
A Combinatorial Proof of Seymour’s Conjecture for
Regular Oriented Graphs with Regular Outsets O′

a and
O′′

a

Lester Mackey

under the direction of
Ms. Ljudmila Kamenova

Massachusetts Institute of Technology

Research Science Institute
August 1, 2002

Abstract

Let G = (V, E) be a simple, oriented graph with minimum outdegree = s. Let G2

be the digraph having the same vertex set, V , and an arc set: E(G2) = {xy : xy ∈ E

or ∃w ∈ V [xw, wy ∈ E]}. According to Seymour’s conjecture, there exists some vertex

a ∈ G whose outdegree in G2 is at least twice that in G. The validity of this conjecture

is proved for all regular G with regular sets O′
a and O′′

a.
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1 Introduction

1.1 Definitions and Terminology

A graph, G, is a structure composed of a set of points, V , known as vertices and the edges, E,

connecting some subset1 of pairs of these points. Any edge connecting two vertices is adjacent

to those two vertices; two vertices joined by an edge are also adjacent. Here we consider

simple graphs, where no more than one edge connects any two vertices and no loops2 occur.

A graph having every pair of vertices connected by an edge is called a complete graph. When

every edge of a graph is directed by a pair of vertices we have a directed graph (digraph),

and the edges are known as arcs. An oriented graph is a digraph having no bidirected arcs

(symmetric pairs of directed arcs). A complete oriented graph is called a tournament[1].

The outdegree (odeg) of a vertex in a digraph is the number of arcs directed outward

from that point; the indegree is the number of arcs directed inward. The minimum outdegree

(modeg) of a graph or a set of vertices is the smallest outdegree held by any of the vertices.

In a regular graph the outdegree of every vertex is equal; in an almost regular graph no two

outdegrees differ by more than one[1]. The outset of a vertex v, denoted O′
v, is the set of

all vertices to which an outward arc extends from v. The second degree outset, O′′
v , may be

defined as the union of the outsets of all x in O′
v minus O′

v.            

Figure 1: Examples of Oriented Graphs [1]

1This subset may be the null set.
2A degenerate edge connecting a vertex to itself
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Figure 2: Examples of Tournaments [1]

1.2 Seymour’s Conjecture

In 1993 Seymour formulated a conjecture concerning the square of an oriented graph, G =

(V,E). The square of G, G2, is the digraph having the same vertex set, V , and an arc

set, E(G2) containing all arcs ab ∈ E as well as the arc ac for every pair of arcs, ab and

bc ∈ E. The conjecture proposed by Seymour stated, “every oriented graph G has a vertex

whose outdegree in G2 is at least twice its outdegree in G.” A team of two mathematicians,

Dean and Latka, were able to prove its validity for regular tournaments, almost regular

tournaments, and tournaments with minimum outdegree ≤ 5 in 1995. In 1996, Fisher was

able to extend the proof to hold for all tournaments[2].

1.3 Proof Statement

For any regular oriented graph, G = (V,E), with regular sets O′
a and O′′

a for some a ∈ V ,

there exists some vertex whose outdegree at least doubles in G2.

2 Lemmata

Several lemmata will be essential to the main proof. These principles are proved in the

Appendix.

Lemma 1 Among n vertices on a simple, oriented graph, the maximum number of arcs

connecting these vertices is
(

n
2

)
.
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Lemma 2 Let G = (V,E) be a regular oriented graph with |V | = n. Let X = x1, x2, . . . xs

with odeg(xi) = s for all i. For xi, xj ∈ X and y /∈ X let a repeat arc be xjy such that xiy

also exists for j > i. The sum of the number of arcs of the form ab for a, b ∈ X and the

number of repeat arcs has a maximum value of s2 − 	 s+1
2

.

Lemma 3 Let G = (V,E) be an almost regular tournament with |V | = s. |O′′
vi
| ≥ � s−1

2

 for

all vi ∈ V .

Lemma 4 Let Y = (V,E) be an almost regular tournament with |V | = n vertices and

|E| = n(n−1)
2

. If v /∈ Y is outwardly adjacent to � s+1
2

 of these vertices and 	 s+1

2

 ≤ n ≤ s−1,

then the number of vertices in Y also in the second degree outset of v is n − � s+1
2

.

