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Abstract

It was shown in [3] that one can associate a certain infinite-dimensional Lie algebra to

any two-dimensional oriented manifold S.

In this paper we relate Goldman’s invariant to an algebraic construction, the Hochschild

cohomology of the group algebra of the fundamental group, HH∗(Q(π1(S))). We construct

a Lie algebra homomorphism ρ1 : L → HH1(Q(π1(S)))) and show that it is in fact an

isomorphism with a certain natural ideal H0 ∈ HH1(Q(π1(S))) of finite codimension. Thus

we express the topological Goldman structure—something that can only be defined for two-

dimensional oriented manifolds in terms of something more general.



1 Introduction

For any topological space S, one can define group structure on the set π1(S) of homotopy

classes of loops (continuous functions from the circle S1 to S) when both are viewed as

pointed spaces (i.e., when there is a base point s0 on S1 and a base point x0 in S, and all

maps must take s0 to x0). If one forgets about the chosen points, it can be shown that the

set F of homotopy classes of “free loops”—continuous maps f : S1 → S without chosen

points—is indexed by conjugacy classes of π1. There is a priori no multiplication structure

on this set. However, surprisingly, if S is an oriented two-dimensional manifold, one can

define a Lie algebra structure on Q(F ), the free vector space on F over Q.

Let S be an oriented smooth two-dimensional manifold. When we have two free loops

φ1 and φ2 which represent f1 and f2 in F , we cannot canonically choose a common point

to multiply them as based loops. However, if the loops are “nice”, we can multiply them in

every common point and take the sum with signs over all of them.

First we define the “niceness” condition.

Definition 1. We say that the a set of loops φ1, · · · , φn is generic if all the loop maps φi :

S1 → S are smooth and all intersections and self intersections of φ1, · · · , φn are transversal.

It is a standard result that up to homotopy, we can assume that these embeddings are

generic up to homotopy.

For a generic pair of loops φ1 and φ2, we can define the sign of any intersection I of φ1

with φ2. We say s(I) = ±1 with s(I) = 1 when the angle between the tangent vector to φ1

and the tangent vector to φ2 is between 0 and π and S(I) = −1 otherwise.

If we choose an intersection I, we can also define maps φ1I
and φ2I

of pointed spaces

(S1, s0) → (X,P ): We view the circle as the group of unit complex numbers and set φ1I
(z) =

1



φ1I
(zs−1

1 ) and φ2I
(z) = φ2I

(zs−1
2 ). This allows us to multiply the loops as elements of the

fundamental group, with the chosen point of X at I: we set φ1∗I φ = φ1I
∗φ2I

in this pointed

space, but viewed as a free loop.

Definition 2. The Lie bracket of two free loops can now be defined as a sum over all

intersections I:

[f1, f2] =
∑

I

s(I)φ1 ∗I φ2.

By linearity, this determines the product structure of the whole space.

This bracket is called the Goldman bracket and was first defined by the mathematician

William Goldman in a 1986 paper on differential geometry ([3]). The bracket turned out to

be important for the study of flat connections on two dimensional manifolds, as well as for

other areas of differential geometry and physics.

In 2006, Chas and Sullivan described a generalization of the Goldman bracket to higher

dimensional manifolds ([1]) by considering homology classes of the space of free loops instead

of its connected components (called “string topology”).

The algebra Q[C] with product structure defined by the Goldman bracket will be denoted

L throughout this paper. It is not difficult to check that L is anticommutative and satisfies

the Jacobi identity. It is not immediately obvious, however, that the Goldman product of

two loops γ1 and γ2 depends only on the homotopy types of the loops. This is shown in [3] by

proving that the bracket is conserved after applying a series of moves, similar to Reidemeister

moves, which can get from any pair of loops γ1, γ2 with transversal intersections to any pair

of homotopic loops.

Note that this definition depends on manifold structure and can not immediately be

generalized to other spaces. One would like to relate the Goldman bracket to some more
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standard topological construction.

2 Definitions

Throughout the paper, S will be a compact two-dimensional oriented manifold with funda-

mental group G = π1(S). The letters g, g1, g2 denote elements of G represented by loops

γ, γ1, γ2 respectively. Let F denote the set of conjugacy classes of G, which corresponds

to unbased (free) loops on S. Throughout this paper, f, f1, f2 will denote elements of [G]

represented by loops φ, φ1, φ2 respectively.

