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Abstract

This paper deals with some fundamental questions in the study of the diagonal diophan-

tine equation a1x
k
1+· · ·+asx

k
s = 0 over a finite extension K of the field Qp of p-adic numbers,

namely some new upper bounds on the number of variables that ensure their solvability.



1 Introduction

A basic problem in the study of diophantine equations is that of determining sufficient

conditions for ensuring their solvability. Let p be a prime, let Qp denote the field of p-adic

numbers, and let K be a finite extension of Qp. One of the fundamental questions in the

theory of diophantine equations is, when does a diagonal equation, i.e. an equation of the

form

a1x
k
1 + · · ·+ asx

k
s = 0, (1)

where the coefficients ai are in the ring OK of integers of K, have a non-trivial solution over

K? (By “non-trivial solution”we mean a non-zero vector x = (x1, . . . , xs) ∈ Ks satisfying

(1).) When K = Qp, it is well known [5] that it suffices to have s � k2+1. Generally, suppose

k = ptm, with (m, p) = 1. Let f be the residue class degree of K, and d = (m, pf − 1). The

best known result in the case of arbitrary fields was established by Birch [2] who showed

that for any K, it suffices to have s � (2t + 3)k(d2k)k−1. In 1996, Skinner [1] proved that

when k = pt it suffices to have s � k((k + 1)max(2t,1) − 1) + 1. The original formulation of

Skinner’s result is that the inequality above holds for every k. Unfortunately, it later turned

out that there was an error in Skinner’s proof. In an attempt to reconstruct this result we

have obtained the following three results:

Theorem 1 If s ≥ k((nk + 1)max(2t,1) − 1) + 1, then any equation of the form (1) has a

non-trivial solution over K, where n = [K/Qp].

This statement is in the same range of Skinner’s claim. The result is sharp, when K = Qp

and k = p− 1

Theorem 2 If s ≥ k(pnmax(2t,1)−1)+1, then any equation of the form (1) has a non-trivial

solution over K, where n = [K/Qp].

This statement is an improvement of Skinner’s general claim for k sufficiently large.

Theorem 3 If s ≥ k3 + 1, then any equation of the form (1), satisfying the additional
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restrictions (k, p) = 1 and (ai, p) = 1, has a non-trivial solution.

This statement gives us essential information for the case (k, p) = 1, which was not

treated by Skinner’s method.

2 Notation and preliminaries

In order to describe our new results we need some notation, which we adopt from [1]. We

denote by O the ring of integers of K, p = (π) is the maximal ideal of O, f is the residue class

degree of K, e is the ramification index of p, and t and m are integers such that k = ptm,

with (m, p) = 1. Also, L is the maximal unramified subfield of K, and o is the ring of integers

of L. We recall that {1, π, . . . , πe−1} is an o-basis of O. For more detailed information see

Appendix A.

Let Γ(k) be the least positive integer such that if s ≥ Γ(k), then any equation of the

form (1) is solvable non-trivially over K. By Γ1(k) we denote the least positive integer such

that any equation of the form (1) has a solution satisfying ai �≡ 0 (mod π) for all i.

We say that x is a “non-trivial solution modulo πn” if x = (x1, . . . , xs) ∈ Os is a solution

of (1) modulo πn and if additionally xj �≡ 0 (mod π) for some j. By Φ(k, n) we denote

the least positive integer such that if s ≥ Φ(k, n), then any equation of the form (1) has a

non-trivial solution modulo πn. Throughout the paper, we denote by N any of the integers

kn+ 1, pn or k3 + 1.

2.1 The reduction lemma

The following lemma reduces the proof of our three main results to showing that Φ(k, e) ≤ N .

Recall that e is the ramification index of K over Qp. Then

Lemma 2.1.1 (Skinner [1])

1. Γ(k) ≤ k(Γ1(k)− 1) + 1
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2. Γ1(k) ≤ Φ(k,max(2et, 1))

3. Φ(k, (v + 1)e) ≤ Φ(k, e)Φ(k, ve) ≤ Φ(k, e)v+1 for an arbitrary positive integer v.

