Hardcore LAT_EX Math

RSI 2011 Staff

June 18, 2011

Part I: basic features

- Review
- Theorems and proofs such

Use \ldots or (\ldots) for text math mode and $[\ldots]$ or

This sentence refers to integers $n\$ and (m) and reminds you that \[\int_0^\infty e^{-t} dt = 1. \]

This sentence refers to integers n and m and reminds you that

$$\int_0^\infty e^{-t} dt = 1.$$

It's probably better to use \ldots than (\ldots) , because dollar signs are more traditional, and thus easier to read. But for displayed equations, $[\ldots]$ is preferable.

Punctuation

Inline equations should not contain punctuation belonging to the sentence.

Because the ideal \$I\$ contains \$x\$, ...

Displayed equations that end sentences should contain a period.

Therefore, the value of the integral is $\left[\int \frac{1}{t^2} e^{-t} dt = 1. \right]$

Use the equation environment to create a numbered equation. Put a label inside it using \label{foo} and then use \ref{foo} to typeset the equation number. *Preferred:* You can type \eqref{foo} to add parentheses automatically.

It follows that \begin{equation} \label{verywrong} 6 \times 9 = 42. \end{equation} From \eqref{verywrong} we can deduce we screwed up somewhere.

It follows that

$$6 \times 9 = 42. \tag{1}$$

From (1) we can deduce we screwed up somewhere.

For most variables with one-character names, just type the character in math mode: x + y for x + y.

For Greek letters, backslash their names: $\lambda \beta$, Γ . (There is no $\lambda \beta$; simply use \$A\$.)

For long names, there are two tasteful options:

\[\mathit{long_variable_name} + \text{roman name} = 240 \]

 $long_variable_name + roman name = 240$

Don't just type a long name into math mode or you'll get $long_variable_name.$

Variables in other fonts

- $A \quad \texttt{Mathbf}{A}$
- $\mathcal{F} \setminus \mathsf{mathcal}\{F\}$ (capitals only)
- $\mathbb{Z} \quad \text{(capitals only)}$
- $ab \mathfrak{ab}$
- $\mathscr{L} \quad \text{(capitals only; requires mathrsfs package)}$

Put only the variable inside the font-changing command:

```
[ \\athfrak{c}(\\mathfrak{a} + \\mathfrak{b}) ]
```

 $\mathfrak{c}(\mathfrak{a} + \mathfrak{b})$

Many notations like sin(x) and log(x) are typeset in upright characters. Say sin(x), log(x), etc. For comparison, sin(x) produces sin(x), which is italicized.

For the condition under \lim, \max, or the like, use a subscript:

```
\left[ \lim_{x \to 0} \frac{x}{to} \right]
```

 $\lim_{x \to \infty} 1/x = 0$

(Note that subscripts and superscripts which are more than one character need brackets. For instance, 10^{10} appears as 10^{10} .)

Defining your own operators

To define your own, say

\DeclareMathOperator{\spec}{Spec}

in preamble.tex and then use $\spec A[x]$ for Spec A[x]. You can also type $\spec A[x]$ operatorname{Spec} A[x] to get the same result without defining a command.

Big operators

For big operators such as sums (\sum), products (\prod), and integrals (\int), use subscripts and superscripts to get the limits:

 $[\int \frac{1}^{ \int \frac{x^2}{x^2} = 1. }$

$$\int_{1}^{\infty} \frac{dx}{x^2} = 1.$$

 $[\ \[\ k=1\] \ \[\ k=1\] \$

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

After a couple of declarations, you can do this:

\begin{theorem}
Herding cats is hard.
\end{theorem}
Theorem 1. Herding cats is hard.

\begin{lemma}[Smith, 1972]
Herding alligators is harder,
and much more dangerous besides.
\end{lemma}
Lemma 1 (Smith, 1972). Herding alligators is harder, and much
more dangerous besides.

Before using theorem and lemma, I had to do this:

```
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
```

The first argument is the internal name, so the word you put in the \begin{} and \end{} statements. The second argument is the external name, so it appears in the document before the number.

Each theorem type has its own counter (hence Theorem 1 and Lemma 1 in the previous example).

