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Abstract

In this paper, we looked to characterize which elements of integer rings of quadratic and

more general number fields could be expressed as the sums of squares. This is a well-known

problem in Z, but it has not been solved in more complex cases. We completely characterized

these elements in the cases of Z[i] and Z[1+
√−3
2

]. For a general number field K, we were

able to determine a general form for elements expressible as the sums of two squares by

considering the ideals of the maximal order of K and K(i).



1 Introduction

Expressing an integer as the sum of squares is a classical problem of number theory. It has

long been known that there exist integers x and y such that x2+y2 = p for any prime p which

is congruent to 1 modulo 4 and for p = 2. If p ≡ 3 (mod 4), there is no such solution. Any

non-negative integer which is a multiple of a prime congruent to 3 modulo 4 and contains

an odd power of this prime cannot be expressed as the sum of two squares, while all other

non-negative integers can. One can also show that every integer can be expressed as the sum

of four squares [1]. It is not well-known, however, which elements of other integer rings can

be expressed as the sum of squares.

A number field is a field extension of Q of finite dimension. The maximal order (integer

ring) OK of a number field K is the ring of elements α in the field such that f(α) = 0 for

some monic polynomial function f in Z[x]. In this paper, we will analyze which integers in

various number fields can be written as the sums of two squares.

First we will use the unique factorization of ideals into prime ideals to examine the case

of a general number field which does not contain i. Then we will consider the example of

Z[1+
√−3
2

]. Lastly, we will look into the unique case when i is an element of the number field.

2 Statement of the Problem

The clasical problem is formulated as follows:

For which values of a ∈ Z does a = x2 + y2 have a solution for x, y ∈ Z?
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This is equivalent to finding all values of a such that a = N(α) for some α ∈ Z[i]. In our

extension of the problem to a general number field K, it is convenient to express a as the

norm of some element. We will use ideals in our investigation, and hence we must reformulate

the problem:

For which ideals A ⊂ OK does A = NK(i)/K(I) for some ideal I in OK(i)?

3 Decomposition when i �∈ K

3.1 The General Case

In the general case, the maximal order OK of field K as well as OK(i) fail to have unique

factorization into primes. Thus we will consider the ideals of OK and OK(i). We intend to

find the image of NK(i)/K : DK(i) → DK where DL is the semigroup of ideals of OL (see

appendix A).

Theorem 3.1.1: If ℘ is a prime ideal in OK then ℘ = NK(i)/K(I) for some ideal I in

OK(i) iff ℘OK(i) is not a prime ideal of OK(i).

Proof: Assume ℘OK(i) is not a prime ideal in OK(i). Then ℘OK(i) = IJ where I and

J are non-unit ideals of OK(i). NK(i)/K(℘OK(i)) = ℘dim(K(i)/K) = ℘2. Since I and J are

not units, NK(i)/K(I) = NK(i)/K(J) = ℘. I and J cannot be the product of non-unit ideals

because then their norms could not be prime. Thus ℘ is the norm of a prime ideal of OK(i).

Now assume ℘ = NK(i)/K(I). NK(i)/K(I)OK(i) = II, and therefore ℘OK(i) is not a prime

ideal. This completes the proof.
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Lemma 3.1.1: If ℘ is a prime ideal of OK , then ℘| < x2 + 1 >OK
for some x ∈ OK iff

NK/Q(℘) =< m >Z for some m ∈ Z+ such that m ≡ 1 (mod 4) or 2|m.

Proof: If ℘ is a prime ideal in OK , then OK/℘ is a field and hence OK/℘ − {0} is a

cyclic multiplicative group. If NK/Q(℘) =< m >Z then the order of this group is m − 1.

If m ≡ 1 (mod 4), then take x = g
NK/Z(℘)−1

4 where g is a representative of the class which

generates OK/℘ − {0}. Then x2 + 1 ∈ ℘, and so ℘| < x2 + 1 >OK
. If 2|m then take x = 1.

To prove the converse, assume that ℘| < x2 +1 >OK
. If −1 �≡ 1, then 4 divides the order of

x. Since the order of x must divide the size of OK/℘ − {0}, 4|(m − 1) and so m ≡ 1 (mod

4). If −1 ≡ 1 then 2 ∈ ℘ and NK/Q(℘) = 2f for some f > 0. Hence 2|m. Thus the proof is

complete.

Now we must characterize which prime ideals of OK remain prime in OK(i).

