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Abstract

In this paper we examine Ehrenfeucht-Fräıssé (EF) games on fields and vector spaces. We

find the exact length of the EF game on two algebraically closed fields of finite transcendence

degree over Q or Z/pZ. We also determine an upper bound on the length of any EF game

on models (Fn
1 ,F1) and (Fm

2 ,F2 of vector spaces where m �= n and a lower bound for the

special case F1 = F2.



1 Introduction

Ehrenfeucht-Fräıssé (EF) games provide a numerical measure of the degree to which two

models1 are similar. They have applications in various branches of mathematical logic, such

as measuring the expressive strength of a formal language. We begin with an example to see

how EF games work and how they connect to other measures of similarity between models.

Suppose we wish to compare Q and Z. They are clearly different, but they do share some

properties. Consider attempting to distinguish between finite subsets of Q and Z. In the lan-

guage L = {<}, it is impossible to distinguish between {22
7
, 1, 3

2
, 1.01}Q and {21, 10, 20, 15}Z.

That is, for any atomic formula ϕ in L, ϕ(22
7
, 1, 3

2
, 1.01) iff ϕ(21, 10, 20, 15).

We call the map {22
7

Q → 21Z, 1Q → 10Z, 3
2

Q → 20Z, 1.01Q → 15Z}, denoted {22
7
, 1, 3

2
, 1.01}Q =⇒

{21, 10, 20, 15}Z, a partial isomorphism from Q to Z because it maps a finite subset of Q to

a finite subset of Z, is bijective, and preserves structure. (For a formal definition and more

examples of partial isomorphisms, see Appendix C.)

Now we ask whether it is possible to extend this partial isomorphism. If we added the

element 3Q, for instance, could we find some element xZ to make {22
7
, 1, 3

2
, 1.01, 3}Q =⇒

{21, 10, 20, 15, x}Z a partial isomorphism? Here the answer is no, because if 3Q is between

3
2

Q
and 22

7

Q
, then xZ must likewise be between 20Z and 21Z, but there is no integer between

20 and 21.

We simulate these extensions of partial isomorphisms with an EF game on two models:

Definition 1.1. [3, 5] In an Ehrenfeucht-Fräıssé (EF) game on (M,L) and (N,L) (the “M

vs. N” EF game) where M and N are models of the language L, two players Spoiler and

Duplicator create a partial isomorphism from M to N in stages as follows:

At stage i, beginning with stage 1,

1. Spoiler “plays” an element mM
i or nN

i by appending it to the list m̄M or n̄N of elements

1For a glossary of terms which may be unfamiliar, see Appendix A.
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played in that model.

2. Duplicator “plays” an element from the other model, nN
i or mM

i .

After each stage, we examine the mapping f : m̄ → n̄ which maps mj to nj for all j ≤ i. If

f is not a partial isomorphism, i.e. there exists some atomic formula in L which is true of

m̄ but not of n̄, then Spoiler wins the game at stage i. If f is a partial isomorphism, then

Duplicator wins stage i. Duplicator wins the game if he has a strategy to win through any

stage, i.e. to prevent Spoiler from ever winning.2

We return to our original example. In the EF game on (Q, {<}) and (Z, {<}), Spoiler is

able to win by Stage 3 by the following strategy:

1. Spoiler plays two consecutive integers in Z. Duplicator plays two corresponding ele-

ments qQ
1 and qQ

2 .

2. Spoiler plays
(

q1+q2

2

)Q
, which is between q1 and q2. Since Duplicator cannot find an

element in Z between the two consecutive integers Spoiler first played, Spoiler wins at

stage 3.

Spoiler 5 ∈ Z 6 ∈ Z 4.6 ∈ Q

Duplicator 4.3 ∈ Q 4.9 ∈ Q ?? ∈ Z

Table 1: An EF game on (Z, <) and (Q, <).

The reason such a strategy works can be described by a formula ϕ in L such that Q |= ϕ

and Z |= ¬ϕ:

ϕ = ∀x∀y ∃z (
(x < z) ∧ (z < y)

) ∨ (
(y < z) ∧ (z < x)

) ∨ (x = y)

2For 0 examples of EF games, see Appendix H.

2



In English, ϕ says that there exists a third element between any two nonequal elements.

Because this is true in Q but not in Z, Spoiler has a winning strategy. Note that the

quantifier rank of ϕ is 3, the number of moves required for Spoiler to win. This correlation

is true generally:

Theorem 1.2. [1] Duplicator wins the EF game on (M,L) and (N,L) through stage i iff

M and N are equivalent under formulas of quantifier rank i in L∞ω.
3

We will also use sequences of partial isomorphisms in proving bounds on the lengths of

EF games. A sequence of partial isomorphisms from M to N consists of

I0 ⊇ I1 ⊇ . . . ⊇ In

where each Ii is a collection of partial isomorphisms collectively mapping all of M to

all of N , and any p ∈ Ii has an extension in Ii−1 for any element in M or N . (A formal

definition and examples may be found in Appendix D.)

Theorem 1.3. [3] There exists a sequence of partial isomorphisms from M to N of length

i iff Spoiler cannot win the M vs. N EF game by stage i.