4. If Φ(k, e) ≤ N , then Γ(k) ≤ k(Nmax(2t,1) − 1) + 1.

Proof. 1. Using the fact that every element of K can be written in the form x = uπvp(x),

where u is a unit, we can write all the coefficients ai in the form ai = πrik+cibi, where

vp(ai) = rik + ci, with ri ≥ 0, 0 ≤ ci < k and (bi, π) = 1. If s > k(c − 1), then by the

Pigeonhole Principle at least c of the ci are the same. We may assume the corresponding

indices to be i = 1, . . . , c. Thus it suffices to find a non-trivial solutions to the equation

b1x
k
1 + · · ·+ bcx

k
c = 0, (bi, π) = 1. (2)

The existence of a solution is guaranteed as c ≥ Γ1(k).

2. We may assume that ai �≡ 0 (mod π) for all i. Put r = max(1, 2te). If s ≥ Φ(k, r),

then by the definition of Φ(k, r), there exists a non-trivial solution of (1) (mod πr). Let x =

(x1, . . . , xs) be such a solution. We may assume that x1 �≡ 0 (mod π). Choose y2, . . . , ys ∈ o

such that yi ≡ xi (mod πr). Let d =
∑s

i=2 aiy
k
i . Since a1x

k
1 + d ≡ 0 (mod πr), it follows

from Hensel’s Lemma that we can find y1 ∈ o such that y1 ≡ x1 (mod πr) and a1y
k
1 + d = 0.

Thus y = (y1, . . . , ys) is a non-trivial solution of (1).

3. Let h = Φ(k, ve) and l = Φ(k, e) and for j = 0, . . . , l − 1 write

Fj(xj) = ajh+1x
k
jh+1 + · · ·+ a(j+1)hx

k
(j+1)h,

where xj = (xjh+1, . . . , xj+1h). Then (1) becomes

F0(x0) + F1(x1) + · · ·+ Fl−1(xl−1) +

s∑
i=lh+1

aix
k
i = 0.
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Thus, it suffices to find a non-trivial solution to the congruence

F0(x0) + · · ·+ Fl−1(xl−1) ≡ 0 (mod π(v+1)e). (3)

By the definition of Φ(k, ve) there exist non-trivial solutions yj of the l equations

Fj(xj) ≡ 0 (mod πve), j = 0, . . . , l − 1.

Let fi = Fj(yj). Substituting xj = tjyj in (3) we get the new equation

f0t
k
0 + · · ·+ fl−1t

k
l−1 ≡ 0 (mod π(v+1)e), (4)

where fj ≡ 0 (mod πve) for 0 ≤ j < l. From the definition of Φ(k, e) = l, (4) has a non-

trivial solution t = (t0, . . . , tΦ(k,e)−1). Thus, y = (t0y0, . . . , tΦ(k,e)−1yΦ(k,e)−1, 0 . . . , 0) ∈ os is a

non-trivial solution of (1) modulo π(v+1)e.

4. First we consider the case max(2et, 1) = 2et. Substituting r = 2t− 1 in the inequality

in 1., we obtain

Γ(k) ≤ k(Γ1(k)− 1) + 1 ≤ k(Φ(k, 2et)− 1) + 1 ≤ k(Nmax(2t,1) − 1) + 1.

Now let max(2et, 1) = 1. Since Φ(k, r) is an increasing function in r, we have Φ(k, 1) ≤
Φ(k, e) ≤ N , which proves the desired inequality.

2.2 Chevalley-Warning Theorem

In this section we discuss some classical results concerning the solvability of equations over

finite fields.

Let q be a power of a prime number p, and let Fq be a field with q elements. Let also,

Fq[x1, . . . , xn] be the ring of the polynomials in n variables over Fq.

4



In 1935 Artin conjectured that if f(x) ∈ Fq[x1, . . . , xn] satisfying f(0, . . . , 0) = 0 and

n > deg f , then f has at least one non-trivial zero in Kn. Here we shall prove the more

general

Theorem 2.2.1 (Chevalley-Warning, cf.,eg., [8]) Let fi ∈ K[x1, . . . , xn] be polynomials

in n variables such that
∑

deg fi < n, and let V be the set of their common zeros in Fn
q .

Then

Card(V ) ≡ 0 (mod p)

Proof. We use the following

Lemma 2.2.2 Let u be a non-negative integer. The sum S(Xu) =
∑

x∈Fq
xu is equal to

−1 if u ≥ 1 and u is divisible by q − 1; it is equal to 0 otherwise.

Proof. If u = 0, all the terms of the sum are equal to 1; then S(Xu) = q · 1 = 0 because

Fq is of characteristic p. If u ≥ 1 and u is divisible by q − 1, we have 0u = 0 and xu = 1 if

x �= 0. Hence S(Xu) = (q − 1) · 1 = −1.