3 The Proof

3.1 An Overview

We attempt to validate, via proof by contradiction, Seymour’s Conjecture for regular oriented

graphs in which some vertex has a regular outset and a regular second degree outset. We first

choose an arbitrary graph G = (V,E) in obeyance of these conditions and let modeg(G) = s.

We assume that Seymour’s Conjecture does not hold. We then consider a vertex a ∈ G

with regular outset and regular second degree outset and establish the range of orders for its

second degree outset, O′′
a. The order of O′′

a is equivalent to the number of new arcs that will

be outwardly directed from a ∈ G2 and must be limited so that odeg(a) does not at least

double. This places the maximum order of O′′
a at s − 1. We note that the smallest order

of O′′
a occurs when the sum of the number of arcs of the form xixj for xi, xj ∈ O′

a and the

number of repeat arcs is maximized. Thus, 	 s+1
2

 ≤ |O′′

a| ≤ s − 1.

To establish a contradiction, we next consider the second degree outsets of vertices xi ∈
O′

a. Potential second degree outlets for some xi include vertices in O′
a (x-outlets), vertices
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in O′′
a (y-outlets) and vertices not in O′

a, O
′′
a (w-outlets). We necessarily minimize the sum of

second degree outlets, as xi may not double in G2. However, we find that the minimal sum of

second degree outlets for some x1 ∈ O′′
a is greater than or equal to s. Thus, odeg(x1) doubles

in G2. This is a contradiction. The initial set is the null set, and Seymour’s Conjecture is

validated for all combinations of s and n.

3.2 The Outset

Let G = (V,E) be a regular oriented graph with some vertex, a, having a regular outset

and regular second degree outset. Assume there is no vertex in G whose outdegree at least

doubles in G2. Let s = modeg(G).

As s = modeg(G), odeg(a) = s. Let {x1, x2, . . . xs} be the outset, O′
a. For each xi, s

outwardly directed arcs exist in E. As s such xi exist, there is a total of s2 arcs directed

outward from O′
a. We define Y as the set of all arcs of the form xiy ∈ E. Y is the sum of

the outsets of all xi; |Y | = s2. The second degree outset, O′′
a, is a subset of Y .

3.3 The Second Degree Outset of a

The order of the second degree outset of a is equivalent to the number of new arcs ay formed

in G2. Thus, to prevent the doubling of odeg(a) in G2, we must limit the size of O′′
a. We

consider two new factors in determining this size: the number of repeats and the number of

x-pairings present in Y .

The set O′′
a was defined as the union of the outsets of all xi minus O′

a. The union of the

outsets of xi is obtained by subtracting all repeat arcs from Y . A repeat arc is xjy ∈ Y when

xiy exists for xi, xj ∈ O′
a, 1 ≤ i, j ≤ s, and j > i for some vertex y. Only the arc xiy need be

counted when adding the arc ay in G2. Similarly, no vertex xj may be counted in O′′
a when

xixj ∈ Y , as xi, xj ∈ O′
a. These x-pairings are eliminated by subtracting O′

a.
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As shown in Lemma 2, these two quantities have a maximum sum of s2 − 	 s+1
2

. The

minimum sum occurs when both terms are 0. The order of O′′
a can now be established as

the order of Y (= s2) minus this sum. This provides the following range: s2 − (s2 −	 s+1
2

) ≤

|O′′
a| ≤ s2. However, there is a better upper bound, as odeg(a) must not double in G2. This

restriction implies that |O′′
a| < |O′

a| and therefore |O′′
a| < s. If not, the total odeg(a) ∈ G

would be greater than or equal to 2s, contradicting our assumption. We can now examine a

more limited range: 	 s+1
2

 ≤ |O′′

a| ≤ s − 1.

3.4 Second Degree Outlets for x1

We now seek to enumerate the second degree outlets, vertices v ∈ O′′
x1

for some x1 ∈ O′
a.

There are three potential sources for such outlets: vertices xj ∈ O′
a, j �= 1 (x-outlets), vertices

yk ∈ O′′
a (y-outlets), and vertices wt /∈ O′

a, O
′′
a (w-outlets). To ensure that odeg(x1) does not

double in G2, we seek to minimize the total number of second degree outlets.