In this paper, we consider EF games over fields and vector spaces. For various conditions

on two such models M and N , we construct partial isomorphism sequences between M and

N to place lower bounds on the stage at which Spoiler can win the M vs. N EF game, and

we formulate strategies for Spoiler to put upper bounds on this stage.

3See Appendix E.
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2 Preliminary Definitions

In order to play EF games on models of fields4 or vector spaces5, we must first define LF , a

language for fields, and LV S, a language for vector spaces.

Definition 2.1. The language of fields, LF , is the set of symbols {+, ·,−,−1 , 0, 1}. The

language of vector spaces, LV S, is the set consisting of

• S(x) a unary predicate that is true when x is a scalar

• V (x) a unary predicate that is true when x is a vector

• +s scalar addition

• ·s scalar multiplication

• 0s scalar zero (additive identity)

• 1s scalar one (multiplicative identity)

• +v vector addition

• 0v the zero vector

• ∗ scalar multiplication of a vector

Now we define the field EF game to be an EF game on two models M , N of LF such

that M ,N |= Th (fields). Similarly, we define the vector space EF game to be an EF game

on two models M ,N of LV S such that M ,N |= Th (vector spaces).

Let F denote a field and F be the algebraic closure of F. A full list of notation which

may be unfamiliar to the reader is included as Appendix B.

4See Appendix F.
5See Appendix G.
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3 EF field games

Our goal in this section is to characterize, as completely as possible, the general F1 vs. F2

field EF game. First we consider the case in which char (F1) �= char (F2):

Proposition 3.1. Spoiler wins the F1 vs. F2 field EF game at stage 0 if and only if

char (F1) �= char (F2). That is, no partial isomorphism sequence can be constructed between

F1 and F2.

Proof. If char (F1) �= char (F2), at least one of
(
char (F1), char (F2)

)
is nonzero. Therefore,

at least one of F1, F2 models an atomic formula in L of the form 1+1+ . . .+1 = 0. Since the

characteristic of the other field is different, the other field does not model the same atomic

formula, and Spoiler wins the EF game at stage 0.

If char (F1) = char (F2), there is no atomic formula ϕ in L∞ω with only constants 0 and

1 such that F1 |= ϕ, F2 |= ¬ϕ, so Spoiler cannot win at stage 0. Thus, Spoiler wins at stage

0 if and only if the characteristics of the fields are unequal.

For the rest of the paper we assume that all fields are extensions of Q, where Q is either

Q or Z/pZ. That is, all fields are of the same characteristic.

3.1 Fields of different transcendence degrees/F

Next, we consider two fields E1, E2 extending F with different transcendence degrees over F.

In this case, we show that Spoiler wins the E1 vs. E2 field EF game by some finite stage:

Proposition 3.2. If E1 and E2 extend F, E1 has finite transcendence degree a/F, E2 has

transcendence degree b/F , and a < b, then Spoiler wins the E1 vs. E2 field EF game.

Proof. First note that any atomic formula in LF can be written f(x1, . . . , xn) = 0 for some

f ∈ Q[x1, . . . , xn].
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Spoiler’s strategy is to first play c1, . . . , ca+1 ∈ E2 such that {c1, . . . , ca+1} is algebraically

independent over F.

Duplicator plays d1, . . . , da+1 ∈ E1. Since the transcendence degree of E1 is a, only a set

of up to a elements in E1 can be algebraically independent over F1, and the set {d1, . . . , da+1}
is algebraically dependent over F. This means that there exists a function f(x1, . . . , xa+1) ∈
F[x1, . . . , xa+1] such that f(d1, . . . , da+1) = 0. Because {c1, . . . , ca+1} is algebraically indepen-

dent over F, there does not exist a function g(x1, . . . , xa+1) ∈ F[x1, . . . , xa+1] : g(c1, . . . , ca+1) =

0. Thus, to win, Spoiler needs only to list every coefficient in f as an element in E1. If

there are i such coefficients b1, . . . , bi, then there exists h ∈ Q[x1, . . . , xa+1+i] such that

h(d1, . . . , da+1, b1, . . . , bi) = 0 iff f(d1, . . . , da+1) = 0. No corresponding elements e1, . . . , ei ∈
E2 satisfy h(c1, . . . , ca+1, e1, . . . , ei) = 0. Therefore, Spoiler wins at some finite stage a+ i+

1.

3.2 The field EF game on two algebraically closed fields

Finally, we consider the case in which F1 and F2 are algebraically closed fields of equal

characteristic and with finite transcendence degrees over Q. In this case, we know exactly

at what stage Spoiler wins the F1 vs. F2 field EF game, assuming he and Duplicator both

employ optimal strategies. First, we need two lemmas:

Lemma 3.3. If {a1, . . . , an} is algebraically independent over F1, {b1, . . . , bn} is algebraically

independent over F2, F1
∼= F2, E1 = F(a1, . . . , an), E2 = F(b1, . . . , bn), then there exists an

isomorphism from E1 to E2 extending an isomorphism from F1 to F2.

Lemma 3.4. If {a1, . . . , an} is a transcendence base for E1 = F1(a1, . . . , an) over F1 and

{b1, . . . , bn} is a transcendence base for E2 = F2(b1, . . . , bn) over F2, F1
∼= F2 then E1

∼= E2.