Theorem 3.1.2: Let ℘ be a prime ideal of OK . ℘OK(i) is a prime ideal of OK(i) iff

NK/Q(℘) =< m >Z where m ≡ 3 (mod 4).

Proof: Assume NK/Q(℘) =< m >Z where m �≡ 3 (mod 4). By lemma 4.2, one can

find x ∈ OK such that ℘| < x2 + 1 >OK
and so ℘OK(i)| < x + i >OK(i)

< x − i >OK(i)
.

Suppose that ℘OK(i) is a prime ideal of OK(i). Then ℘OK(i)| < x± i >OK(i)
. This means that

(x±i) ∈ ℘OK(i). If ℘ has generators α1, α2, ...αn, then x±i = (c1α1+c2α2+...+cnαn)+(d1α1+

d2α2+...+dnαn)i where all ci and dj are in OK . But then (d1α1+d2α2+...+dnαn) = ±1 ∈ ℘

and ℘ = OK , which cannot be true since OK is not prime. This creates a contradiction, and

so ℘OK(i) cannot be prime.

Now assume NK/Q(℘) =< m >Z where m ≡ 3 (mod 4) and m > 0, and suppose that

℘OK(i) is not a prime ideal of OK(i). By Theorem 3.1.1, ℘ = NK(i)/K(I) where I is a
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prime ideal of OK(i). Then NK(i)/Q(I) = NK/Q(NK(i)/K(I)) = NK/Q(℘) =< m >Z . Also,

Q ⊂ Q(i) ⊂ K(i) and hence by the same argument NK(i)/Q(I) = NQ(i)/Q(NK(i)/Q(i)(I)).

By definition, NK(i)/Q(i)(I) = P f for some prime ideal P of Z[i] and f ∈ N. Therefore

NK(i)/Q(I) = (NQ(i)/Q(P ))f . NQ(i)/Q(P ) =< d >Z where d > 0. If P lies above a prime p in

Z which is congruent to 3 (mod 4), d = p2 ≡ 1 (mod 4). Thus in any case d ≡ 1 (mod 4) or

2|d. Therefore NK(i)/Q(I) =< df >Z and df ≡ 1 ≡ m (mod 4). This contradicts the initial

assumption, and so ℘OK(i) is a prime ideal of OK(i) and the proof is complete.

Theorem 3.1.3: (Characterization of the Image of NK(i)/K) Let A ⊂ OK be an ideal.

Then A = NK(i)/K(I) for some I of OK(i) if and only if

A =
k∏

i=1

Pαi
i

�∏

j=1

Q2βj

j ,

where Pi is a prime ideal of OK such that NK/Q(Pi) =< mi >Z and mi ≡ 1 (mod 4)

or mi is even (mi > 0), and Qi is a prime ideal of OK such that NK/Q(Qi) =< ni >Z and

ni ≡ 3 (mod 4) (ni > 0).

Proof: Any ideal A over OK can be decomposed as the product of prime ideals as

follows:

A =
k∏

i=1

Pαi
i

�∏

j=1

Q2βj+εj

j ,

with εi = 0 or 1. Suppose A = NK(i)/K(I) for some I and εk = 1 for some k.

Q2βk+1
k OK(i)|II. Since QkOK(i) is prime, it follows that Qβk+1

k OK(i)|I or I. Without loss

of generality, choose I. Then Qβk+1
k OK(i) = Qβk+1

k OK(i)|I and Q2βk+2
k |A. This result is

contrary to the prime factorization of A, and so εi = 0 for all i.
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If all εi = 0, we notice that Pi = N(Ii) for some ideal Ii and Q2
i = N(QiOK(i)). Since

the norm is multiplicative, A must be the norm of some ideal in OK(i) and the theorem is

proven.

3.2 Decomposition when OK(i) is a Principal Ideal Domain

Now assume OK(i) is a principal ideal domain (i.e. all ideals in OK(i) are principal). Let

a ∈ OK and < a >= N(I) for some I of OK(i). We distinguish two different cases:

1) < 2 > is unramified in OK . Then all elements of OK(i) can be written as x+ yi where

x, y ∈ OK (see appendix B for proof), and

2) < 2 > is ramified in OK . Then all elements of OK(i) can be written as x
2
+ y

2
i where

x, y ∈ OK and x ≡ y (mod 2) (see appendix B for proof).

Theorem 3.2.1:

1) If < 2 > is unramified in OK , then < a >= N(I) iff εa is the sum of two squares where

ε is some unit in OK .