Let A = k(G) be the group algebra. a and b will denote arbitrary elements in A.

Definition 3. The complex C We define C to be chain complex

C0 → C1 → C2 → · · ·

where Cn is defined as HomQ(A⊗n, A) with differentials dn : Hom(A⊗n,M) → Hom(A⊗n+1,M)

defined by

dn(f)(a1 ⊗ · · · ⊗ an) = a1f((a2 ⊗ · · · ⊗ an) +
n−1∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+f(a1 ⊗ · · · ⊗ an−1)an.

In particular, d1(a) ∈ Hom(A,A) is defined as (d1(a))(b) = ab− ba.

Definition 4. Let Bi = Im(di) be the space of coboundaries and Zi = Ker(di+1)—the space

of cocycles of C. We define HHn(A,M), the Hochschild cohomology of A,M for any A-

bimodule M as the cohomology of the Hochschild chain complex, C: in other words the vector

space quotient

HH i = H i(C) = Zi/Bi.
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Remark 1. In terms of homological algebra, HHn(A,M) = Extn(A,M) in the category of

A-bimodules.

Note that Z1 is the space of maps f : A → A such that 0 = d(f)(g1, g2) = g1f(g2) +

f(g1)g2, in other words the space of derivations of A. We can define a Lie-algebra bracket

on the set Z1 of derivations by the formula [z1, z2] = z1 ◦ z2 − z2 ◦ z1 for any z1, z2 ∈ Z1 ⊂
Hom(A,A). We see that B1, also called the set of inner derivations, is an ideal in the Lie

algebra Z1. Thus the factor HH1 = Z1/B1 inherits a Lie-algebra structure. This algebra is

often called Out(A), the space of “outer” derivations of A.

To relate L and HH1, we will construct a map ρ from L to A and show that it is a Lie

Algebra homomorphism.

3 Constructing ρ

We first define a map ρ′(φ′) for any loop φ′ which does not go through our chosen point x0.

Then we will show that this map is the same for any ρ′1 which is homotopy equivalent to ρ′.

Let S ′ be the two-dimensional oriented manifold S\x0 (the complement in S to our base

point). Let L′ be the Goldman Lie Algebra on S ′. Let φ′ be a free loop, in S ′, representing

f ′ ∈ L′. We define ρ′ : L′ → Hom(A,A) similarly to the Goldman bracket:

ρ′(f)(g) =
∑

I∈φ′∪γ

s(I)[φ′ ∗I γ],

where [γ ∗I φ
′] ∈ G represents γ ∗I φ

′ viewed as a based loop. This map is well-defined, and

this can be shown using the same arguments used in [3] to prove that the Goldman bracket
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is well-defined. We can see that ρ(φ′) is a derivation because

ρ(φ′)(g1g2) =
∑

I∈γ1∪φ′
s(I)(φ′ ∗I γ1) ∗x0 γ2 +

∑

I∈γ2∪φ′
s(I)γ1 ∗x0 (φ′ ∗I γ2) = ρ′(f)(g)h + gρ(f)h.

Similarly, we see that the map ρ′ : L′ → Z1 is a Lie algebra homomorphism. We will show

that it can be “pushed down” to a Lie algebra homomorphism ρ : L → HH1. The proof

follows from the following lemma:

Lemma 1. If φ′
1 and φ′

2 are two loops in S ′ homotopic as loops in S, then ρ′(φ′
1)−ρ′(φ′

2) ∈ B1.

Proof. Since φ′
1 and φ′

2 are homotopic on S, one can be obtained from the other by a finite

sequence of homotopies in S ′ and moves where the loop crosses our chosen base point, as

follows.

�
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gamma

gamma

phi2

phi1

Figure 1: moving the loop through the base point

This means that it suffices to show that if φ′
1 and φ′

2 are related by such a move, then

ρ′(φ′
1) − ρ′(φ′

2) ∈ B1.

The difference ρ′(φ′
1) − ρ′(φ′

2) ∈ B1 is equal to the difference of the two loops on the left

in the following diagram (the components from all other intersections cancel). Now we see

that if we define the based loop φ as in the following diagram (the based loop “between” φ1
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Figure 2: loops that do not cancel in ρ′(φ′
1) − ρ′(φ′

2).

and φ2) then the conjugation [φ ∗ γ − γ ∗ φ] is represented by the difference of the two loops

on the right in the above diagram. This means that (ρ′(φ′
1)− ρ′(φ′

2))(g) = [φ]g− g[φ]. Thus

�
�
�
�

gammaphi

Figure 3: the based loop φ

ρ′(φ′
1) − ρ′(φ′

2) ∈ B1 and we are done.