Sketch of the proof. We let E0
1 = F(a1, . . . , an) and E0

2 = F(b1, . . . , bn). Because E0
1 and

E0
2 are both the minimum extensions of Fcontaining a set of n elements transcendental over
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F, E0
1
∼= E0

2 by Lemma 3.3. This implies that there exists some isomorphism i : E0
1 → E0

2.

The isomorphism i can be extended to an isomorphism from E0
1, the splitting field of E0

1 over

all monic polynomials in E1[x], to E0
2, the splitting field of E0

2 over all monic polynomials in

E2[x], and E1 = E0
1
∼= E

0

2 = E2 [7].

Now we proceed to the EF game on two algebraically closed fields:

Theorem 3.5. Spoiler wins the F1 = Q(u1, . . . , un) vs. F2 = Q(v1, . . . , vm) field EF game

where m < n exactly at stage m + 1 if {u1, . . . , un} is a transcendence base for F1/Q and

{v1, . . . , vm} is a transcendence base for F2/Q.

First we show that Spoiler can always win by stage m+1. Then we show that Duplicator

has a winning strategy through stage m by constructing a sequence of partial isomorphisms

of length m between F1 and F2.

Spoiler’s strategy to win by stage m + 1 is to play u1, . . . , um+1 ∈ F1. These are

algebraically independent over Q, i.e. there does not exist a function f(x1, . . . , xm+1) ∈
Q[x1, . . . , xm+1] such that f(u1, . . . , um+1) = 0. Duplicator wins through stage m by playing

m elements c1, . . . , cm ∈ F2 such that c1, . . . , cm is algebraically independent over Q. How-

ever, since these m elements form a transcendence base for F2/Q, every element cm+1 is al-

gebraic over c1, . . . , cm. Therefore, there exists a function g(x1, . . . , xm+1) ∈ Q[x1, . . . , xm+1]

such that g(c1, . . . , cm+1) = 0. But g(u1, . . . , um+1) �= 0, so Spoiler wins at stage m + 1.

Now we show that Spoiler cannot win before stage m + 1 by constructing a sequence of

partial isomorphisms of length m from F1 to F2.

Recall that any two algebraically closed fields of the same transcendence degree over Q

are isomorphic by Lemma 3.4. Let Ij be the set of all isomorphisms f : F′
1 ⊆ F1 → F′

2 ⊆ F2

where F′
1 and F′

2 are algebraically closed and transcendence degree F′
1/Q = transcendence

degree F′
2/Q = j.

Then let Ii = {p ⊂ f, | dom (p)| < ω, f ∈ Ij , j ≤ m− i}.

Claim: I0 ⊇ I1 ⊇ . . . ⊇ Im−1 is a sequence of partial isomorphisms.
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Proof. First we must show that the collective domains and ranges of the partial isomorphisms

in any Ii are the entire F1 and F2 respectively, i.e.:

∀Ii and a∈ F1, there exist p∈ Ii and b ∈ F2 such that p(a) = b

∀Ii and a∈ F2, there exist p∈ Ii and a ∈ F1 such that p(a) = b

Note that any a ∈ F1 is either transcendental or algebraic over Q. Let a ∈ F1 be

transcendental over Q and a′ ∈ F1 be algebraic over Q. We let F′
1 = Q(a), which has

transcendence degree 1 over Q. There exists an isomorphism f : F′
1 → F′

2 in I1 for some F′
2

of transcendence degree 1 over Q and a partial isomorphism p ⊂ f such that {a, a′} ∈ dom (p)

and | dom (p)| < ω. For all i ≤ m− 1, p is in Ii. Thus, any element in F1 is in the domain of

some partial isomorphism in Ii. Similarly, any element in F2 is in the image of some partial

isomorphism in Ii.

Next, we must show that for any element a in F1 and any partial isomorphism p in

Ii(i �= 0), there is an extension of p in Ii−1 with a in the domain. Likewise, for any element

b in F2 there must be any extension with b in the image, i.e.:

∀p ∈ Ii and a ∈ F1, there exist p′∈ Ii−1 and b ∈ F2 such that p′(a) = b (1)

∀p ∈ Ii and b ∈ F2, there exist p′∈ Ii−1 and a ∈ F1 such that p′(a) = b (2)

We let p ∈ Ii(i �= 0) be a subset of f : F′
1 → F′

2 ∈ Ij, j ≤ m− i.

To prove (1), we let a be in F1 and consider two cases:

Case 1: a ∈ F′
1 Let p′ ∈ Ii−1 be a subset of f such that p′ ⊇ p and a ∈ dom (p′).

Case 2: a �∈ F′
1 In this case, a is transcendental over F′

1, as F′
1 is algebraically closed. If

the transcendence degree of F′
2/Q is less than m, which is true for all i > 0, then

there exists b ∈ F2 such that b is algebraically independent over F′
1. Let F′′

1 = F′
1(a)
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and F′′
2 = F′

2(b). By Lemma 3.4, there exists an isomorphism f ′ : F′′
1 → F′′

2. This

isomorphism is in Ij+1, and so a subset p′ ⊆ f such that a ∈ dom (p′), |dom(p′)| < ω is

in Ii−1.

The proof of (2) is analogous, because the dimension of F2/Q is less than that of F1/Q

and so for b ∈ F2, b �∈ F′
2 there always exists an element e ∈ (F1 − F ′

1).