2) If < 2 > is ramified in OK , then < a >= N(I) iff 4εa is the sum of two squares where

ε is some unit in OK .

Proof:

1) By assumption, I =< α >OK(i)
where α = x + yi for x, y ∈ OK . Hence < a >OK

=<

NK(i)/K(α) >OK
=< x2 + y2 >OK

. This implies that there exists a unit ε of OK such that

εa = x2 + y2. Now suppose that εa = x2 + y2. Then < a >OK
=< N(x + yi) >OK

= N(<

x+ yi >OK(i)
) and x+ yi ∈ OK(i). Thus < a > is the norm of an ideal in OK(i).

2) By assumption, I =< α >OK(i)
where α = x

2
+ y

2
i for x, y ∈ OK . Hence < a >OK

=<
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NK(i)/K(α) >OK
=< x2+y2

4
>OK

. This shows that there exists a unit ε of OK such that

4εa = x2 + y2. Now suppose that 4εa = x2 + y2. Then < a >OK
=< N(x

2
+ y

2
i) >OK

= N(<

x
2
+ y

2
i >OK(i)

). Since 4|(x2 + y2), x
2
+ y

2
i ∈ OK(i). Thus < a > is the norm of an ideal in

OK(i).

Theorem 3.2.2: Suppose OK(i) is a principal ideal domain. Let a ∈ OK and < a >=

Pα1
1 Pα2

2 ...Pαk
k Qβ1

1 Qβ2

2 ...Qβ�

� where N(Pi) =< mi > for positive mi and mi is even or ≡ 1 (mod

4), and N(Qi) =< ni > for positive ni and ni ≡ 3 (mod 4). Then:

1) If < 2 > is unramified in OK , for some unit ε in OK the quantity εa is representable

as the sum of two squares iff β1, β2, ...β� are all even.

2) If < 2 > is ramified in OK , for some unit ε in OK the quantity 4εa is representable as

the sum of two squares iff β1, β2, ...β� are all even.

Proof: By Theorem 3.1.3, < a >= NK(i)/K(I) for some ideal I in OK(i) iff all βi are

even. By Theorem 3.2.1, < a >= NK(i)/K(I) iff εa is the sum of two squares in the case that

< 2 > is unramified or 4εa is the sum of two squares in the case that it is ramified. Thus

the theorem is proven.

3.3 Example: Z[1+
√−3
2 ]

Consider the quadratic number field Q(
√−3). For the sake of convenience, let ρ = 1+

√−3
2

.

One can show that the maximal order of this number field is Z[ρ][3] and that the maximal

order of Q(
√−3, i) is Z[ρ, i] (see appendix C). It can also be shown that both Z[ρ] and Z[ρ, i]

are Euclidean and are therefore principal ideal domains and that < 2 > is unramified in Z[ρ]

(see appendix C).
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We can easily show that the units in Z[ρ] are ±1,±ρ, and ±ρ, and all of these units are

expressible in Z[ρ] (see appendix C). From this result we can prove the following theorem:

Theorem 3.3.1: If a ∈ Z[ρ] and ε is a unit in Z[ρ], εa is the sum of two squares if and

only if a is the sum of two squares.

Proof: Let εa = x2 + y2 for x, y ∈ Z[ρ]. One can express a as ε−1(x2 + y2). Since ε−1 is

a unit of Z[ρ], it is expressible as the sum of two squares and (by Theorem A.6) so is a.

Therefore Theorem 3.2.2 gives the following corollary:

Corollary 3.3.1: (Characterization of expressible elements in Z[ρ]) Let a ∈ Z[ρ]. If

a = pα1
1 pα2

2 ...pαk
k qβ1

1 qβ2

2 ...qβ�

� where pi are prime elements of Z[ρ] such that N(pi) ≡ 1 (mod

4) or p = 2 and qi are prime elements of Z[ρ] such that N(qi) ≡ 3 (mod 4), then a is

representable as the sum of two squares iff all βi are even.

4 Decomposition when i ∈ K

4.1 The General Case

When i ∈ K, K can be expressed as K ′(i) for some number field K ′. Thus any element α

of OK can be written as α0 + α1i where α0, α1 ∈ OK′ . For the sake of convenience, we call

an element of OK even if 2 divides the element and odd otherwise. We will call an element

expressible if it can be written as the sum of two squares.