Finally, if u ≥ 1 and not divisible by q − 1, the fact that F∗
q (The multiplicative group

of non zero elements of Fq is cyclic of order q − 1 shows that there exists y ∈ F∗
q such that

yu �= 1. Then:

S(Xu) =
∑

x∈F∗
q
xu =

∑
x∈F∗

q
yuxu = yuS(Xu),

whence (1− yu)S(Xu) = 0, or S(Xu) = 0.

Now put P =
∏

α(1−f q−1
α ) and let x ∈ Fn

q . If x ∈ V , all the fα(x) are zero and P (x) = 1;

if x �∈ V , one of the fα(x) is nonzero and f q−1
α = 1, hence P (x) = 0. If, for every polynomial

f , we put S(f) =
∑

x∈Fq
f(x), we have

Card(V ) ≡ S(P ) (mod p)

and we reduce the claim to showing that S(P ) = 0.Now the assumption deg fα < n implies

that degP < n(q − 1); thus P is a linear combination of monomials Xu = Xu1
1 · · ·Xun

n with
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∑
ui < n(q− 1). It suffices to prove that S(Xu) = 0 for such monomial Xu, and this follows

from the lemma since at least one ui is smaller than q − 1.

Corollary 2.2.3 If
∑

deg fα < N and if the fα have no constant term, then the fα have

a common non-trivial zero.

2.3 Algebraic number theory lemmas

Before we are able to prove our results, we need some standart algebraic number theory

properties of the ring O and its maximal ideal p.

Lemma 2.3.1 There exists an isomorphism such that pn/pn+1 ∼= O/p.

Proof. Let a �= 0 be an arbitrary ideal of O and x �= 0 an element in a with the smallest

possible value v(x) = n. Then one can write x = uπn, where u is a unit. The last equality

gives the inclusion πnO � a. Now let y be an element of O. We can write y = επm, where ε

is a unit. By our assumption m = v(y) ≥ n, hence y = (επm−n)πn ∈ πnO, so that a = πnO.

The isomorphism results from the correspondence aπn �→ a (mod p).

Lemma 2.3.2 Denoting by |O/(πe)| the number of elements of the quotient O/(πe), we

have

|O/(πe)| = pef = pn.

Proof. This follows upon combining Lemma 2.3.1 with the fact that |O/(π)| = pf and

|O/(πe)| = |O/(π)| . . . |(π)e−1/(π)e|.
Lemma 2.3.3 If x ∈ O and x ≡ 0 (mod π), then x ≡ 0 (mod πe).

Proof. The congruence x ≡ 0 (mod π) is equivalent to x = πx1, where x1 is an element of

O \ o. Then we can write

x1 = x1,0 + x1,1π + · · ·+ x1,e−1π
e−1,
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where x1,i ∈ o. Substituting x1 in x = πx1 we obtain the identity

px1,e−1 − x+ x1,0π + · · ·+ x1,e−2π
e−1 = 0,

which implies px1,e−1 = x, i.e. x ≡ 0 (mod πe).

3 Proof of Theorem 1

By the Reduction Lemma 2.1.1 we only have to show that when s ≥ nk+1, any congruence

of the form

a1x
k
1 + · · ·+ asx

k
s ≡ 0 (mod πe), ai ∈ O, (5)

has a non-trivial solution modulo πe. Since {1, . . . , πe−1} is an o-basis of O we can write

ai = ai,0 + ai,1π + · · ·+ ai,e−1π
e−1.

Now let k = pt. We look for solutions xi only from the ring o. Solving (3) is equivalent to

solving the system

s∑
i

ai,0(x1)
pt ≡ 0 (mod p)

...
s∑
i

ai,e−1(xs)
pt ≡ 0 (mod p)

over o. Since the system consists only congruences modulo p, it suffices to solve it over the

field L(p) = o/(p), which is a field of characteristic p. Because the correspondence x �→ xpt

is an automorphism in L(p), system (6) is equivalent to
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


a1,0 a2,0 . . . as,0

...
. . .