Thus, I0 ⊇ I1 ⊇ . . . ⊇ Im−1 is a partial isomorphism sequence, and by Theorem 1.3

Spoiler cannot win the F1 vs. F2 field EF game by stage m. Since he has a strategy to win

by stage m + 1, he wins exactly at stage m + 1.

4 EF vector space games

Now we turn our attention to vector space EF games. First, note that if M is an m-

dimensional vector space over F, we can without loss of generality choose a basis for this

vector space and consider the model M to be (Fm,F). (See Appendix G.)

Next, note that if Spoiler wins the F1 vs. F2 field EF game by stage t, he also wins the

M = (Fm
1 ,F1) vs. N = (Fn

2 ,F2) vector space EF game by stage t. His strategy is the same

as in the field EF game.

4.1 EF games on vector spaces of different dimension

We determine an upper bound on the length of a general vector space EF game on vector

spaces of different dimensions:

Theorem 4.1. If M = (Fm
1 ,F1) and N = (Fn

2 ,F2), m < n, then Spoiler wins the M vs. N

vector space EF game by stage m+ 1 + min (m,mingen (F1/Q)).

Proof. Spoiler’s strategy to win by stage m+ 1 + min (m,mingen (F1/Q)) is as follows:
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1. Play m+1 linearly independent vectors v1, . . . , vm+1 ∈ N . Duplicator plays w1, . . . , wm+1 ∈
M . Assume w1, . . . , wm are independent. Because any m independent vectors in Fm

1

span Fm
1 , wm+1 can be written as:

wm+1 = c1w1 + c2w2 + . . .+ cmwm, ci ∈ F1.

We let f(x1, . . . , xm, y1, . . . , ym+1) = x1y1 + . . . + xmym − ym+1 for scalars x1, . . . , xm

and vectors y1, . . . , ym+1. Then f(c1, . . . , cm, w1, . . . , wm+1) = 0.

2. Play the smallest subset S = {s1, . . . , st} ⊆ {ci : ci ∈ F1 − Q} such that Q(S) =

Q(c1, . . . , cm), i.e. every ci is in Q(s1, . . . , st). The size of this subset, t, cannot be

greater than mingen (F1/Q), since c1, . . . , cm ∈ F1. It also cannot be greater than m,

since the set of all ci has size m. Thus, at most, t = min (m,mingen (F1/Q)). Let

ci = gi(s1, . . . , st) for some gi(x1, . . . , xt) ∈ Q[x1, . . . , xt]. So s1, . . . , st, w1, . . . , wm+1

satisfy

f(g1(s1, . . . , st), g2(s1, . . . , st), . . . , gm(s1, . . . , st), w1, . . . , wm+1) = 0. (3)

Duplicator must choose r1, . . . , rt ∈ N such that

f(g1(r1, . . . , rt), g2(r1, . . . , rt), . . . , gm(r1, . . . , rt), v1, . . . , vm+1) = 0. (4)

But since gi(r1, . . . , rt) is in F2, this implies that vm+1 is linearly dependent on v1, . . . , vm.

Since v1, . . . , vm+1 are linearly independent, choosing r1, . . . , rt ∈ N to satisfy (4) is

impossible. Spoiler thus wins by stage m+ 1 + t = m + 1 + min (m,mingen (F1/Q)).

We now consider the special case where F1 = F2. In this case we prove a lower bound
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on the stage at which Spoiler can win.

4.2 Spoiler cannot win the Fn vs. Fm EF game by stage m

Theorem 4.2. If M = (Fm,F) and N = (Fn,F) are m, m < n, then Spoiler cannot win the

M vs. N vector space EF game by stage m.

Proof. To show that Spoiler cannot win the N vs. M EF game by stage m, we construct

a sequence of partial isomorphisms of length m from N to M . Recall that any two vector

spaces of the same dimension over the same field are isomorphic. We let Ij be the set of

all partial isomorphisms from a j-dimensional subspace of Fn to a j-dimensional subspace

of Fm:

Ij = {f : Sn ⊆ Fn → Sm ⊆ Fm, dim(Sn/F) = dim(Sm/F) = j}

Then we consider the partial isomorphisms generated as finite subsets of the isomorphisms

in Ij . We define Ii to be the set of all partial isomorphisms p = p1 ∪ p2 where p1 is a finite

subset of some f in Ij, j ≤ m− i and p2 is a finite subset of the identity function on F.

We claim that I0 ⊇ I1 ⊇ . . . ⊇ Im−1 is a sequence of partial isomorphisms. To prove this

we must show that it fits the three definitional criteria of a sequence of partial isomorphisms:

1. ∀Ii , a∈ N , b ∈M , there exist p, p′∈ Ii such that a ∈ dom (p), b ∈ Im (p′)

To show this, first let c be a scalar in F. The partial isomorphism (c→ c) ⊂ Id (F) is

in every Ii. Thus, for any scalar a ∈ N , there exists p ∈ Ii : a ∈ dom (p). Likewise, for

any scalar b ∈M , there exists p ∈ Ii : b ∈ Im (p).

