
Job Scheduling to Improve Running Time on a Set of
Parallel Processors

Jared Bass

under the direction of
Vahab Mirrokni

Massachusetts Institute of Technology

Research Science Institute
August 1, 2002

Abstract

When more than one processor is available to run a program, we can decrease the total

computation time by running certain jobs in parallel. Given a set of jobs and their inter-

dependencies, the general problem is to minimize the total computation time by correctly

scheduling these jobs on processors. In all but a few cases this problem is NP-complete. We

develop polynomial-time heuristic algorithms to approximate the optimal solution within a

certain factor. We suggest several such algorithms here involvingmintime priority functions.

1 Introduction

Given a multiprocessor system, it is often possible to schedule a program to run in less time

than it would run on a single processor. In a simple case, if a program is divided into two

roughly equal independent halves then each half could be executed on one processor and the

results from each half could then be combined at the end if necessary. This would divide

the computing time by two. When more processors are available, more improvements are

possible; thus, given a program and a multiprocessor computer, the problem is to schedule

the program so that it finishes as quickly as possible.

Unlike in the example above, however, many large programs have a huge number of

interconnected parts, some computers have large networks of processors, and in general it is

never that simple. In fact, the instances of this problem that are most important to real life

and have the most applications are NP-complete.

Many polynomial time heuristic algorithms have been developed to approximate the

optimal solution to the general scheduling problem. Once an estimate is made, it is very

important to know how good an approximation it is for a general case. It is desirable for

the length of the schedule obtained to be within a certain (constant) factor of the length of

the optimal solution. If ω is the running time of the schedule found by an algorithm, ω0 is

the optimal running time of the program, and ω
ω0

≤ k for all possible inputs, then k is an

approximation ratio of the algorithm (we can also call this a k approximation algorithm). If

there exists a case in which ω
ω0
= k, this bound is tight.

1.1 Problem Statement

A program is separated into a series of jobs, which may be divided among the processors

and which also have a set of precedence constraints: output from one job may be needed

for another, so the receiving job must wait for the first job to finish. These constraints

1

are represented by a directed acyclic graph (DAG) in which vertices are jobs and edges

are directed from one job to any others which require information following its completion.

Lengths of time are measured in computational cycles unless otherwise stated.

Each job vi has associated characteristics. pi is the length or execution time of vi.

delay(vi, vj) is the time delay necessary between the completion of job vi for information to

be sent to job vj. This accounts for pipelining in the program, in which one processor is

able to implement parallel processing within itself. After the first job of a pipelined series

finishes, a second part of the processor may finish the series while the part necessary to begin

a new job is free. Information from the completion of vi may only be used after all separate

computations in vi have been completed. If vj requires information from vi in order to be

run, then vi is a predecessor or parent of vj, and vj is a child of job vi. These terms are

taken from the graph-theoretical representation of the job priorities.

The set of processors, numbered 1, 2, . . . ,m, has an associated set of communication

delays com(i, j), the amount of time necessary to transfer information from a completed job

on processor i to processor j. In an actual set of processors information does not transfer

instantaneously but must be passed along some channel connecting the processors, so usually

com(i, j) > 0.

There is a standard representation given to general scheduling problems. In problem

α|β|γ, α represents the setup of the processors (generally, Pm is used to represent m identical

parallel processors and in some cases m =∞), β gives a list of constraints (e.g. precedence
constraints, delays, etc.), and γ is the variable to be optimized. In our applications, γ is

Cmax, or the makespan (total running time) of the program.

2

2 Related Works

In many cases, pi is taken to be 1 for all i. This schedules jobs on the most basic level, as it

is impossible for a job to take less than one cycle of computing time. Another assumption

made in this field at large, although generally less accurate, is that the processors form

a complete network with uniform communication delays. Algorithms may be viable for

a wider variety of situations than this, and may possibly work more efficiently, but the

maximum communication delay must be taken into account when obtaining a bound on

the approximation ratio of the algorithm (e.g. [6]). Thus the best obtainable bound on the

performance of an algorithm generally assumes a complete network of processors. The formal

problem statement for this situation is Pm|prec., pi = 1, com(i, j) = ρ|Cmax
1. Heuristics

(strategies to quickly approximate solutions to more difficult problems) generally perform

better for small communication delays (i.e. com(i, j) ≈ pi) than for larger communication

delays.