This allows us to define a Lie Algebra homomorphism ρ : L → Z1/B1 = HH1. We will

now use the relationship between group cohomology and Hochschild cohomology to show

that ρ is injective and has finite codimension.
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4 Group cohomology

For any group G and left G-module M , we define a resolution

C0
G → C1

G → C2
G → · · ·

where Cn
G = Hom(A⊗n,M) for n ≥ 1 and C0

G = M where A is again the group algebra Q(G)

with differentials dn : Hom(A⊗n,M) → Hom(A⊗n+1,M) defined by

di(f)(a1 ⊗ · · · ⊗ an) = a1f((a2 ⊗ · · · ⊗ an) +
n−1∑

1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+(−1)nf(a1 ⊗ · · · ⊗ an−1).

We define the group cohomology H i(G,M) as H i(CG).

Remark 2. In terms of Homological algebra, H i(G,M) = ExtiG(Q,M) in the category of

Q(G)-modules where Q is regarded as a module over G with trivial action.

Theorem 1. Equivalence of resolutions Let G be any group and set A = Q(G). Then for any

A-A bimodule M , the Hochschild coomology HH i(A,A) is isomorphic to the group homology

H i(G,M), where G acts on M by conjugation (so we define the action g.m of g on m is

defined as gmg−1 (in A-module action).

Proof. We construct a morphism of chain complexes. Let α : A⊗n → A be a map in Cn. We

define

T∗ = {t1, t2, · · · } : C → CG

where

tn : α → tn(α) : g1 ⊗ · · · ⊗ gn �→ α(g1 ⊗ · · · ⊗ gn)g−1
n g−1

n−1 · · · g−1
1

To check that these maps commute with differentials, we compute (tn+1◦dn)(α)(g1⊗· · ·⊗
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gn) = g1α(g2 ⊗ · · · ⊗ gn)g−1
n · · · g−1

1 +
∑n−1

i=1 (−1)iα(g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn)g−1
n · · · g1−1 +

(−1)nα(g1 ⊗ · · · ⊗ gn−1 = dn ◦ fn(α)(g1 ⊗ · · · ⊗ gn.

Note that all the ti involved in this map are isomorphisms. This means that the induced

map on cohomology

T : HHn(A,M) = Hn(C) → Hn(CG) = Hn(A,G)

is an isomorphism.

Let X be the conjugacy class corresponding to the free loop φ. G acts on X by conjuga-

tion, so we can define a left G-module Q(X). The G-module A (where G acts by conjugation)

decomposes into a direct sum over conjugacy classes ⊕XQ(X).

This means that CG also decomposes into a direct sum over conjugacy classes:

Cn
G =

⊕

X

Cn
X

where Cn
X = Hom(A⊗n,Q(X)). It follows that

Hn(G,A) =
⊕

X∈[G]

Hn(G,Q(X)).

Lemma 2.

T (ρ(φ)) ∈ H1(Q(X), G) ⊂ H1(A,G).

Proof. We need to show that T (ρ(f))(g) ∈ X for any homotopy class of free groups f . We

know

T (ρ(f))(g) = ρ′(f)(g)g−1 =
∑

I∈φ′∪γ

s(I)[φ′ ∗I γ ∗∗ γ−1].
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The following diagram shows that this is homotopic to γ as a free loop.

\gamma

\phi

I

*

Lemma 3. For any f0 �= f ∈ F , ρ(f) �= 0.

Proof. We will use Etingof’s result in [4] that the center of L is spanned by the trivial loop,

f0.

We define p : A → L to be the set surjection sending every element g ∈ G which represents

the loop γ to the unbased loop corresponding to γ. For any inner derivation α ∈ B1(A), we

can see that p(α(a)) = 0 for any a ∈ A.

It is clear from the definition of ρ that p(ρ′(f)(g)) = [f, p(g)].

Assume now that ρ(f) = 0. Then p(ρ(f)(g)) = 0 ρ(f)(g) = 0 for any g ∈ G then

[f, p(g)] = 0 for all G. But since p is a surjection, it follows that f is in the center of L.