Now let v be a vector in N . Since v is in the one-dimensional subspace spanned by

v, there exist an isomorphism f ∈ I1 which maps Sn ⊆ Fn to Sm ⊆ Fm such that

dim (Sn/F) = dim (Sm/F) = 1 and a subset p of f such that v ∈ dom (p). Similarly,

for any vector v′∈M , there exist an isomorphism f ′ ∈ I1 mapping S′
n ⊆ Fn to S′

m ⊆ Fm
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such that dim (S′
n/F) = dim (S′

m/F) = 1 and a subset p′ of f ′ such that v′ ∈ Im (p′).

Since p and p′ are in I1, they are also in all Ii for i < m.

Thus, for any elements a ∈ N , b ∈ M and any Ii in our sequence, there is a partial

isomorphism in Ii mapping a to an element of M and a partial isomorphism mapping

some element of N to b.

2. ∀p ∈ Ii and a ∈ N there exist p′∈ Ii−1 and b ∈ Fm such that p′(a) = b

Let p = p1 ∪ p2 be in Ii with p1 a subset of f ∈ Ij , j ≤ m− i,

Case 1: a is a scalar. Here we let p′ = p1∪
(
p2∪(a → a)

)
. This partial isomorphism

is in Ii ⊆ Ii−1 and maps a to a.

Case 2: a is a vector. There are two possibilities:

Case 2a: a ∈ span (dom (p1)). Let p′ = p1 ∪ (a → f(a)) ∪ p2. This partial

isomorphism is in Ii ⊆ Ii−1 and maps a to f(a).

Case 2b: a �∈ span (dom (p1)). In this case, the dimension of (dom (p1) ∪ a)

is j + 1. If j + 1 ≤ m, which must be true for i > 0 because j ≤ m− i, then

there exists a (j + 1)-dimensional subspace Ψ ⊆ Fm containing Im (p1). Let

e in Ψ, be independent from range (p1). Then let f ′ : span (dom (p1) ∪ a) →
(range (p1) ∪ e) be an isomorphism such that f ′ ⊃ p1. Since f ′ ∈ Ij+1,

p′ = p ∪ (a → f ′(a)) is in Ii−1.

Together the two cases guarantee that there exists an extension of p ∈ Ii in Ii−1 for

any a ∈ N .

3. ∀p ∈ Ii and b ∈ M there exist p′∈ Ii−1 and a ∈ N such that p′(a) = b

As in step 2, we let b be in M and p = p1 ∪ p2 be in Ii, i > 0, where p1 ⊆ f ∈ Ij, j ≤
m− i. The cases are analogous:
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Case 1: b is a scalar. Here we let p′ = p1∪
(
p2∪(b→ b)

)
. This partial isomorphism

is in Ii ⊆ Ii−1 and maps b to b.

Case 2: b is a vector. Again we have two possibilities:

Case 2a: b ∈ span (Im (p1)). Here let p′ = p1∪ (f−1(b) → b)∪p2. This partial

isomorphism is in Ii ⊆ Ii−1 and maps f−1(b) to b.

Case 2b: b �∈ span (Im (p1)). The dimension of (Im (p1) ∪ b) is j + 1. Since

j + 1 ≤ n, there exists a (j + 1)-dimensional subspace Ψ ⊆ Fn containing

dom (p). Let e be in Ψ and be independent from dom (p). Then let f ′ :

span (dom (p1) ∪ e) → span (Im (p) ∪ b) be an isomorphism such that f ′ ⊃ p1.

Since f ′ ∈ Ij+1, p′ = p ∪ ((f ′)−1(b) → b) is in Ii−1.

Cases 1 and 2 show that for any b ∈ Fm there is an extension p′ ∈ Ii−1 of p ∈ Ii with

b ∈ Im (p′).

Thus, I0 ⊇ I1 ⊇ . . . ⊇ Im−1 is a sequence of partial isomorphisms and, by Theorem 1.3,

Spoiler cannot win the M vs. N vector space EF game by stage m.

5 Conclusion and Future Work

We have presented partial characterizations of the EF field game and EF vector space game,

including the exact stage at which Spoiler wins an EF field game on algebraically closed

fields of finite transcendence degree over Q and a minimal bound on the length of the EF

vector space game on vector spaces of different dimension over the same field.

Remaining problems include:

1. The characterization of the general field EF game on two non algebraically closed fields

of equal characteristic, F1 ⊆ Q(u1, . . . , un) and F2 ⊆ Q(v1, . . . , vm).
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2. The exact stage at which Spoiler wins an EF vector space game on vector spaces of

dimensions n and m, n < m, over an algebraically closed field (conjecture: 2n+1).