There is no known constant factor k approximation algorithm (i.e., k does not depend on

any parameter of the specific program to be scheduled) for the general problem mentioned

above, but many specific cases have been shown to have constant approximation factors.

When the precedence graph is constrained to an inforest or outforest there are constant

bounds, and better bounds are possible when pi = 1. Bounded communication delays result

in better approximation factors, and when there are no communication delays there are

algorithms with approximation factors less than 2.

One general problem in this area which has been shown to not be NP-complete is

Pm|prec. = tree, pi = 1, com(i, j) ≤ ρ(constant)|Cmax, as Karger, 2001 [8] solves it in poly-

nomial time. Generalizing the above problem further results in an NP-complete problem.

A more specific problem that has been studied in depth is P3|prec.|Cmax, in which there

1ρ is generally used as the ratio of the maximum communication delay to the minimum job length.

3

are no communication delays. Various 4
3
approximation algorithms have been obtained for

this problem, including those mentioned in Lam, 1977 [2]. This paper generalized for the

Coffman-Graham algorithm on Pm|prec.|Cmax It has also been shown that any list-scheduling

algorithm for this problem has an approximation factor of at most 5
3
([2]). This problem

is NP-complete, but for decades it has not been known whether P3|prec., pi = 1|Cmax is

NP-complete. The best known approximation factor is the one mentioned above.

A commonly used model for heuristics is list-scheduling, in which each job is scheduled

as soon as possible in an empty time slot. If more than one job is available, the job with the

highest priority is chosen first. One example of a priority function is the height of a job, or

the longest path in the precedence graph to a job with no children. Jobs with longer paths

get to start earlier: this decreases a lower bound on the time remaining at each step of the

schedule.

3 Approximations Using mintime

3.1 Simple mintime

The mintime function (mintime definitions come from Mirrokni, 2002[7]) is an attempt to

gain a close approximation of the minimum time remaining after a certain job is executed

for all of its descendants to be executed. It is at least as good an approximation as the

height of a job, and in many cases is closer to the actual minimum execution time (both the

height and mintime are at most the optimal execution time). This will be used as a priority

function in list-scheduling for the general problem Pm|prec., pi, delay(vi, vj), com(i, j)|Cmax.

For each job v (of length pv) with children v1, v2, . . . , vk in decreasing order of delay(v, vi)+

mintime(vi), mintime(v) is computed as follows:

• If v has no children then mintime(v) = pv

4

• Otherwise, let c1, c2, . . . , cm be the communication delays to all other processors
2. Re-

peat the following for i = 1, 2, . . . , k:

1. Find t such that ct is minimum.

2. Set Oi = pv + delay(v, vi) + ct +mintime(vi).

3. Increase ct by pi.

• mintime(v) = maxi Oi

Within this function mintime is used as a priority: jobs that will take the longest to finish

after v will be scheduled with the greatest precedence. A drawback to this mintime is that it

assumes all processors are free beginning from the completion of job v, as are all descendants

of the job. A simple example to show a fault in this is the three-job program with two of

the jobs as parents of the third. The first two jobs will be scheduled on different processors,

say 1 and 2, at the same time and their child will have to wait for com(1, 2) before it can be

scheduled. In the case of intree precedence constraints (i.e. each job has at most one child)

and ρ = 1, this simple algorithm has an additive error of �m−2
2

� (Varvarigou, 1996[4]).
When mintime list-scheduling is applied to P3|prec.|Cmax the performance seems to rival

that of some 4
3
approximation algorithms. The example presented in Lam, 1977 [2] to prove

the tightness of the 4
3
bound for the Coffman-Graham algorithm is scheduled optimally by

the mintime algorithm. No programs with pi = 1 for all vi have yet been found to give

non-optimal solutions to this problem, but no bound better than 5
3
has yet been proved.

3.2 Simple Bound

Any list-scheduling algorithm for the problem P∞|prec., pi = 1, com(i, j) = ρ|Cmax
3 has an

approximation ratio of at most ρ + 1. This is obtained if after each job the next job is

2Since this is a complete network, all times are ρ except for one which is the processor of v and has ct = 0.
3It is not necessary that m = ∞, only that m is very large.

5

. . .

. . .

.

.

.

.

.

.

.

.

ρ+1

x

Figure 1: Schedule of jobs which leads to ρ+ 1 approximation

scheduled as soon as possible but on a different processor. The intuitive view of this is that

putting ρ empty cycles after each job allows all jobs to be scheduled without any further

delays. This bound is tight for this simple mintime function.