We first consider the w-outlets. Each w-outlet must be inwardly adjacent to some yj ∈ O′′
a,

as wt /∈ O′
a, O

′′
a. The number of arcs from O′′

a adjacent to wt /∈ O′
a, O

′′
a (| �yw|) is limited by

the number of arcs outwardly directed from O′′
a into O′′

a (| �yy|) and from O′′
a into O′

a (| �yx|).
As there are a total of s|O′′

a| arcs outwardly directed from O′′
a,

| �yw| = s|O′′
a| − | �yy| − | �yx|. (1)

If | �yw| arcs are distributed outward from |O′′
a| vertices, there exists at least one vertex,

y1 ∈ O′′
a outwardly adjacent to at least 	 | 
yw|

|O′′
a |
 w-outlets. We choose our x1 such that x1y1 ∈ E.

We see from Equation 1 that the number of w-outlets is minimized by an increase in

the number of arcs adjoining two vertices within O′′
a. For |O′′

a| vertices, | �yy| is maximized at
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|O′′
a |(|O′′

a |−1)
2

(Lemma 2). By substitution,

| �yw| = s|O′′
a| −

|O′′
a|(|O′′

a| − 1)

2
− | �yx|. (2)

An increase in the number of arcs directed outwardly from O′′
a into O′

a is also favorable in

minimizing w-outlets. This increase is equivalent to minimizing the number of arcs directed

outwardly from O′
a into O′′

a or maximizing the number of arcs directed from O′
a into O′

a (| �xx|).
There are a total of s|O′′

a| arcs that may be directed between the sets, O′
a and O′′

a. For a

given number of arcs directed outwardly from O′
a into O′′

a (| �xy|), there are a maximum of

s|O′′
a|− | �xy| arcs directed from O′′

a into O′
a. The terms | �xy| and | �xx| are codependent as they

must sum to s2, the total number of arcs directed outward from O′
a. Thus, | �xy| = s2 − | �xx|.

Substituting, | �yx| = s|O′′
a| − (s2 − | �xx|). As per Lemma 1, the term | �xx| may be maximized

at s(s−1)
2

. This gives | �yx| = s|O′′
a| − (s2 − s(s−1)

2
) = s|O′′

a| − s2 + s(s−1)
2

. Substituting into

Equation 2 and distributing negatives, we have

| �yw| = s|O′′
a| −

|O′′
a|(|O′′

a| − 1)

2
− s|O′′

a|+ s2 − s(s − 1)

2
.

Certain terms cancel such that,

| �yw| = s2 − s(s − 1)

2
− |O′′

a|(|O′′
a| − 1)

2
.

The number of y-outlets and x-outlets in the second degree outset of x1 now immediately

follow. Lemma 4 tells us that the total number arcs gained by x1 in G2 of the form xyl such

that xyk and ykyl exist for yk, yl ∈ O′′
a is |O′′

a| − � s+1
2

. The total number of y-outlets in the

second degree outset of x1 must therefore be |O′′
a| − � s+1

2

. Likewise, Lemma 3 tells us that

for the regular subgraph of O′
a with s(s−1)

2
, the total number of x-outlets in the second degree

outset of xi is at least � s−1
2

.
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3.5 The Contradiction

Having enumerated the minimal combination of magnitudes of x-outlets, y-outlets, and w-

outlets for x1 ∈ O′
a, we now sum the three quantities and compare this value to s. The sum

of the three quantities is equivalent to the order of the second degree outset of x1, whereas

s is the order of the outset of x1. If |O′′
x1
| ≥ |O′

x1
|, then x1 must double in G2. Thus,

	| �yw|
|O′′

a|

+ |O′′

a| − �s + 1

2

+ �s − 1

2

 < s

	s2 − s(s−1)
2

− |O′′
a |(|O′′

a |−1)
2

|O′′
a|


+ |O′′
a| − �s + 1

2

+ �s − 1

2

 < s

	s2 + s

2|O′′
a|

 − |O′′

a| − 1

2
+ |O′′

a| − 1 < s

	s2 + s

2|O′′
a|

+ |O′′

a| − 1

2
< s

	s2 + s

2|O′′
a|

+ |O′′

a| − 1

2
− s < 0

s2 + s

2|O′′
a|

+
|O′′

a| − 1

2
− s < 0

s2 + s + (|O′′
a| − 1)|O′′

a| − 2|O′′
a|s < 0

|O′′
a|2 − (2s + 1)|O′′

a|+ s2 + s < 0.