3. An extension of the methods used here to the corresponding ring and module EF

games.
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A Glossary

algebraic: An element a is algebraic over a set A if for some polynomial f with coefficients

in A, f(a) = 0.

algebraic closure: The algebraic closure of a field F is the union of F and all elements

algebraic over F. This is a field, unique up to isomorphism[1].

algebraically dependent: A set S is algebraically dependent over a field F if ∃a1, . . . , an ∈
S and f ∈ F[x1, . . . , xn] such that f(a1, . . . , an) = 0.

arity: A function of arity n maps Mn →M , i. e. takes n arguments. A relation of arity n

takes n arguments. Example: ϕ(x, y, z) ⇔ (x = y) ∧ (y = z) is a relation of arity 3.

atomic formula: A formula with no quantifiers.

bijective: Both injective and surjective, i.e. a one-to-one, onto map.

characteristic: The least positive p such that 1 + 1 + . . . + 1 (p times) = 0, or 0 if such

an element does not exist.

equivalent under formulas of quantifier rank r: Models M and N are equivalent

under formulas of quantifier rank r iff

∀ϕ : qr (ϕ) ≤ r, M |= ϕ ⇔ N |= ϕ

field: See Appendix F.

formula: A statement in a language which can be either true or false. Formally, a formula

in first-order logic is any of the following:

• R(τ1 . . . τn)
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• τ1 = τ2

• ϕ ∧ Ψ

• ¬ϕ

• ϕ ⇒ Ψ

• ϕ ∨ Ψ

• ϕ ⇔ Ψ

• ∃xϕ

• ∀xϕ

where R is a relation, τ1 . . . τn are terms, and ϕ and Ψ are formulas.

free variable: A variable in a formula which is not mentioned in any quantifiers. For

instance, in the formula ∀x(y < x), y is a free variable.

homomorphism: If M and N are models of a theory in language L, a function f : M → N

is a homomorphism if

∀ relationsR ∈ L, ā ∈M,M |= R(ā) iff N |= R(f(ā))

∀ functions g ∈ L, ā ∈M,M |= g(ā) = b iff N |= g(f(ā)) = f(b)

injective: If f is an injective function, then f(a) = f(b) ⇒ a = b, i.e. no two elements are

mapped to the same value.

isomorphism: A homomorphism with an inverse, i.e. a bijective homomorphism.

language: A collection of constants, functions, and variables.

L1 = {<} and L2 = {c1, c2,+, ∗,≤} are examples of languages.

An example of a formula “in” L2 is ∀x((x + c1) ∗ c2 ≤ x
)
.
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linearly independent: A set S is linearly independent if no element in S is a linear

combination of the other elements.

model: A model M of a language L is a set M with

• a subset RM ⊆Mn for each relation R ∈ L of arity n

• a function fM : Mn → M for each function f ∈ L of arity n

• a constant cM ∈M for each constant c ∈ L

Basically, this is a “universe” in which a language has meaning and any sentence in

the language is either true or false. Readers familiar with the programming language

Java may find it helpful to think of a language as an interface and a model as a class

implementing the interface.

In a model of a theory, every sentence in the theory is true. In a model of a sentence,

the sentence is true.

module: A vector space over a ring instead of a field.

partial isomorphism: See Appendix C

partial isomorphism sequence: See Appendix D

quantifier: ∀ or ∃.
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quantifier rank: The quantifier rank of a formula ϕ, written qr (ϕ), is defined inductively

as follows:

qr (ϕ) = 0 if ϕ is atomic (5)

qr
(∨

i∈I

ϕi

)
= qr

(∧

i∈I

ϕi

)
= max {qr (ϕi) : i ∈ I} (6)

qr (¬ϕ) = qr (ϕ) (7)

qr (∀xϕ) = qr (∃xϕ) = qr (ϕ) + 1 (8)

qr (ϕ) is equal to the maximum number of nested quantifiers in ϕ.

ring: A set closed under two functions addition and multiplication, with multiplication

distributive over addition. The integers, for instance, form a ring.

sentence: A formula with no free variables.

span: The span of a set of vectors v1, . . . , vn is the subspace consisting of all linear combi-

nations of v1, . . . , vn[10].

splitting field: The splitting field of a field F over a monic polynomial f ∈ F[x], where

f(x) = (x− r1)(x− r2) . . . (x− rn), is F(r1, . . . , rn)[6].

surjective: A map f : M → N is surjective iff ∀n ∈ N∃m ∈ M : f(m) = n, i.e.

Im (f) = N .

term: A term is any of the following:

• a variable

• a constant

• the value of a function f(τ1, . . . , τn), where τ1, . . . , τn are terms and f has arity n.

19



theory: A collection of sentences.

transcendence base: If a field E is an extension of a field F, B ⊆ E is called a transcen-

dence base of E/F iff B is algebraically independent over F and every a ∈ E is algebraic

over F(B). The size of such a transcendence base is unique[7].

transcendence degree of E/F: The size of the transcendence base of E/F.

transcendental: An element a is transcendental over a set A iff it is not the solution to

any polynomial with coefficients in A.

vector space: See Appendix G.
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B Notation

∃ there exists

∀ for all

¬ not

⇔ if and only if

⇒ implies

ω the size of the set of natural numbers

≡r equivalent under formulas of quantifier rank ≤ r

p′ ⊇ p If p′ and p are partial isomorphisms, p′ ⊇ p means that for a ∈
dom (p), p′(a) = p(a), i.e. p′ extends p.

aM denotes an element a in the model M

Q the set of rational numbers

Z the set of integers

R the set of real numbers

N the set of natural numbers

F the algebraic closure of a field F

F(u1, . . . , un) the smallest field which includes F ∪ {u1, . . . , un}
F[x1, . . . , xn] the smallest ring which includes F∪{x1, . . . , xn}, i.e. the polynomial

ring with variables x1, . . . , xn and coefficients in F

mingen (E/F) the size of the smallest subset S ⊆ E such that F(S) = E

qr (ϕ) the quantifier rank of ϕ

Im (f) the image of f

dom (f) the domain of f
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C Partial isomorphisms

Definition C.1. [1] A partial isomorphism is a bijective homomorphism p : M → N on a

finite subset of M .