Put these declarations in preamble.tex.

```
\newtheorem{prop}{Proposition}
\newtheorem{propdef}[prop]{Proposition-Definition}
```

The optional argument [prop] says that Proposition-Definitions should be numbered in the same series as Propositions.

```
\begin{prop}[Lucas, 1977]
Swordplay obviates acting.
\end{prop}
\begin{propdef}[Lucas, 1999]
There exist painfully inane characters. A maximal such
character in a film is \emph{of Jar-Jar type}.
\end{propdef}
```

Several times, one counter (continued)

Proposition-Definitions and Propositions are *not* numbered separately:
Proposition 1 (Lucas, 1977). Swordplay obviates acting.
Proposition-Definition 2 (Lucas, 1999). There exist painfully inane characters. A maximal such character in a film is of Jar-Jar type.

Note also that we used emph instead of textit.

Counting within sections, subsections, etc.

You can do

\newtheorem{remark}{Remark}[section]

to make Remarks numbered separately within each section ("Remark 5.3" for the third Remark in Section 5).

Similarly \newtheorem{remark}{Remark}[subsection] would make "Remark 5.2.1" and the like.

More with theorems: styles and numbering

You can use three built-in "styles" to specify how you want your theorem heading to appear. You can also define your own if these aren't enough. Additionally, using an * makes a theorem type unnumbered.

\theoremstyle{plain}% default
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem*{cor}{Corollary}
\newtheorem*{KL}{Kleins Lemma}

More with theorems (continued)

\theoremstyle{definition}
\newtheorem{defn}{Definition}[section]
\newtheorem{conj}{Conjecture}[section]
\newtheorem{exmp}{Example}[section]

\theoremstyle{remark}
\newtheorem*{rem}{Remark}
\newtheorem*{note}{Note}
\newtheorem{case}{Case}

The proof environment automatically places a QED symbol at the end of your proof:

```
\begin{proof}[Proof of the Main Theorem]
Combining Lemma~\ref{lem:smith} and Definition~\ref{def:smith},
we see that $\mu(x)=17$.
\end{proof}
```

Proof of the Main Theorem. Combining Lemma 1 and Definition 3, we see that $\mu(x) = 17$.

For some reason, amsmath doesn't appear to contain the proof environment, so you might need to add \usepackage{amsthm} to preamble.tex.

Moving the QED

Sometimes, the box appears on an empty line:

Proof.

$$G(t) = L\gamma! t^{-\gamma} + t^{-\delta}\eta(t)$$

Proof.

$$G(t) = L\gamma! t^{-\gamma} + t^{-\delta}\eta(t)$$

Part II: breaking and stacking

- multline, for breaking lines in long equations
- gather and align, for several equations in one display
- pmatrix and variants, for matrices
- \substack, for stacking conditions under big operators

Breaking lines in displayed equations

Don't try to use \\ to force a line break in a displayed equation. It won't work. Instead, use the multline environment:

\begin{multline}
X = a + b + c + d + e + f + g\\
+ h + i + j + k + l
\end{multline}

$$X = a + b + c + d + e + f + g + h + i + j + k + l + m$$

+ n + o + p + q + r + s + t + u (2)

The variant multline* gives an unnumbered equation.

In a display, always break the line *before* a binary operator.

More than two lines are allowed. The first is flushed left; the last is flushed right; the others are centered.

 $\begin{aligned} & \text{begin}\{\text{multline}*\}\\ X = a + b + c + d + e + f + g + h + i + j + k + l + m \\ & + n + o + p + q + r + s + t + u + v \\ & + w + x + y + z + 1 + 2 + 3 + 4 + 691\\ & \text{bed}\{\text{multline}*\}\\ X = a + b + c + d + e + f + g + h + i + j + k + l + m \\ & + n + o + p + q + r + s + t + u + v \\ & + w + x + y + z + 1 + 2 + 3 + 4 + 691 \end{aligned}$

Rejustifying multline

Put a line in \shoveleft{...} or \shoveright{...} to change the justification.