This is a quadratic in |O′′
a|, so we apply the quadratic formula to solve for the zeroes:

|O′′
a| =

(2s + 1)± √
(2s + 1)2 − 4(s2 + s)

2

|O′′
a| =

(2s + 1)±√
1

2

|O′′
a| =

2s + 1± 1

2
.
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As the quadratic defines a concave up parabola, the inequality |O′′
a|2−(2s+1)|O′′

a|+s2+s < 0

holds when |O′′
a| is between its roots. Thus, x1 doubles when

2s + 1− 1

2
≤ |O′′

a| ≤
2s + 1 + 1

2

s ≤ |O′′
a| ≤ s + 1.

We know that |O′′
a| ≤ s − 1. This is a contradiction. |O′′

x1
| ≥ |O′

x1
|, and our original

assumption is invalid. Thus, Seymour’s Conjecture must hold for all oriented graphs G =

(V,E) with regular outsets O′
a and O′′

a.

4 Conclusion

We have applied a unique combinatorial method to second degree outset size in order to

demonstrate the validity of Seymour’s conjecture for all regular oriented graphs with regular

O′
a and O′′

a for some vertex a. By contradiction, we have proved that, for any such regular

oriented graph G = (V,E) there does indeed exist some vertex in G whose outdegree will at

least double in G2. Further work on this problem could lead to the formulation of algorithm

able to determine the precise vertex whose outdegree must double in each case and perhaps

reveal the presence of two vertices whose outdegrees must at least double in regular oriented

graphs. Moreover, an expansion of this method considering the combination of minimum

outdegree and the number of vertices of any oriented graph shows much potential in proving

Seymour’s Conjecture in its full generality.
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A Proof of Lemma 1

There are n(n − 1) ways to choose two vertices from n vertices to form an arc. However, a

simple graph has no bidirection: both xy and yx cannot exist. Only n(n−1)
2

can be counted.

This quantity is
(

n
2

)
.

B Proof of Lemma 2

We first note that the two aforementioned quantities, that of repeat arcs and that of ab

pairings, are codependent. The total number of arcs outdirected from X is limited to a value

of s2. Thus, the more arcs attributed to one quantity, the less left to be attributed to the

other. We allow r to represent the number of repeats and p to represent the number of ab

pairings and seek to determine the maximum number of repeats that may exist for a given

number of pairings in a formulaic manner.

We next note that the number of repeats is equivalent to the number of instances of

intersection or overlap among outsets of the members of X. Maximum overlap can occur

when the differences among sizes of these sets is minimized. Thus, to obtain maximum

overlap, we look at a distribution of p ab pairings over s vertices that minimizes the differences

in number of outwardly directed arcs assigned to each vertex. This also minimizes the

difference in the number of arcs per vertex that must be adjacent to some y /∈ X. A

distribution in which the number of outward ab pairing arcs for any two vertices differ by

no more than one is achieved by invoking simple division. Divide the p pairings by the s

number of vertices and apply a number of outward arcs equivalent to the quotient of the

division to each arc (�p
s

). Then, distribute the remainder so that no vertex receives more

than one new arc assignment.

Following the assignment of ab pairings, there remain s2−p arcs open to initial instances

and repeats of the form xiy for x ∈ X, y /∈ X. For a given number of arcs, a smaller number
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of initial instances signifies a greater number of repeats. The smallest number of initial

instances is determined by the largest number of outward arcs adjacent to some x ∈ X not

yet assigned inwardly to some y. Following the above distribution, the minimum number

of outward ab pairing arcs assigned to any vertex was �p
s

. Thus, the maximum number of

unassigned arcs outwardly directed from any vertex is s− �p
s

, and this quantity is equal to

the minimum number of initial instances for distinct y /∈ X. All remaining arcs to the order

of s2 − p − (s − �p
s

) may be considered to be repeats.