We now provide some examples of partial isomorphisms:

1. The mapping p : (Z, {<}) → (Q, {<}) which takes each element of {1, 4, 5, 3, 2}Z to

the corresponding element of {−4, 10.5, 30, 5
2
, 0}Q is a partial isomorphism.

2. The mapping p : (Q(π),LF ) → (Q(e,
√

2),LF ) which takes each element of {π, π2, π +

3}Q(π) to the corresponding element of {e, e2, e + 3}Q(e,
√

2) is a partial isomorphism.

Note that there is no partial isomorphism which maps
√

2
Q(e,

√
2)

to any element x in

Q(π), because x would have to satisfy the atomic formula x ∗ x = 1 + 1 in LF .

3. If M = (R3,R) and N = (R2,R), then p : (M,LV S) → (N,LV S) which takes each ele-

ment of {(1, 0, 0), (0, 1, 0), (0, 0, 1)}M to the corresponding element of {(1, 0), (0, 1), (π, e)}N

is a partial isomorphism. However, the mapping p′ ⊇ p which also takes πM to πN and

eM to eN is not a partial isomorphism, because there is an atomic formula ϕ in LV S

such that ϕ((1, 0), (0, 1), (π, e), π, e) and ¬ϕ((1, 0, 0), (0, 1, 0), (0, 0, 1), π, e):

ϕ(v1, v2, v3, s1, s2) = v1 ∗ s1 +v v1 ∗ s2 = v3

D Sequences of partial isomorphisms

Definition D.1. [1] I0 ⊇ I1 ⊇ . . . is a sequence of partial isomorphisms from M to N iff:

1. ∀p ∈ Ii, p is a partial isomorphism from M to N

2. ∀Ii and m ∈M there exist n ∈ N , p ∈ Ii : p(m) = n;

∀Ii and n ∈ N there exist m ∈ M , p ∈ Ii : p(m) = n
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3. ∀p ∈ Ii and m ∈M there exist n ∈ N p′ ⊇ p in Ii−1 such that p′(m) = n;

∀p ∈ Ii and n ∈ N there exist m ∈M and p′ ⊇ p in Ii−1 such that p′(m) = n

In essence, this means that there are two main conditions on a sequence of partial iso-

morphisms: first, the collective domain and range of each Ii must be the entire M and N

respectively; second, any p in Ii must be extendable to any given element of M or N .

An example is given in the figure below. This partial isomorphism sequence is between

(M, {<}) and (N, {<}), where M = {1, 2, 3} and N = {a, b, c, d}, a < b < c < d. Examining

the figure, we see that for every every partial isomorphism p in I1 we can choose any element

in M or N and find an extension of p in I0 containing a map to or from that element.

Figure 1: A sequence of partial isomorphisms of length 2 from M to N .
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E L∞ω

Theorem 1.2 states that Duplicator wins the EF game on (M,L) and (N,L) through stage

i if and only if M and N are equivalent under formulas of quantifier rank ≤ i in L∞ω.

L∞ω differs from L in that infinite conjunctions and disjunctions are allowed, so long as

the total number of free variables remains finite[2]. For example,

ϕ = ∀x
∨

i∈N

(x = i)

is a formula in L∞ω. ϕ allows us to say that every x is a natural number. It is not a formula

in L, because it involves taking an infinite conjunction, i.e. combining an infinite number of

formulas with “or”.

F Fields

Definition F.1. A field is a model of LF which satisfies the field axioms below:

Th (fields) is the set of the following axioms in LF [11]:

Commutativity ∀x, y(x + y = y + x) ∧ (x · y = y · x).

Associativity ∀x, y, z((x + y) + z = x+ (y + z)) ∧ (x · (y · z) = (x · y) · z).

Distributivity∀x, y, z(x · (y + z) = x · y + y · z).

Identity ∀x(x + 0 = x) ∧ (x · 1 = x).

Inverses ∀x((x− x = 0) ∧ (x �= 0 =⇒ x · x−1 = 1) ∧ (0−1 = 0)
)
.
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G Vector spaces

Definition G.1. A vector space over a field F is a model of LV S which satisfies the vector

space axioms (Th (vector spaces)) where F is considered the set of scalars.

Th (vector spaces) is a set of sentences in LV S including ∀x(S(x)∨V (x)
)∧¬(

S(x)∧V (x)
)

and

Axioms for scalars: Commutativity, associativity, distributivity, identity, and inverses,

as in Th (fields), for elements which satisfy S(x).

Axioms for vectors:

• ∀x, y, zV (x) ∧ V (y) ∧ V (z) ⇐⇒ x+v (y +v z) = (x +v y) +v z.

• ∀x, yV (x) ∧ V (y) ⇐⇒ x+v y = y +v x.

• ∀xV (x) ⇔ x +v 0v = x.

• ∀xV (x) ⇔ ∃y :
(
V (y) ∧ x +v y = 0v

)

Axioms involving ∗:

• ∀xV (x) ⇐⇒ (0s ∗ x = 0v) ∧ (1s ∗ x = x).