 $\begin{aligned} & \text{begin{multline*}} \\ X = a + b + c + d + e + f + g + h + i + j + k + l + m \\ & \text{shoveright} + n + o + p + q + r + s + t + u + v \\ & + w + x + y + z + 1 + 2 + 3 + 4 + 691 \\ & \text{bed{multline*}} \end{aligned}$

You can use the gather (numbered) or gather* (unnumbered) environments to put several equations in a display, each centered independently of the others.

```
\begin{gather}
\label{foo} x + y = z\\
\label{bar} a = b + c + d + e + f
\end{gather}
```

$$x + y = z \tag{3}$$
$$a = b + c + d + e + f \tag{4}$$

But it is usually more tasteful to align your equations.

Aligned equations

To align several equations in one display, use align (numbered) or align* (unnumbered).

\begin{align}
f(x) &= g(x^2)\\
a + b + c &= d + e + f
\end{align}

a

$$f(x) = g(x^2)$$
 (5)
+ b + c = d + e + f (6)

Multicolumn align

You can have several aligned columns; use extra ampersands to separate them.

\begin{align}
x + y &= z + w & a + b &= c + d\\
X + Y &= Z + W & A + B &= C + D
\end{align}

$$x + y = z + w \qquad a + b = c + d \qquad (7)$$
$$X + Y = Z + W \qquad A + B = C + D \qquad (8)$$

Align: making only some lines numbered

Option 1: Use \begin{align} with \notag just before the \\ on the lines you do not want numbered.

Option 2: Use $\begin{align*} with \tag{} just before the \ on the lines you do want numbered.$

```
\begin{align*}
x+1 &= 18 \\
x &= 17 \tag{1}\label{result}
\end{align*}
We can see from \eqref{result} that\ldots
```

$$\begin{aligned} x + 1 &= 18 \\ x &= 17 \end{aligned} \tag{1}$$

We can see from (1) that...

Cases constructions

```
\begin{equation}
F_{n} = \begin{cases}
0 & \text{if $n = 0$;}\\
1 & \text{if $n = 1$;}\\
F_{n - 1} + F_{n - 2} & \text{if $n > 0$.}
\end{cases}
\end{equation}
```

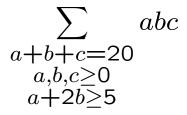
$$F_{n} = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n > 1. \end{cases}$$
(9)

```
\[ \begin{pmatrix}
    2 & 3 & 4\\
    5 & 6 & 7\\
    8 & 9 & 10 \end{pmatrix} v = 0 \]
```

$$\begin{pmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} v = 0$$

For square brackets use bmatrix. For single or double vertical lines use vmatrix or Vmatrix respectively.

For small matrices in running text like $\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$:


```
$\bigl( \begin{smallmatrix} 2 & 3 \\
4 & 5 \end{smallmatrix} \bigr)$
```

\substack lets you stack expressions in subscripts.

 $[\min_{\sum x \in S} (x \in S) f(x)]$

 $\min_{\substack{x \in S \\ x \ge 20}} f(x)$

\[\sum_{\substack{ a + b + c = 20 \\
 a,b,c \ge 0 \\ a + 2b \ge 5 }} abc \]

Part III: the fine points of looking good

- Math in text
- Dots
- Big delimiters
- Spacing tricks
- Common ugly constructions

Putting it all in math mode

A common mistake:

We see that \$x\$ \$+\$ \$y\$ \$=\$ \$z\$ \$+\$ \$23\$.

We see that x + y = z + 23.

Put the *entire equation or expression* in math mode:

We see that x + y = z + 23.

We see that x + y = z + 23.

Punctuation around formulae

In *text math mode*, commas and periods that are part of the sentence should be outside math mode:

Because f(a,b) = 0, it follows that f(2a, b-a) = 4.

Because f(a,b) = 0, it follows that f(2a, b - a) = 4.

In *display math mode*, there should (usually) be a comma, semicolon, or period *inside* the display.

We find therefore that $[x^{n} + y^{n} \le z^{n}.]$

We find therefore that

$$x^n + y^n \neq z^n.$$

The AMS packages have introduced convenient abbreviations for different kinds of dots in math mode. This is a good idea, since then it is possible to change all of the style consistently throughout a document by adding a single line to the preamble (instead of doing a search and replace potentially across several files). Here they are:

- \dotsc for dots with commas, as in a_1 , \dotsc, a_n for a_1, \ldots, a_n ;
- \dotsm for dots with multiplication, as in \$1 \cdot 2 \dotsm n\$ for $1 \cdot 2 \cdots n$;

More dots

- \dotsb for dots with binary operators or relations, as in 1 + dotsb + n for $1 + \cdots + n$;
- \dotsi for dots with integrals, as in
 \[\int_A \int_B \dotsi \int_Z \] for

$$\int_A \int_B \cdots \int_Z;$$

• \dotso for "other."