...

a1,e−1 a2,e−1 . . . as,e−1







y1

...

ys




≡ 0 (mod p), (6)

where xpt

i is replaced with yi. Now we wish to find solutions such that yi is an m-th power

for i = 1, . . . , s. By the Chevalley-Warning theorem, if s > em then (6) has a non-trivial

solution over L(p), say (y1, . . . , ys) = (zm
1 , . . . , zm

s ). To summarize, we found x1, . . . , xs not

all zero mod π, such that

a1x
pt

1 + · · ·+ asx
pt

s ≡ 0 (mod πe)

and

xi ≡ zm
i (mod π).

We can divide the set of all xi into two sets. Let these two sets be A, the set of all

solutions xi that are coprime with π, and B, the set of all solutions xj that are divisible by

π. Without loss generality we may assume that A = {x1, . . . , xr} and B = {xr+1, . . . , xs},
where r ∈ N.

Now consider the set A and the polynomial f(X) = Xm − xi, where i = 1, . . . , r. For

every element xi of this set we have

xi ≡ 0 (mod π)

Since (m, p) = 1 and (zi, π) = 1, we have f ′(zi) �≡ 0 (mod π). Now it follows from Hensel’s

lemma that there exists a solution ẑ = (ẑ1, . . . , ẑr) of the equation f(X) = 0, which as a

consequence implies the congruence ẑi
m ≡ 0 (mod πe) for i = 1, . . . , r.

By definition, all elements of the set B are divisible by π. By virtue of Lemma 2.3.3,
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we have the congruence xi ≡ 0 (mod πe) for i = r + 1, . . . , s. The last is equivalent to

xi ≡ xm
i (mod πe). Finally, the solution of (5) is given by x = (ẑ1, . . . , ẑr, xr+1 . . . , xs). The

inequalities e ≤ n and m ≤ k imply the desired one, namely s ≥ k((nk+ 1)max(2t,1) − 1) + 1.

4 Proof of Theorem 2

By the same considerations as in the previous section it suffices to show that when s ≥ pn,

the congruence (5) has a non-trivial solution modulo πe.

Consider the sequence 0, a1, a1 +a2, . . . , a1 +a2 + · · ·+as. We look for solutions xi in the

set {0, 1}. By virtue of s ≥ pn and Lemma 2.3.2, at least two terms of the sequence above

are congruent modulo πe. Let their difference be au + · · · + av. Then the solution of the

congruence is given by (xu, x2, . . . , xv) = (1, 1, . . . , 1) and xi = 0 for i < n or i > v.

5 Proof of Theorem 3

Using the Reduction Lemma again, we have to show that when s ≥ mk+1 the congruence (5)

has a non-trivial solution mod πe, with the additional restrictions (ai, p) = 1 and (k,m) = 1.

We look for solutions xi of the form

xi = xi,0 + xi,mπ + . . .+ xi,cmπcm, with xi,j ∈ o and c = � e
m
�.

Put l = � e
ptm

� = � e
k
�. Then

(xi)
pt ≡ (xi,0)

pt

+ (xi,mπm)p
t

+ . . .+ (xi,lmπlm)p
t

(mod πe)
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Now let k = pt. Again, a necessary and sufficient condition to solve (5) is to solve the system.

s∑
i=1

ai,0(xi,0)
pt ≡ 0 (mod p)

s∑
i=1

ai,1(xi,0)
pt ≡ 0 (mod p)

...
s∑

i=1

ai,mpt−1(xi,0)
pt ≡ 0 (mod p)

s∑
i=1

ai,mpt(xi,0)
pt

+
s∑

i=1

ai,0(xi,1)
pt ≡ 0 (mod p)

...
s∑

i=1

ai,2mpt−1(x
pt

i,0) +

s∑
i=1

ai,mpt−1(xi,1)
pt ≡ 0 (mod p)

...
s∑

i=1

ai,(l+1)mpt−1(xi,0)
pt

+
s∑

i=1

ai,(l−1)mpt−1(xi,1)
pt

+ · · ·+
s∑

i=1

ai,mpt−1(xi,lm)
pt ≡ 0 (mod p)

By the same arguments as in the proof of Theorem 1, it suffices to solve the system over L(p),

where again (xi,j)
pt are replaced with the elements yi,j from the ring o, with the additional

condition that each of them should be an m-th power. By the Chevalley-Warning theorem,

if (l + 1)s > (l + 1)m2pt, then the system above has a non-trivial solution over L(p), say

(y1,0, . . . , ys,lm) = (zm
1,0, . . . , z

m
s,lm). So we have found (x1, . . . , xs), not all zero modulo πe,

such that

a1x
pt

1 + · · ·+ asx
pt

s ≡ 0 (mod πe)

and

xi ≡ xi,vimπvim, (7)
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where xi,vi
is the first coefficient which is not divisible by π and each is an m-th power

modulo π. Therefore, the congruence (7) is equivalent to

xi/π
vim ≡ ym

i,vi
(mod p).