One can show that all irreducible elements of OK which are of the form (2k + ε2) + 2 i,

where k,  ∈ OK and ε is a unit of OK′ , can be expressed as a sum of two squares (see

appendix D for proof).
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In the special case of K ′ = Q, the division algorithm in Z suggests that every odd element

of OK′ can be written as (2k + ε2) and so

Corollary 4.1.1: An irreducible element π in Z[i] is expressible iff π is an odd integer

plus an even integer times i.

Now we will look to characterize reducible elements of OK which are the sums of squares.

Since the product of two expressible elements is also expressible (see appendix A), we have

shown that

Theorem 4.1.1: For a number field K ′, an element a of OK′(i) expressible if

a =
n∏

j=1

((2kj + ε2j ) + 2�ji)

where kj and  j are in OK′ and εj is a unit in OK′ . Note: there may also be other

elements of OK which are the sum of two squares.

Lemma 4.1.1: For any α ∈ OK′ , 4|α implies that α is the sum of two squares.

Proof: Let α = 4x. Since 4x = (x+ 1)2 + (ix− i)2, α is the sum of two squares.

Lemma 4.1.2: For any x ∈ OK′ , 2|(x+ 1) implies that x is the sum of two squares.

Proof: If 2|(x + 1), then x+1
2

∈ OK′ . Since x = (x+1
2
)2 + (xi−i

2
)2, x is the sum of two

squares.

Now let us consider the special case where K ′ = Q. In this case we can obtain a stronger

result.
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4.2 Decomposition in Z[i]

If α ∈ Z[i] and α = a+ bi where a is odd and b is even, 2|((a+ bi)+1). Therefore by Lemma

4.1.2, we obtain the following theorem:

Theorem 4.2.1: Gaussian integer a+ bi where a is odd and b is even can be written as

the sum of two squares.

Now consider a Gaussian integer α = a + bi where a and b are both even. This can be

expressed as 2mx + 2nyi where x and y are odd. One can show that α is the sum of two

squares if m �= n (see appendix D).

In the case where m = n, first consider m = n = 1. If α = (r1 + r2i)
2 + (r3 + r4i)

2, then

α = (r2
1 + r2

3) − (r2
2 + r2

4) + 2(r1r2 + r3r4)i. Since r1r2 + r3r4 must be odd, we may assume

without loss of generality that r1, r2 ≡ 1 (mod 2). This means that r2
1 ≡ r2

2 (mod 4), and

so a ≡ r2
3 − r2

4 (mod 4). Since m = 2, a ≡ 2 (mod 4), and so r2
3 − r2

4 ≡ 2 (mod 4). This

equation has no solutions, so m = n = 1 implies that α is not the sum of two squares.

If m = n ≥ 2, 4|α. Therefore by Lemma 4.1.1 α is the sum of two squares.

One can extend these arguments to prove that any Gaussian integer α with an even

coefficient of i is the sum of three squares (see appendix D for proof). Thus we have shown

Theorem 4.2.2: Gaussian integer α = a + bi is expressible if and only if b is even and

a ≡ b (mod 4) implies that a �≡ 2 (mod 4). Moreover, α is the sum of three squares iff b is

even.
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5 Discussion / Conclusions

If i ∈ K, integers which are a product of irreducible elements of the form (ε2 +2k) + 2 i can

all be written as the sum of two squares. In the special case of Z[i], all integers of the form

a+ 2bi where a, b ∈ Z are expressible as long as a and 2b are not both congruent to 2 (mod

4). All integers a+ 2bi can be written as the sum of three squares. If the maximal order of

K(i) is a principal ideal domain, a unit multiple of an element or 4 times a unit multiple is

the sum of two squares if and only if it contains even powers of any prime whose norm is

congruent to 3 (mod 4). In the specific case of Z[1+
√−3
2

], this result can be simplified and

the units can be ignored. For general integer ring OK , a similar but weaker result holds: any

element which is the sum of two squares must meet the criteria described when OK(i) is a

principal ideal domain, but not all such elements are the sum of two squares (e.g. a product

of irreducible elements of OK[i]). In my future research into this problem, I will attempt to

characterize more fully which elements of OK are irreducible but not prime in OK(i) and I

will try to find a set in which the maximal order of the quaternion algebra is Euclidean. This

will enable me to continue my investigation of this problem and expand it to the problem of

expressing integers as the sums of four squares.
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A Principles of Number Fields

For proofs, see [3].