To prove the tightness of the bound4, take a precedence graph shown in Figure 1: an

outtree (i.e. each job has at most one parent) with one root node (job) and ρ + 1 linear

branches of x nodes each with x >> ρ. If the root node is scheduled on the first processor,

the next ρ jobs, children of the root, will be scheduled in the next ρ time slots. The final

child of the first job will also be scheduled on this processor: although there has been a

ρ delay so that it could be scheduled anywhere, the order in which processors are checked

would result in this placement. Similarly, if the branches were checked in a particular order

this pattern would repeat and eventually all jobs would be scheduled on a single processor.

The optimal schedule puts one branch on each processor, beginning each as soon as possible.

The running time of the mintime approximation is (ρ + 1)x + 1 while the optimal running

4The only assumption made is that precedence of jobs with equal mintime is chosen by the order in which
they are checked, as is the processor chosen to do a job if more than one is free. This is a very reasonable
assumption to make.

6

time is 1 + ρ+ x, giving a ratio of (ρ+1)x+1
1+ρ+x

→ ρ+ 1 as x → ∞.

3.3 Improved mintime and More Time Bounds

In order to improve the mintime bound, the existing state of scheduled jobs must be con-

sidered. The function mintime(v, p) is a better estimate on the minimum execution time

of an available job on a certain processor p given the current set of scheduled jobs. This

involves trying all possible schedules of children of v and determining which yields the fastest

execution time. It is much more computationally intensive than the simple mintime, but still

runs in polynomial time if the number of children of each job and the number of processors

are constant. By running this process in reverse it is possible to obtain the earliest possible

time a certain job may be run, or its availability time, avtime(v, p).

To calculate mintime(v, q) (processor number p has been replaced with q for clarity):

• If v is a leaf, then for all q, mintime(v, q)=pv.

• Otherwise, consider every possible case of assignments of children of v to processors.
For each assignment:

1. For each processor r, let v1, v2, . . . be the children of v assigned to r.

2. Schedule these jobs such that (for ti the starting time of job vi) maxi(ti+mintime(vi, r))

is minimum, and let this minimum number be Or.

3. Let the value of this assignment be maxall processors r(Or).

• mintime(v, q) is the minimum value of any assignment.

In order for the running time to be polynomial, the number of possible assignments must

be limited. If the number of children of any node and the number of processors are bounded

by constants then the running time is polynomial. Otherwise, it is be non-polynomial in

these numbers.

7

To incorporate these functions into a heuristic algorithm, we first define convenience. A

job v is convenient for a processor q, given the existing state of the program, if avtime(v, q)+

mintime(v, q) is the minimum over all processors. The scheduling algorithm is slightly mod-

ified from list-scheduling, as the priority function changes as the algorithm proceeds. This

second heuristic follows:

• Update avtime for all available jobs.

• For each processor q, take the set of jobs convenient for q: from this set, schedule the
job v with the greatest mintime(v, q) at avtime(v, q) on processor q.

This algorithm takes into account more situations than the original mintime-based list-

scheduling algorithm, but the most basic case of one job with two predecessors is scheduled

“badly” (as it was with the first mintime definition) when large communication delays are

present. These algorithms neglect the fact that although one processor may allow for earlier

execution time, it may be better to wait until later for a more convenient processor to become

available. To this end, we define estimate(v, q) for an available job by the following:

1. Assign job v to processor q at the earliest time possible.

2. Compute the availability time for all instructions.

3. For all instructions u, let value(u) be minall processors p avtime(u, p) +mintime(u, p).

4. estimate(v, q) = maxall jobs u value(u).

Redefine convenience so that a job v is convenient for a processor q if avtime(v, q) +

estimate(v, q) is minimum over all processors. The scheduling algorithm is the same as the

one mentioned above, except now estimate has replaced mintime.

8

4 Partitioning the Program

We now try to obtain a constant factor k approximation algorithm for the general scheduling

problem. Let the precedence graph of a program be G. Define Gρ to be the set of jobs in G

which have avtime at most ρ. Recursively, schedule the graph G as follows

1. Schedule Gρ using a good approximation, for example the algorithm involving estimate

above.