Consider the polynomial f(x) = Xm − a, where we write a for xi/π
vim. Since (yi,vi

, π) = 1,

then by Hensel’s lemma there exists a solution to the equation f(X) = 0, which implies the

congruence

xi/π
vim ≡ ẑi

m (mod πe).

Since vim ≤ e (Not all solutions are divisible by πe), we have

xi ≡ (ziπ
vi)m (mod πe).

Finally, when s ≥ k3 + 1 there exists a solution x = (x1, . . . , xs) satisfying the congruence

(5). We now distinguish two general cases: either at least one of the xi is not divisible by π,

or else each xi is divisible by π. The first case guarantees that we have obtained a non-trivial

solution modulo π. Thus the desired solution is given by x = ((z1π
v1)m, . . . , (zsπ

vs)m)

The second case, i.e., each xi is divisible by π, is of special interest. Here, we can not claim

that the obtained solution is the desired one, because by the definition of Φ(k, e) at least one

of the xi must be divisible by π. What we do here is the same as what we did in the proof of

the Reduction Lemma. By virue of the fact that at least one xi is not divisible by πe, after a

reduction modulo πr, where r is the greatest integer such that πr divides a1x
k
1 + · · ·+ asx

k
s ,

we obtain a congruence of the form

aj(x̂j)
k + d ≡ 0 (mod πe−r),
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where r = ordπ x̂j , and d = a1(x̂1
k) + · · ·+ aj−1(x̂j−1)

k + aj+1(x̂j+1)
k + · · ·+ as(x̂s)

k. Since

(aj , π) = (k, π) = 1, then there exists a solution X to the equation f(X) = aj(x̂j)
k + d.

Finally, the solution of (5) is given by

x = (x̂1, . . . , X, . . . , x̂s).

6 Conclusion

When studying Skinner’s work [1], we managed to develop a refinement of his method,

obtaining some new upper bounds for the number of variables of a diagonal form over an

extension of Qp. Our further goal will be to prove the general case of his claim. Let us note

that the results we have obtained could be generalized to systems of diagonal equations.
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A Introduction to p-adic numbers

In this section we provide some preliminaries from the theory of p-adic numbers following

[3] and [4].

A.1 Absolute Values on a Field

Definition A.1.1 Let K be a field. An absolute value on K is a real-valued function

| | : K −→ R+ on K satisfying the following three properties:

1. We have |x|v ≥ 0 for all x ∈ K, and |x| = 0 if and only if x = 0.

2. For all x, y ∈ K, we have |xy| = |x||y|.

3. For all x, y ∈ K, we have |x+ y| ≤ |x|+ |y|.

We say an absolute value on K is non-archimedian if it satisfies the additional condition:

4. |x+ y| ≤ max(|x|, |y|);otherwise, we will say that the absolute value is archimedian.

The absolute value which is such that |x| = 1 for all x �= 0 is called trivial.

Definition A.1.2 Fix a prime number p ∈ Z. The p-adic valuation on Z is the function

vp : Z − {0} −→ R

13



defined as follows: for each integer n ∈ Z, n �= 0, let vp(n) be the unique positive integer

satisfying

n = pvp(n)n′ with (p, n′) = 1.

We extend vp(n) to the field of rational numbers as follows: if x = a/b ∈ Q, then

vp(x) = vp(a)− vp(b).

Lemma A.1.3 For all x and y ∈ Q, we have

i) vp(xy) = vp(x) + vp(y)

ii) vp(x+ y) ≥ min(vp(x), vp(y)),

with the obvious conventions with respect to vp(0) = +∞.

Definition A.1.4 For any x ∈ Q, we define the p-adic absolute value of x by

|x|p = p−vp(x)

if x �= 0, and we set |0|p = 0.

Corollary A.1.4 The function | |p is non-archimedian absolute value on Q.