Definition A.1: A number field is a field extension of Q of finite dimension.

Definition A.2: I ⊂ OK is an ideal if it is closed under addition and x ∈ OK , a ∈ I

implies that ax ∈ I.

Definition A.3: The ideal generated by the set S ⊂ OK is {a1x1+a2x2+ ...+anxn|ai ∈

S, xi ∈ OK}. If S = {a1, a2, ...an}, then this ideal is denoted by < a1, a2, ...an >OK
. We say

an ideal is principal if I =< a > for some a ∈ OK .

Definition A.4: If K ⊂ L is a number field and I ⊂ OK is an ideal, define IOL to be

the ideal generated by I in OL.

Definition A.5: Ideal P ⊂ OK is called a prime ideal if xy ∈ P implies that x or y is

in P . If P is a prime ideal generated by p, then p is called a prime element of OK .

Definition A.6: If I and J are ideals of OK , we define IJ to be the ideal generated by

the set {ij|i ∈ I, j ∈ J}.

Lemma A.1: If P is a prime ideal, IJ ⊂ P implies that I ⊂ P or J ⊂ P .

Definition A.7: The set of all ideals of OK forms a semigroup under multiplication with

the unit ideal OK . This is called the semigroup of ideals of OK .

Theorem A.1: (Unique factorization in the semigroup of ideals of OK) Any ideal I ⊂

OK can be uniquely factored into a product of prime ideals. This is the analogue of the

unique factorization theorem in Z = OQ.

Definition A.8: Let K ⊂ L be an extension of number fields of degree n. Any α ∈ OL

defines a linear transformation of the finite dimensional vector space L/K. The determinant
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of this transformation is called NL/K(α).

Theorem A.2: For α, β ∈ OL

1) NL/K(α) ∈ OK .

2) NL/K(αβ) = NL/K(α)NL/K(β).

3) If α ∈ OK , NL/K(α) = αn.

Theorem A.3: Let P be a prime ideal of OK . OK/P is a field.

Theorem / Definition A.9: Let K ⊂ L be an extension of number fields of degree

n. Let ℘ be a prime ideal of OL. Then P = ℘ ∩ OK is a prime ideal of OK and OL/℘ is

a finite extension of OK/℘ of degree f . Define NL/K(℘) = P f . If I ⊂ OL is an ideal and

I = ℘α1
1 ℘α2

2 ...℘αr
r define NL/K(I) = (NL/K(℘1))

α1(NL/K(℘2))
α2 ...(NL/K(℘r))

αr .

Theorem A.4:

1) NL/K(< α >OL
) =< NL/K(α) >OK

.

2) NL/K is multiplicative.

3) NL/K(IOL) = In.

4) If L = K(i) and I ⊂ OK(i), then NL/K(I)OK(i) = II.

5) NL/Q(I) = NK/Q(NL/K(I)).

6) If P ⊂ OK is a prime ideal, then NK/Q(P ) =< pf >Z and OK/P is a finite field of pf

elements.

Theorem A.5: Any Euclidean ring is a principal ideal domain (see appendix C for the

definition of a Euclidean ring).

Theorem A.6: If a and b are expressible elements of OK , ab is also expressible.

Proof: By the initial assumption, one can write a as a2
0 + a2

1 and b as b2
0 + b2

1. Thus
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a = (a0 + a1i)(a0 − a1i) and b = (b0 + b1i)(b0 − b1i). Then ab = ((a0b0 − a1b1) + (a0b1 +

a1b0)i)((a0b0−a1b1)− (a0b1+a1b0)i) = (a0b0−a1b1)
2+(a0b1+a1b0)

2 and is thus expressible.

B Characterization of the Elements of OK(i)

Definition B.1: An ideal I in OK is unramified if J |I implies that J2 � |I for all ideals J in

OK . Otherwise it is said to be ramified.

Lemma B.1: If a is an unramified element of OK , a|x2 implies that a|x for x ∈ OK .

If α = x + yi ∈ OK(i), then N(α), tr(α) ∈ OK . This means that 2x, 2y ∈ OK and

x2 + y2 ∈ OK . Let x = m/2 and y = n/2 for some m,n ∈ OK . Then x + yi ∈ OK(i) iff

4|(m2 + n2) in OK(i).

Theorem B.1: OK(i) = OK [i] iff < 2 > is unramified in OK .