2. After the completion of the last job in Gρ leave all of the next ρ time slots empty.

3. Schedule G/Gρ.

This adds many empty cycles to the program, but communication delays are less im-

portant within each Gρ. Jobs each have avtime at most ρ, and so will be scheduled in

approximately ρ time, faster than it would take for two processors to communicate. It is in

general much easier to schedule short programs quickly (running times of both the scheduling

algorithm and the final program should be fast) than long programs.

If each Gρ were able to be scheduled in at most α
|Gρ|
m
+ βρ+ γh(Gρ) (where h(G) is the

height of a graphG) then an α+β+γ+1 approximation factor is obtainable for this algorithm.

If α, β, and γ are constants then this would lead to a constant factor approximation of the

general scheduling problem. Let k be the maximum number of separate Gρ segments, so

�h(G)
ρ

� ≤ k ≤ h(G)
ρ
+ 1 and kρ ≤ h(G) + ρ since there are at least ρ jobs per Gρ. Adding up

these approximation factors over all Gρ, the final result is that

total running time = ω ≤ α
|G|
m
+ kβρ+ γh(G) + (k − 1)ρ ≤

α
|G|
m
+ (γ + β + 1)h(G) + βρ ≤ (α+ β + γ + 1)ω0 + βρ

9

(where ω0 is the optimal running time) and the βρ term becomes negligible as ω0 becomes

large.

If all jobs in Gρ form an inforest (i.e. a group of intrees), then α = 1, β = 0, and γ = 1

because all jobs may be divided evenly among the processors (each intree in the inforest is

scheduled on one processor) and a set of jobs of at most length h(Gρ) may be scheduled after

the rest of the jobs are finished. This leads to a 3 approximation algorithm.

5 Conclusions and Future Work

The mintime(v) list-scheduling algorithm is an attempt for a good approximation on a

general system of processors. It was improved upon by instead calculating mintime(v, p),

avtime(v, p), and finally estimate(v, p) to gain more intelligent approximations of the optimal

solution. Future work will include finding bounds on the improved mintime heuristics, first

in the specific case of P3|prec.|Cmax.

By partitioning the program into sets of Gρ which run in relatively short amounts of time,

it is possible to obtain a good approximation algorithm after only calculating a bound for a

set of jobs with small maximum avtime. The running time of the algorithm to schedule these

jobs is short, as only very short precedence graphs need to be scheduled. If any constant

values of α, β, and γ (as in Section 4) are found, then the partitioning algorithm described

will have a constant approximation factor.

6 Acknowledgements

I could not have done this without the help of RSI students and alumni readers: the former

for making me feel comfortable enough to delve into my research and the latter for helping

me correct my paper.

10

I would like to thank my tutor, Lisa Powell, who always made sure I was on the right

track. Thanks also belong to my mentor, Vahab Mirrokni, who provided me with many

insightful ideas to explore and left me thinking after every one of our meetings. He helped

me formulate my research and guided me along its exploration. Finally, I would like to

thank the Center for Excellence in Education for giving me the opportunity to participate

in a program such as RSI and meet so many helpful and interesting people.

11

References

[1] Hu, T. C.: Parallel Sequencing and Assembly Line Problems. Yorktown: IBM Research
Center: May 5, 1961.

[2] Lam, Shui and Ravi Sethi: “Worst Case Analysis of Two Scheduling Algorithms.” Siam
J. Comput Vol. 6, No. 3, September 1977.

[3] Lenstra, Jan, et. al.: “The Complexity of Scheduling Trees with Communication De-
lays.” Journal of Algorithms 20, 1996: 157-173.

[4] Varvarigou, Theodora, et. al.: “Scheduling In and Out Forests in the Presence of Com-
munication Delays.” IEEE Transactiond on Parallel and Distributed Systems, Vol. 7,
No. 10, October 1996.

[5] Guinand, F., et. al. “Worst Case Analysis of Lawler’s Algorithm for Scheduling Trees
with Communication Delays.” IEEE Transactiond on Parallel and Distributed Systems,
Vol. 8, No. 10, October 1997.

[6] Munier, A. Approximation Algorithms for Scheduling Trees with General Communica-
tion Delays. Paris: Universite P. et M. Curie, September 22, 1996.

[7] Mirrokni, Vahab, et. al. “A Theoretical and Practical Approach to Instruction Schedul-
ing on Spatial Architectures.” Unpublished manuscript, 2002.

[8] Karger, D. R., et. al. “Parallel Processor Scheduling with Delay Constraints.” ACM-
SIAM Symposium on Discrete Algorithms (SODA), January 2001.

12