A.2 Basic Properties

An absolute value of K defines a metric. The distance between two elements x, y of K in

this metric is |x− y|. Thus an absolute value defines a topology on K. Two absolute values

are called equivalent if they define the same topology. If they do not, they are called

not equivalent. We observe that |1| = |12| = |(−1)2| = |1|2 whence |1| = |−1| = 1. Also,

|−x| = |x| for all x ∈ K, and |x−1| = |x|−1 for all x �= 0.

Theorem A.2.1 Let | |1 and | |2 be non-trivial absolute values on a field K. They are

equivalent if and only if the relation
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|x|1 <1

implies |x|2 < 1. If they are equivalent, then there exists a number λ > 0 such that |x|1 = |x|λ2
for all x ∈ K.

Now we come to the main theorem in this section. It says that we have already found all

the absolute values on Q.

Theorem A.2.2 (Ostrowski) Every non-trivial absolute value on Q is equivalent to one

of the absolute values | |p, where either p is a prime number or p = ∞.

A.3 Completions

Definition A.3.1 Let K be a field and let | | be an absolute value on K.

i) A sequence of elements xn ∈ K is called a Cauchy sequence if for every ε > 0 one can find

a bound M such that we have |xn − xm| < ε wnenever m,n ≥ M.

ii) The field K is called complete with respect to | | if every Cauchy sequence of elements of

K has a limit.

Lemma A.3.2 A sequence (xn) of rational numbers is a Cauchy sequence with respect to a

non-archimedian absolute value | | if and only if we have

limn→∞ |xn+1 − xn| = 0.

Lemma A.3.3 The field Q is not complete with respect to any of its nontrivial absolute

values.

Since Q is not complete, we need to construct completion. As we shall see the completion is

the field obtained by adding to Q the limits of all Cauchy sequences.

Definition A.3.4 Let | | = | |p be a non-archimedian absolute value on Q. We denote

by C, or Cp(Q) if we want to emphasize p and Q, the set of all Cauchy sequences of elements
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of Q:

C = Cp(Q) = {(xn) : (xn) is a Cauchy sequence with respect to ||p}.

Theorem A.3.5 Defining

(xn) + (yn) = (xn + yn)

(xn).(yn) = (xnyn)

makes C a commutative ring with unity.

Definition A.3.6 We define N ⊂ C to be the ideal

N = {(xn) : lim
n→∞

|xn|p = 0

Lemma A.3.7 N is a maximal ideal of C.

We want to identify sequences that differ by elements of N, on the grounds that they

ought to have the same limit. This is done in the standard way, by taking the quotient of

the ring C by the ideal N.

Definition A.3.8 We define the field of p-adic numbers to be the quotient of the ring C by

its maximal ideal N:

Qp = C/N.

A.4 Exploring Qp

The aim of this section is to explore the field Qp which we have just constructed.

Lemma A.4.1 For each x ∈ Qp x �= 0, there exists an integer n ∈ Z such that |x|p = p−n.

Another way of saying this is in terms of the p-adic valuation vp. What the lemma says is:

Lemma A.4.2 For each x ∈ Qp x �= 0, there exists an integer vp(x) such that |x|p = p−1vp(x).
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In other words, the p-adic valuation vp extends to Qp.

Now we begin to explore the structure of Qp.

Definition A.4.3 The ring of p-adic integers is

Zp = {x ∈ Qp : |x|p ≤ 1}.

The ring Zp is called the valuation ring of | |.
Rings that contain a unique maximal ideal whose complement consists of invertible elements

are called local rings.

Theorem A.4.4 The ring Zp of p-adic integers is a local ring whose maximal ideal is the

principal ideal pZp = {x ∈ Qp : |x|p < 1}.

The p-adic units are invertible elements of Zp. We will denote the set of all such elements

by Z×
p . Since x ∈ Zp means |x| ≤ 1 and x−1 ∈ Zp means |−1| = |x|−1 ≤ 1, we see that

Z×
p = {x ∈ Qp : |x| = 1}.

It is also easy to see that

Z×
p ∩ Q = {a

b
∈ Q : (p, ab) = 1}.

As in every ring, the p-adic units form a group.

A.5 Hensel’s Lemma

The theorem known as “Hensel’s Lemma” is probably the most important algebraic prop-

erty of the p-adic numbers (and of other fields like Qp, which are complete with respect to

a non-arcimedian valuation). Basically, it says that one can decide quite easily whether a

polynomial has roots in Zp. The rest involves finding an “approximate” root of the polyno-

mial, and then verifying a condition on the derivative of the polynomial.