Assume that ρ(f) = 0. This means that for any choice φ′ of a loop in L′ representing

f and for any g ∈ G, we can choose a ∈ A such that ρ′(g) = ag − ga. We can apply the

natural projection p : A → L (which sends g ∈ G to the conjugacy class of g) to both sides.
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We get p(ag − ga) = 0 and p(ρ′(f)(g)) = [f, p(g)] (since the definition of ρ′ was the same as

the definition of goldman bracket up to choice of base point).

Thus we have [f, p(g)] = 0 for any g ∈ G. Since p : A → L is injective, this means that

[f, f1] = 0 for any f1 ∈ F . Therefore f is in the center of L. This is a contradiction by

[4].

Let f0 be the generator of L which corresponds to the trivial loop. Then Qγ0 is in the

center of L and ρ(γ0) = 0. This means that we can define a Lie algebra hoomomorphism

ρ0 : L/Qγ0 → HH1.

We have proved that ρ(f) �= 0 for any generator f of L except for f0 and also that every

f gets mapped to a different summand of HH1 (as a vector space). This shows that ρ0 is

injective.

Theorem 2. If X is a non-trivial conjugacy class of G = π1(S) then H0(Q(X)) ∼= 0

H1(Q(X)) ∼= Q and H2(Q(X)) ∼= Q.

Proof. We know that G acts transitively on X. This means that if we define Z to be the

the stabilizer of some element x ∈ X, then Q(X) ∼= Q(G/Z) as a left G-module. Note that

Z = Z(x) is the same as the centralizer in G of x.

Lemma 4. For any element 1 �= x ∈ G, the centralizer Z(x) ∼= Z.

Proof. Any closed compact two-dimensional surface of genus greater than one is a quotient

of the upper half plane by a discrete group of hyperbolic transformations, so the fundamental

group G = π1(S) is a discrete hyperbolic subgroup of PSL2(R).

It is a standard result in geometry that the centralizer of any hyperbolic element 1 �=
h ∈ PSL2(R) is isomorphic to R. Since G is a discrete subgroup, Z(x) must be isomorphic

to a discrete subgroup of R, which can only be Z or 0. Since 1 �= x ∈ Z(x), we know Z(x)

is non-trivial and Z(x) ∼= Z.
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We fix an element x ∈ X and set H = Z(x). Let M = Q(G/H). We need to compute

HH i(M) = Q. To do this, we relate this group cohomology to the cohomology with compact

supports of the covering space of S corresponding to the subgroup H.

Let S̃ be the universal covering space of S. The fundamental group G acts simply

transitively on S̃ so we can define a new oriented manifold P = S̃/H. By manipulating

chain complexes, we can show that H i
c(P,Q), the cohomology of P with coefficients in Q

and compact supports, H i(G,Q(G/H)). By Poincaré duality,

Hi(P,Q) ∼= H2−i
c (P,Q).

In particular, H2(G,Q(G/H)) ∼= H0(P ) = Q since P is connected, H2(G,Q(G/H)) ∼=
H1(P ) = Q since π1(P ) = H ∼= Z and H0(G,Q(G/H)) ∼= H2(P ) = 0 since P is non-

compact.

We cannot use the same arguments for the conjugacy class X0 = 1, since Z(1) �= Z.

However, in this case we can simply calculate cohomology H i(G,Q(X0)) = H i(G,Q) where

G acts on Q trivially.

Since S has a contractible cover, it is an Eilenberg-MacLane space S = K(G, 1), we

know that H i(G,Q) = H i(S,Q). We can see that the element h ∈ H1(S) corresponds to the

derivation

h : g �→ h(g)g,

where h(g) ∈ Q is the action of h on g viewed as a homology element.

We have shown that for any non-zero basis element f0 �= f ∈ L which represents the

conjugacy class X of G, the homomorphism T ◦ ρ|Qf : Qf → H1(G,X) is an injective map

of one-dimensional vector spaces and therefore an isomorphism.

Hence the map ρ0 gives an isomorphism between L/γ0 and the subspace of HH1 corre-
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sponding to the direct sum
⊕

{e}	=X∈[G]

H1(G,X).

Note that this is precisely the set of “trace-zero” derivations, which map any element g ∈
G ⊂ A to a linear combination of different elements of G. Since the trace of any commutator

is zero, �(ρ) is an ideal.

This lets us characterize the Goldman Lie algebra in terms of the algebraic structure of

the Lie bracket on HH1.
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