & =c+d \\
X+Y & =Z+W & A+B & =C+D
\end{array}
$$

Align: making only some lines numbered

Option 1: Use \begin\{align\} with \notag just before the
on } the lines you do not want numbered.

Option 2: Use \begin\{align*\} with } \backslash \operatorname { t a g } \{ \} just before the \backslash \backslash on the lines you do want numbered.

```
\begin{align*}
x+1 &= 18 \\
x &= 17 \tag{1}\label{result}
\end{align*}
We can see from \eqref{result} that\ldots
```

$$
\begin{array}{r}
x+1=18 \\
x=17 \tag{1}
\end{array}
$$

We can see from (1) that. .

Cases constructions

\begin\{equation\} }
$F_{-}\{n\}=\backslash$ begin\{cases $\}$
0 \& \text\{if $\$ n=0 \$;\} \backslash \backslash$
1 \& \text\{if $\$ \mathrm{n}=1 \$;\} \backslash \backslash$
$F_{-}\{n-1\}+F_{-}\{n-2\} \& \backslash t e x t\{i f$ \$n $>0 \$$.
\end\{cases\} }
\end\{equation\} }

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \tag{9}\\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}
$$

Matrices

$$
\begin\{pmatrix\} }
\[
\begin{aligned}
& 2 \& 384 \backslash \backslash \\
& 5 \text { \& } 6 \text { \& } 7 \backslash \backslash \\
& 8 \& ~
\end{aligned} \text { \& } 10 \text { \end\{pmatrix\} } v = 0 \text {
$$ }}

\]

$$
\left(\begin{array}{ccc}
2 & 3 & 4 \\
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right) v=0
$$

For square brackets use bmatrix. For single or double vertical lines use vmatrix or Vmatrix respectively.

For small matrices in running text like $\left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right)$:
\$ \backslash bigl (\begin\{smallmatrix\} } 2 \& 3
}
4 \& 5 \end\{smallmatrix\} \bigr)\$

The \substack command

\substack lets you stack expressions in subscripts.
$\backslash[\backslash \min \{\backslash$ substack $\{x$ in $S \backslash \backslash x$ lge 20$\}\} f(x) \backslash]$

$$
\min _{\substack{x \in S \\ x \geq 20}} f(x)
$$

$$
\sum_\{\substack\{ \(\mathrm{a}+\mathrm{b}+\mathrm{c}=20\) \\
\[
a, b, c \backslash g e 0 \backslash \backslash a+2 b \text { \ge } 5\}\} a b c \backslash]
$$

$$
\sum_{\substack{a+b+c=20 \\ a, b, c \geq 0 \\ a+2 b \geq 5}} a b c
$$

Part III: the fine points of looking good

- Math in text
- Dots
- Big delimiters
- Spacing tricks
- Common ugly constructions

Putting it all in math mode

A common mistake:

We see that $\$ \mathrm{x} \$ \mathbf{\$ + \$} \mathbf{\$ y} \$ \mathbf{\$ =} \mathbf{\$} \mathbf{z} \$ \mathbf{\$ + \$} \$ 23 \$$.

We see that $x+y=z+23$.

Put the entire equation or expression in math mode:

We see that $\$ \mathrm{x}+\mathrm{y}=\mathrm{z}+23 \$$.

We see that $x+y=z+23$.

Punctuation around formulae

In text math mode, commas and periods that are part of the sentence should be outside math mode:

Because $\$ \mathrm{f}(\mathrm{a}, \mathrm{b})=0 \$$, it follows that $\$ \mathrm{f}(2 \mathrm{a}, \mathrm{b}-\mathrm{a})=4 \$$.

Because $f(a, b)=0$, it follows that $f(2 a, b-a)=4$.

In display math mode, there should (usually) be a comma, semicolon, or period inside the display.