• ∀x, y, zS(x) ∧ V (y) ∧ V (z) ⇐⇒ x ∗ (y +v z) = x ∗ y +v x ∗ z.

• ∀x, y, zS(x)∧S(y)∧ V (z) ⇐⇒ ((x+s y) ∗ z = x ∗ z +v y ∗ z)∧ ((x · y) ∗ z = x ∗ (y ∗ z)).

• ∀x, yx ∗ y = y ∗ x.

Axioms for nonsensical operations:

• ∀x, yV (x) =⇒ (x · y = 0s) ∧ (x +s y = 0s).

• ∀x, yS(x) =⇒ x+v y = 0s.
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• ∀x, y(V (x) ∧ V (y)
) ∨ (

S(x) ∧ S(y)
)

=⇒ x ∗ y = 0s.

Any two vector spaces of the same finite dimension over a field are isomorphic[9]. Also,

for any finite-dimensional vector space there exists a basis. This allows us to consider an

m-dimensional vector space over F as Fm without loss of generality.

H EF game examples

Here we provide some example EF games to help familiarize the reader with the strategy

involved.

First, notice that Spoiler may list his plays in advance without gaining any advantage;

for instance, he may “play” three elements at once and then wait for Duplicator to “catch

up”. For clarity, we may refer to Spoiler and Duplicator playing sets of elements at once,

though in the actual game the elements are being played one at a time.

An example EF game is shown in Table 2 on {Z, <} and {Z + Z, <}. Here Z + Z refers

to two “copies” of Z, one after another, such that any element in the second is larger than

any in the first. To distinguish between integers in the two copies of Z in Z + Z, we will call

an integer in the first copy small and an integer in the second copy big.

Spoiler wins this game by using the fact that there are infinitely many integers between

any small integer and any big integer in Z + Z, but only a finite number of integers between

any two elements of Z. First he chooses big 0 and small 0 in Z + Z. Correspondingly,

Duplicator chooses two elements of Z, z1 and z2. Then Spoiler forces Duplicator to play

integers between z1 and z2 until Duplicator must find an integer between consecutive integers,

which is impossible. Using this strategy, Spoiler always wins, but Duplicator can determine

how long it takes by setting the distance between z1 and z2. In the game depicted in Table

2, Spoiler wins at stage 7.

A second example is the R vs. Q(e) field EF game. In the example shown in Table 3,
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Stage Spoiler Duplicator
1
2
3
4
5
6
7

small 0 ∈ Z + Z

big 0 ∈ Z + Z

small 10 ∈ Z + Z

small 20 ∈ Z + Z

small 100 ∈ Z + Z

big −10 ∈ Z + Z

small 200 ∈ Z + Z

0 ∈ Z

16 ∈ Z

8 ∈ Z

12 ∈ Z

14 ∈ Z

15 ∈ Z

?? ∈ Z

Table 2: An EF game on (Z, <) and (Z + Z, <).

Spoiler first plays eR. Duplicator plays eQ(e). Then Spoiler plays πR. For any element aQ(e)

that Duplicator may play,

a =
q0 + q1e+ . . .+ qne

n

p0 + p1e+ . . .+ pmem

for some rational q0, . . . , qn, p0, . . . , pm. Then we have

a(p0 + p1e+ . . .+ pme
m) = q0 + q1e+ . . .+ qne

n (9)

p0a + p1ea + p2e
2a+ . . .+ pme

ma− (q0 + q1e+ . . .+ qne
n) = 0 (10)

which is equivalent to f(e, a) = 0 for a function f ∈ Q[x1, x2]. But f(e, π) �= 0, so Spoiler

wins at stage 2.

Stage Spoiler Duplicator
1
2

e ∈ R

π ∈ R

e ∈ Q(e)
a ∈ Q(e)

Table 3: An EF field game on R and Q(e).

As a third example we take the M vs. N vector space EF game, where M = (R2,R)

and N = (R3,R). A sample play is shown in Table 4. Spoiler begins by playing a basis for

R3 in N . Duplicator plays the vectors (1, 0), (0, 1), and (π, e). Spoiler does not win yet,
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because there is no linear combination with coefficients in Q of the vectors (1, 0) and (0, 1)

that yields (π, e).

Next, Spoiler plays π and e in M . Regardless of the field elements a and b that Duplicator

chooses in N , there is an atomic formula ϕ in LV S such that {(1, 0), (0, 1), (π, e), π, e}M |= ϕ

and {(1, 0, 0), (0, 1, 0), (0, 0, 1), a, b}N |= ¬ϕ:

ϕ(v1, v2, v3, s1, s2) = s1 ∗ v1 +v s2 ∗ v2 = v3

Thus, Spoiler wins at stage 5.

Stage Spoiler Duplicator
1
2
3
4
5

(1, 0, 0) ∈ N
(0, 1, 0) ∈ N
(0, 0, 1) ∈ N

π ∈ M
e ∈ M

(1, 0) ∈ M
(0, 1) ∈ M
(π, e) ∈ M
a ∈ N
b ∈ N

Table 4: An EF vector space game between M and N .

For more examples and a more detailed discussion of the relationship between EF games

and equivalence under formulas of a certain quantifier rank, see [3].
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