Thus, the maximum value for r for a given p is s2 − p− s+ �p
s

, but the maximum value

of r + p is needed. As the terms p and −p cancel in this summation, the only remaining

factor to be considered is �p
s

. This factor increases as p is maximized. The maximum

value of p among s vertices is
(

s
2

)
or s(s−1)

2
as proved in Lemma 1. Substituting this value,

r+p = s2−s+�
s(s−1)

2

s

 = s2−(s−� (s−1)

2

). If s is odd, the difference s−� (s−1)

2

 = s− (s−1)

2
=

(s+1)
2

= 	 (s+1)
2


. If s is even, the difference s − � (s−1)
2


 = s − (s−2)
2

= (s+2)
2

= 	 (s+1)
2


. In final

substitution, the maximum value of r + p = s2 − 	 (s+1)
2


.

C Proof of Lemma 3

Case 1: s is odd

In the odd case, there are a total of s(s−1)
2

outwardly directed arcs (Lemma 1) and s

vertices. Thus there are s−1
2

vertices directed outward from each vertex. Some arc connects

every two vertices. If we choose an arbitrary v1 ∈ V , |O′
v1
| = s−1

2
. The remaining s−1

2

vertices must be outwardly adjacent to v1. We assume there is some vertex not in O′
v1

which

is also not in O′′
v1
. This vertex is not inwardly adjacent to any vertex in O′

v1
and thus must

be outwardly adjacent to all vertices in O′
v1
. This vertex thus has an outdegree of s−1

2
+ 1,

which is a contradiction. Therefore, |O′′
v1
| = s−1

2
. Without loss of generality, this holds for

all vi such that |O′′
vi
| = s−1

2
.
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Case 2: s is even

In the even case, there are a total of s(s−1)
2

outwardly directed arcs (Lemma 1) and s

vertices. Thus there are an average of s−1
2

vertices directed outward from each vertex. This

value is not an integer; therefore half of all vertices have an outdegree of s−2
2

and half of s
2
.

Some arc connects every two vertices. If we choose an arbitrary v1 ∈ V , |O′
v1
| = s

2
. The

remaining s−2
2

vertices must be outwardly adjacent to v1. We assume there is some vertex

not in O′
v1

which is also not in O′′
v1
. This vertex is not inwardly adjacent to any vertex in O′

v1

and thus must be outwardly adjacent to all vertices in O′
v1
. This vertex thus has an outdegree

of s
2
+ 1, which is a contradiction. Therefore, |O′′

v1
| = s−2

2
. Without loss of generality, this

holds for all vi with odeg(vi) =
s
2
such that |O′′

vi
| = s−2

2
.

If we choose an arbitrary v1 ∈ V , |O′
v1
| = s−2

2
. The remaining s

2
vertices must be

outwardly adjacent to v1. We assume there are two vertices, v2, v3 not in O′
v1

which are also

not in O′′
v1
. The vertex v2 is not inwardly adjacent to any vertex in O′

v1
and thus must be

outwardly adjacent to all vertices in O′
v1
. This vertex thus has an outdegree of s−2

2
+ 1 = s

2
.

This vertex is not outwardly adjacent to v3; thus v3 is outwardly adjacent to v2 as well

as to all vertices in O′
v1
. The odeg(v3) = s−2

2
+ 2, which is a contradiction. Therefore,

|O′′
v1
| ≥ s−2

2
. Without loss of generality, this holds for all vi with odeg(vi) =

s−2
2

such that

|O′′
vi
| ≥ s−2

2
= � s−1

2

.

D Proof of Lemma 4

The vertex v0 is outwardly adjacent to � s+1
2

 vertices in Y . Assume that there is one vertex

in Y not in O′
v0

which is not in O′′
v0
. This vertex must be outwardly adjacent to the � s+1

2



vertices in O′
v0
. However, the outdegree of every vertex in Y is at most 	n−1

2

. Since,

s − 1 ≥ n, s
2
≥ n+1

2
and � s+1

2

 > 	n−1

2

. This is a contradiction. Thus, all vertices in Y not

in O′
v0

are in O′′
v0
. |O′′

v0
| = n-� s+1

2

.
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