We find therefore that $\backslash\left[x^{\wedge}\{n\}+y^{\wedge}\{n\} \backslash n e z^{\wedge}\{n\}\right.$. \]

We find therefore that

$$
x^{n}+y^{n} \neq z^{n} .
$$

Dots

The AMS packages have introduced convenient abbreviations for different kinds of dots in math mode. This is a good idea, since then it is possible to change all of the style consistently throughout a document by adding a single line to the preamble (instead of doing a search and replace potentially across several files). Here they are:

- \dotsc for dots with commas, as in \$a_1, \dotsc, a_n\$ for a_{1}, \ldots, a_{n};
- \dotsm for dots with multiplication, as in $\$ 1$ \cdot 2 \dotsm $n \$$ for $1 \cdot 2 \cdots n$;

More dots

- \dotsb for dots with binary operators or relations, as in $\$ 1+\backslash$ dotsb $+\mathrm{n} \$$ for $1+\cdots+n$;
- \dotsi for dots with integrals, as in $$
\int_A \int_B \dotsi \int_Z
$$ for

$$
\int_{A} \int_{B} \cdots \int_{Z}
$$

- \dotso for "other."

Even more dots

- In text mode just use \dots; it'll make something like this...
- To force low horizontal dots in math mode, use ···.
- To force centered horizontal dots in math mode, use \cdots.
- In matrices with rows or columns left out, you may need \vdots (:) and \ddots ($\cdot \cdot$) as well.

Dots in a matrix

$$
\begin\{matrix\} }
a_\{11\} \& \cdots \& a_\{1n\} \\
\vdots \& \ddots \& \vdots \\
a_\{n1\} \& \cdots \& a_\{nn\}
\end\{matrix\}
$$ }

$$
\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}
$$

Delimiter height, part 1: automatic expansion

Using \left and \right in front of delimiters (parentheses, brackets, etc.) makes them expand to enclose a tall expression (fraction, sum, integral, etc.).

Thus $\$ \backslash \operatorname{left}\left(\backslash f r a c\left\{x^{\wedge} 2\right\}\left\{y^{\wedge} 2\right\} \backslash r i g h t\right) \$$ gives $\left(\frac{x^{2}}{y^{2}}\right)$.
By contrast $\$\left(\backslash f r a c\left\{x^{\wedge} 2\right\}\left\{y^{\wedge} 2\right\}\right) \$$ gives $\left(\frac{x^{2}}{y^{2}}\right)$.
\left and \right must be properly nested.

Delimiter height, part 2: doing it yourself

You can (and sometimes should) choose the size yourself:
\$(···)\$
\$\bigl(···\bigr)\$
\$\Bigl(···\Bigr)\$
\$\biggl(···\biggl)\$
\$\Biggl(···\Biggr)\$

These need not be properly nested (so be careful).

Delimiter height, part 3: examples

$f \backslash \operatorname{bigl}((x+1) へ\{4\}+1 \backslash b i g r)$

$$
f\left((x+1)^{4}+1\right)
$$

\biggl(\sum_\{n\ge 1\} a_\{n\} n^\{-s\}\biggr)^2

$$
\left(\sum_{n \geq 1} a_{n} n^{-s}\right)^{2}
$$

Spacing adjustments

Normally ${ }^{L A T} T^{X}$ puts tasteful amounts of whitespace into expressions without your help. In certain situations, though, you can make formulae look neater by adding or deleting space.

-
, — thin space (\$a
,b\$ is $a b$)
- \! - thin backspace ($\$ \mathrm{a} \backslash \mathrm{b}$ b is $a b$)

Example. The code $\$ x^{\wedge}\{\mathrm{n}\} / \mathrm{n}!\$$ gives $x^{n} / n!$, with an apparent gap between the exponent and slash. Better is $\$ x^{\wedge}\{n\} \backslash!/ n!\$$, which gives x^{n} / n !.

Spacing adjustments in integrals

Multiple integrals sometimes look bad without a bit of backspacing ($\backslash!$). A thin space (\backslash,) before a differential is often tasteful.

$$
\int_\{0\}^\{2\pi\}\! ! !
\[
\backslash \text { int_\{0\}^\{\infty\} } e^{\left.\wedge\left\{-r^{\wedge} 2\right\} r \backslash, d r \backslash, d \backslash \text { theta }=\backslash p i \backslash\right]}
$$

$$
\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\pi
$$

Ugly mistakes

- Italicizing text by putting it in math mode. This looks awful. Use \emph\{...\} instead: awful.
- Writing long variable names without \mathit\{...\} or \text.
- Putting two displayed equations one after the other. Use an alignment to line up the equality signs and space more tastefully.
- Forgetting to use \left and \right or explicit resizing commands when you put parentheses around a tall formula.