Even more dots

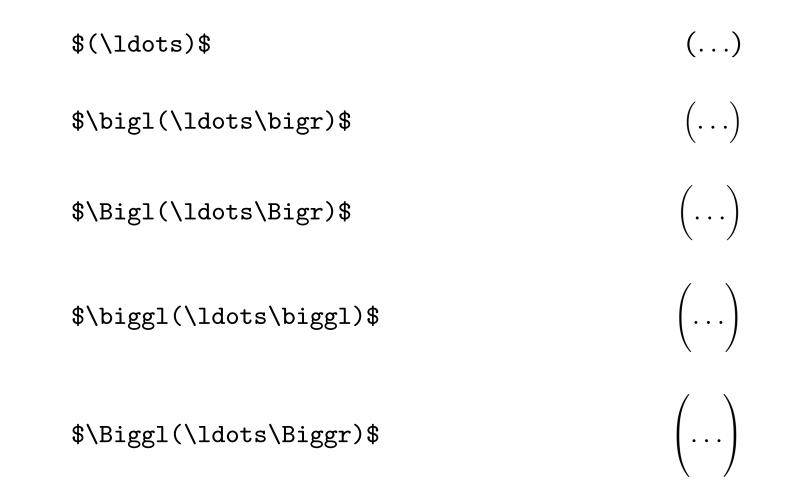
- In text mode just use \dots; it'll make something like this...
- To force low horizontal dots in math mode, use \ldots.
- To force centered horizontal dots in math mode, use \cdots.
- In matrices with rows or columns left out, you may need \vdots (:) and \ddots (...) as well.

Dots in a matrix

```
\[ \begin{matrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{matrix} \]
```

Delimiter height, part 1: automatic expansion

Using \left and \right in front of delimiters (parentheses, brackets, etc.) makes them expand to enclose a tall expression (fraction, sum, integral, etc.).


Thus
$$\left(\frac{x^2}{y^2}\right)$$
.

By contrast
$$(\frac{x^2}{y^2})$$
, gives $(\frac{x^2}{y^2})$.

\left and \right must be properly nested.

Delimiter height, part 2: doing it yourself

You can (and sometimes should) choose the size yourself:

These need not be properly nested (so be careful).

Delimiter height, part 3: examples

 $f \log((x + 1)^{4} + 1 \log)$

 $f\left((x+1)^4+1\right)$

 $\biggl(\sum_{n\ge 1} a_{n} n^{-s}\biggr)^2$

$$\left(\sum_{n\geq 1} a_n n^{-s}\right)^2$$

Normally LAT_EX puts tasteful amounts of whitespace into expressions without your help. In certain situations, though, you can make formulae look neater by adding or deleting space.

- \, thin space (a, b\$ is ab)
- $\!$ thin backspace ($a\!b$ is ab)

Example. The code $x^{n}/n!$ gives $x^{n}/n!$, with an apparent gap between the exponent and slash. Better is $x^{n}/n!$, which gives $x^{n}/n!$.

Spacing adjustments in integrals

Multiple integrals sometimes look bad without a bit of backspacing $(\!)$. A thin space $(\,)$ before a differential is often tasteful.

\[\int_{0}^{2\pi}\!\!
 \int_{0}^{\infty} e^{-r^2}r\,dr\,d\theta = \pi \]

$$\int_0^{2\pi} \int_0^\infty e^{-r^2} r \, dr \, d\theta = \pi$$

Ugly mistakes

- Italicizing text by putting it in math mode. This looks *awful*.
 Use \emph{...} instead: *awful*.
- Writing long variable names without \mathit{...} or \text.
- Putting two displayed equations one after the other. Use an alignment to line up the equality signs and space more tastefully.
- Forgetting to use \left and \right or explicit resizing commands when you put parentheses around a tall formula.