1) If < 2 > is unramified, 4|(m2 + n2) implies that 2|(m+ n)2 since 2|2mn. This in turn

implies that 2|(m + n) (by Lemma B.1) and 4|(m + n)2. This indicates that 4|2mn and so

2|mn. Since < 2 > is unramified, 2|m or 2|n. Since 4 must divide m2 + n2, both m and n

must be divisible by 2. Thus x, y ∈ OK and OK(i) = OK .

2) If < 2 > is ramified, then < 2 >= P α1
1 Pα2

2 ...Pαr
r for prime ideals Pi in OK and for

at least one value of j, αj ≥ 2. Without loss of generality, let j = 1. Consider the ideal

I = Pα1−1
1 Pα2

2 ...Pαr
r . In this case, < 2 > |I2 but < 2 >� |I. Thus there exists some element

a in I such that 2|a2 but 2 � |a. 4|(a2 + a2), and so a + ai ∈ OK(i) but a �∈ OK . As a result,

OK(i) �= OK [i].
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C Miscellaneous Considerations in Z[ρ]

Definition C.1: Ring � is Euclidean iff ∃δ : �− {0} �→ R+ such that

1) ∀a, b ∈ �, δ(ab) > δ(a)

2) ∀a, b ∈ �(b �= 0),∃x ∈ � such that δ(a − bx) < δ(b) or δ(a − bx) = 0 (the division

algorithm).

In the case of Q[
√−3], we set δ(a + b

√−3) to be N−3(a + b
√−3). This is equal to

a2 + 3b2. Note: since the norm N−3 is multiplicative and has integeral values, condition (1)

automatically holds.

Theorem C.1: OQ(
√−3) is Euclidean.

Proof: In this case, a general element a of OQ(
√−3) = Z[1+

√−3
2

] is a0 +a1ρ for a0, a1 ∈ Z.

Let x = x0 + x+ 1ρ be an element of Z[ρ] and b ∈ Z. Then

N(a − bx) = N((a0 − bx0) + (a1 − bx1)ρ) = (
2(a0 + a1) − b(2x0 + x1)

2
)2 − d(

a1 − bx1

2
)2 (1)

The quantity (a1−bx1

2
)2 can be made less than or equal to (b/4)2, but this places a restriction

on the even-odd parity of x1. Accordingly,
2(a0+a1)−b(2x0+x1)

2
could have an absolute value as

large as b/2 if the optimal value of x1 is different in parity from the predetermined value.

Since −3 is negative, the maximum value for N(a− bx) is 7
16
b2, which must be less than b2.

Now consider all possible values of b in Z[ρ] with conjugate b∗. The quantity bb∗ is

an integer, so ∃x ∈ Z[ρ] such that N(ab∗ − (bb∗)x) ≤ 7
16
N(bb∗). This means that N(a −

bx)N(b∗) ≤ 7
16
N(b)N(b∗), and so N(a − bx) ≤ 7

16
N(b) and the division algorithm is proven

for all a, b ∈ Z[ρ].
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Theorem C.2: The units in Z[ρ] are ±1,±ρ, and ±ρ, and all of these units are express-

ible in Z[ρ].

Proof: If a, b ∈ Z, N(a+ bρ) = 2a+b
2

+ b
2

√−3 = (2a+b
2

)2 + 3( b
2

√−3)2 = a2 + ab+ b2.

The units of Z[ρ] are all of the elements with norm 1[1]. Thus if u = u0 + u1ρ is an

element of Z[ρ], N(u) = u2
0 + u0u1 + u2

1 = 1. This can only occur when u0 = ±1 and u1 = 0,

when u0 = 0 and u1 = ±1, or when u0 = ±1 and u1 = ∓1. This is only true for ±1,±ρ,

and ±ρ, so ±1these are the only units in Z[ρ]. 1 = 12 + 02,−1 = ρ2 + ρ2, ρ = 12 + ρ2,−ρ =

02 + ρ2, ρ = 12 + ρ2, and −ρ = 02 + ρ2. Thus all units can be expressed as the sum of two

squares in Z[ρ].

Theorem C.3: Z[ρ, i] is the maximal order of Q[
√−3, i].

Proof: Suppose 2 is not prime in Z[ρ]. Then 2 = ab where neither a nor b have norm 1.