Theorem A.5.1 (Hensel’s Lemma) Let F (x) = a0 + a1X + a2X
2 + · · · + anX

n be a
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polynomial whose coefficients are in Zp. Suppose that there exists a p-adic integer α1 ∈ Zp

such that

F (α1) ≡ 0 (mod p2r−1Zp)

and

F ′(α1) �≡ 0 (mod prZp),

where F ′(x) is the (formal) derivative of F (x). Then there exists a p-adic integer α ∈ Zp

such that α ≡ α1 (mod prZp) and F (α) = 0.

A.6 Properties of Finite extensions

This section deals with introducing some notions and basic facts about finite extensions of

Qp. On one level, what we want to say is that the structure we have found in Qp extends

without effort. Our main interest, however, is to see what information this gives us about

finite extensions of Qp. In all of this section, K will be a finite extension of degree n of Qp,

and we will write | | = | |p for p-adic absolute value (extended to K). We define the p-adic

absolute value on K by the formula

|x| = n

√
|NK/Qp(x)|p,

where NK/Qp(x) is the norm of the element x.

Definition A.6.1 Let K be a finite extension of Qp, and let | | be the p-adic absolute

value on K. For any x ∈ K, x �= 0, we define the p-adic valuation vp(x) to be the unique

rational number satisfying

|x| = p−vp(x).

We extend the definition formally by setting vp(0) = +∞. It is useful to notice that since

we know exactly how to compute the p-adic absolute value of an element of K, we also know

18



how to compute vp. Here is the formula: for any x ∈ K×,

vp(x) =
1

n
vp(NK/Qp(x)).

This reduces computing vp to computing norms.

Theorem A.6.2 The p-adic valuation vp is a homomorphism from the multiplicative

group K× to the additive group Q. Its image is of the form 1
e
Z, where e is a divisor of

n = [K : Qp].

Definition A.6.3 Let K/Qp be a finite extension, and let e = e(K/Qp) be unique

positive integer (dividing n = [K : Qp]) defined by

vp(K
×) =

1

e
Z.

Wer call e the ramification index of K over Qp. We say the extension K/Qp is unramified if

e = 1. We say the extension K/Qp is ramified if e > 1, and totally ramified if e = n. Finally,

we write f = f(K/Qp) = n/e.

Definition A.6.4 Let K/Qp be a finite extension, and let e = e(K/Qp). We say an

element π ∈ K is a uniformizer if vp(π) = 1/e.

We should remark that in the unramified case, we have e = 1, and we can (and usually

will) simply take π = p.

Now we can describe the algebraic structure of K. First of all, recall that we defined the

valuation ring

O = OK = {∈ K : |x| ≤ 1} = {x ∈ K : vp(x) ≥ 0}

and its maximal ideal

p = pk = {x ∈ K : |x| ≤ 1} = {x ∈ K : Vp(x) > 0}.
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As we saw above O is a local ring, and the residue field is the quotient

k = OK/pk

Theorem A.6.5 Let notations be as above, and fix a uniformizer π in K. Then

1. The ideal pK ⊂ Ok is principal, and π is a generator.

2. The residue field k is a finite extension of the field with p-elements Fp whose degree is

f , i.e., f = [k : Fp], so that k = Fpf is the finite field with pf elements.

3. All the nonzero ideals of O are given by pn = πnO = {x ∈ K : v(x) ≥ n}, where
n ∈ N.

Definition A.6.6 Let K/Qp be a finite extension. Then, the composite of all unramified

subextensions is called the maximal unramified subfield of K/Qp.

Theorem A.6.7 The set {1, π, . . . , πe−1} is an o-basis of O.

At the end we recall the end we recall the Hensel’s lemma for extensions of the of p-adic

numbers.

Theorem A.6.8 (Hensel’s Lemma) Let K be a finite extension of Qp, and let π be a

uniformizer. Let F (X) = a0 + a1X + a2X
2 + . . .+ anX

n be a polynomial whose coefficients

are in OK . Suppose that there exists an integer α1 ∈ OK such that

F (α1) ≡ 0 (mod p2r−1
K )

and

F ′(α1) �≡ 0 (mod pr
K),

where F ′(X) is the (formal) derivative of F (X). Then there exists an integer α ∈ OK such

that α ≡ α1 (mod pr
K) and F (α) = 0.
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