This implies that 4 = N(a)N(b) and so N(a) = 2. Let a = a0 + a1ρ for a, b ∈ Z. Since N(a)

can be written as a2
0 + a0a1 + a2

1, 2 = a2
0 + a0a1 + a2

1. This has no solutions in Z, and so 2 is

prime. This means that 2 is unramified, and so OQ(
√−3,i) = Z[ρ, i],

Theorem C.4: Z[ρ, i] is Euclidean.

Proof: Let α ∈ Z[ρ, i] and b ∈ Z. We define the function δ(α) (see Definition C.1) to be

N−3(N−1(α)). If α = a0+a1i and a0, a1, x0, x1 ∈ Z[ρ], consider the quantity α−b(x0+x1i) =

r. We want to show that ∃x0, x1 such that δ(r) < δ(b), or N−3((a0−bx0)
2+(a1−bx1)

2) < b4.

We will make use of the following lemma:

Lemma C.1: ∀y, z ∈ Z[ρ], N−3(y + z) ≤ 2(N−3(y) +N−3(z)).

Proof: The quantities y and z can be written as y0 + y1

√−3 and z0 + z1

√−3 where

y0, y1, z0, and z1 are integers divided by 2. N−3(y+z) = (y2
0+3y2

1)+(z2
0+3z2

1)+2y0z0+6y1z1 =

16



N−3(y) + N−3(z) + 2y0z0 + 6y1z1. Since (y0 − z0)
2 ≥ 0, 2y0z0 ≤ y2

0 + z2
0 . Similarly, 6y1z1 ≤

3y2
1+3z2

1 . Thus N−3(y+z) ≤ N−3(y)+N−3(z)+(y2
0+3y2

1)+(z2
0+3z2

1) = 2(N−3(y)+N−3(z)).

Thus δ(r) ≤ 2((N−3(a0−bx0))
2+(N−3(a1−bx1))

2. This expression takes on a maximum

when N−3(a0 − bx0) and N−3(a1 − bx1) are maximized. As shown in the proof of theorem

3.1.3, these values are both 7
16
b2, and so δ(r) ≤ 196

256
b4 and so the division algorithm holds.

The method for generalizing the divisor in the proof of Theorem C.1 can be used here to

complete the proof.

D Miscellaneous Considerations when i ∈ K

Let us consider an irreducible element π of OK . If π = A2 + B2, it follows that π =

(A+Bi)(A−Bi) for A and B in OK . Since π is irreducible, A+Bi or A−Bi is a unit (i.e.

ε or εi where ε is a unit in OK′). Without loss of generality, let A+Bi be the unit. Suppose

A+Bi = ε. Then A = ε−Bi. A−Bi must be ε−1π, so ε−1π = ε− 2Bi and π = ε2 − 2εBi.

B can be expressed as B1+B2i where B1 and B2 are in OK′ , and so π = (ε2−2εB1)−2εB2i.

Note that every value of B1, B2 ∈ OK′ will yield a pi which is the sum of two squares, and

thus we have proven

Theorem D.1: All irreducible elements of OK which are of the form (2k + ε2) + 2 i,

where k,  ∈ OK and ε is a unit of OK′ , can be expressed as a sum of two squares.

Note: Had we supposed that A + Bi were εi, we would obtain εi(A − Bi) = π and

−ε−1i(A+Bi) = 1. These equations yield the same result.

Theorem D.2: If α ∈ Z[i] and α = a + bi where a and b are even, α can be written as

the sum of two squares if m �= n.
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Proof: α can be expressed as 2mx + 2nyi where x and y are odd. Suppose that m < n.

Then α = 2m(x + 2n−myi) Since x is odd and 2n−my is even, α is the product of integers

expressable as the sum of squares, and is also expressible. If m > n, α can be written as

2n(2m−nx+ yi), or 2n−1(1− i)2(−y + 2m−nxi), which is the product of expressible Gaussian

integers. Therefore all α where a and b are even can be written as the sum of two squares if

m �= n.

Theorem D.3: Any Gaussian integer α with an even coefficient of i is the sum of three

squares.

Proof: Suppose that α is expressible. Let α = A2 + B2. Then α can be written as the

sum of three squares: A2 +B2 +02. If α is not expressible but has an even coefficient of i, it

must be of the form 2(x+ yi) where x and y are odd. Then α = 2(x+ (y − 1)i) + 2i. Since

y − 1 is even, x + (y − 1)i is expressible and so is 2(x + (y − 1)i). If one lets this quantity

equal X2+Y 2, one obtains that α = X2+Y 2+(1+ i)2 and so α is the sum of three squares.
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