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Abstract

Advances in DNA sequencing have enabled researchers to search for signatures of natural

selection through genome-wide statistical scans, but the detected loci encompass thousands

of candidate mutations. In this study, we develop a comprehensive machine learning ap-

proach that can distinguish the exact selected variants in regions of recent positive selection.

The resulting models, after undergoing supervised learning on simulated population data,

successfully classify 95 to 97 percent of selected SNPs at false positive rates of 2 to 3 per-

cent. When applied to empirical full genome sequences from European, East Asian, and West

African individuals from the 1000 Genomes Project, our methodology localizes signals to an

average of 8 SNPs per region and identifies numerous variants in genes related to immune

response, metabolic processes, sensory perception, and nervous system development.

Summary

Evolutionary forces play a central role in driving progress, yet very little is known about

their precise mechanisms – namely the underlying causal alleles and the conferred advanta-

geous traits. This study was the first to develop a machine learning approach to pinpoint

mutations under positive selection. By linking our models’ predicted candidate mutations

to their relevant adaptive traits with biological experimentation, researchers can understand

why our bodies are the way they are, examine our ancestors responses to selective pressures,

and illuminate mechanisms through which we can adapt to modern-day challenges, such as

infectious disease, climate change, and diet alteration.



1 Introduction

Darwin and Wallace first formulated the theory of positive natural selection in 1858, postu-

lating that advantageous alleles enhance an individual’s chances of reproduction and hence

increase in prevalence in a population’s gene pool over successive generations [1]. For billions

of years, selective forces have played an integral part in driving progress on all tiers of bio-

logical organization, largely explaining the development of diverse, complex species from the

most primitive of life forms. Exploring targets of more recent positive selection, especially in

humans, not only allows for a better understanding of our ancestors’ responses to selective

pressures, such as diet alteration and climate change, but also offers insight into the various

infectious diseases that continue to afflict modern-day society.

Despite positive selection’s great import and foundational role in organismic biology, rel-

atively little is known about the underlying mechanisms of adaptation, namely the specific

mutations under selection and the resultant adaptive characteristics [2, 3]. Since fitness and

advantageous traits are manifested on the phenotypic level, much of previous research has

been directed at observing beneficial phenotypes (e.g. the different beak structures of Dar-

win’s finches) and subsequently searching for the associated causal variant and evidence of

selection [3, 4]. The extent of such knowledge, however, is highly limited, and aside from the

clear examples of skin pigmentation (SLC24A5 ) [5], lactose tolerance (LCT ) [6], malaria

resistance (HBB) [7, 8], and high-altitude tolerance (EPAS1 ) [9], the vast majority of adap-

tive traits, such as immune system or metabolic changes, are exceedingly difficult to discern.

Further, identifying the exact mutation responsible for the observed difference is even more

of a challenge, since there are many candidate variants in each region of positive selection.

The recent advent of full genome sequencing presents an avenue to address the two afore-

mentioned problems by enabling a shift in paradigm and paving the way for the reverse

approach. Researchers can now utilize population genetic evidence to conduct exhaustive,
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hypothesis-generating studies and identify potential selected variants for phenotype and func-

tional characterization [3]. Such analyses rely on searching for three main types of signatures

in DNA sequence: (i) Population differentiation – different regions experience unique selec-

tive pressures, so significant differences in allele frequency between geographically separate

populations may signal positive selection. (ii) High-frequency derived (non-ancestral) alleles

– the variant under selection brings nearby derived alleles to high frequency (the “hitchhik-

ing”effect). (iii) Long haplotypes – in cases of positive selection, the beneficial allele rapidly

rises in prevalence, reducing time for recombination to break down the selected variant’s

associations with neighboring variants [2, 4, 10].

Although statistical tests based on these three signatures have succeeded in detecting

hundreds of loci potentially under positive selection, the hypothesized regions typically span

hundreds of kilobases and encompass thousands of mutations [2]. Thus, new methods are

required to pinpoint the exact causal variant, or at least reduce candidates to a tractable

list for feasible functional characterization with biological experiments. The composite of

multiple signals (CMS) test, developed by Grossman et al. in 2010, currently serves as the

field standard for this task. CMS combines five population statistics (iHS, ∆iHH, and

XP -EHH for long haplotype signals; ∆DAF for high-frequency derived alleles; and FST for

population differentiation) to calculate the posterior probability that a given single nucleotide

polymorphism (SNP) has been targeted by positive selection [2]. By ensuring that a SNP

simultaneously exhibits all three patterns of sequence variation, CMS substantially reduces

false positives, while at the same time increasing sensitivity for the causal variant. So far

the methodology has successfully discovered and elucidated the evolutionary role of a non-

synonymous mutation in the Toll-like receptor 5 (TLR5 ) gene, which leads to altered NFκ-B

signaling in response to bacterial flagellin [3].

However, CMS has shortcomings, as it relies extensively on approximate demographic

data and population genetic models, which are time-consuming and labor-intensive to fur-
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nish. Additionally, it functions as a näıve Bayesian classifier and assumes that its five statis-

tics are completely independent, but three of the component scores test for long haplotypes

and are clearly correlated. Therefore, through integration of various supervised classifica-

tion methods, we developed a novel machine learning approach to identify selected SNPs

in regions of recent adaptation. Our methodology involves computing hundreds of diverse

input features and then training a model with data from coalescent simulations. The result-

ing framework, when applied to empirical full genome sequences from the 1000 Genomes

Project, proves to be highly efficient, accurate, and generalizable (Figure 1).

Europeans (CEU) 

East Asians (CHB+JPT) 

West Africans (YRI) 

120 individuals 

120 individuals 

120 individuals 

1200 simulated 1 Mb sequences 
(20-80% selected allele frequencies)  

1200 simulated 1 Mb sequences 
(20-80% selected allele frequencies)  

1200 simulated 1 Mb sequences 
(20-80% selected allele frequencies)  

…
 

…
 

…
 

A. Training models on simulated data 

CEU (n = 120) 

YRI (n = 118) 

CHB+JPT (n = 120) 

B. Application to empirical data 

Figure 1: Graphical overview of the project workflow. (A) We trained three machine learning
models on simulated DNA sequences, one for each of three populations (Europeans, East
Asians, and West Africans). (B) We then applied the corresponding population classifier to
identify selected SNPs in empirical data from 120 European, 120 East Asian, and 118 West
African individuals from the 1000 Genomes Project.
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2 Materials and Methods

2.1 Simulating regions under positive natural selection

Through standard coalescent simulation approaches with the cosi method [11], we generated

calibrated genetic models of European, East Asian, and West African populations. Across

the three populations, selected variants were set to reach different present-day frequencies

(20, 40, 60, and 80 percent), creating a total of 12 datasets, each consisting of 300 repli-

cates of 120 artificial chromosomes. Following the methodology of Grossman et al. [2, 3],

such a chromosome consists of 1 Mb of simulated genetic sequence data and encompasses

approximately 10,000 SNPs; we also assume that exactly one variant under positive selection

appeared between 5,000 and 30,000 years ago, and resides exactly in the middle of the 1 Mb-

long genomic region. Additional parameters, determined by the best-fit model of Schaffner

et al. [11], control factors such as intensity of selection and migration rates.

2.2 Partitioning simulated data into training and validation sets

We pooled the data by population, so each of the three resulting datasets contained 1,200 se-

lected variants and roughly 2,400,000 neutral variants. Five-sixths of the cases were randomly

chosen to create a training set of 1,000 selected variants and about 2,000,000 neutral variants.

All the remaining examples served as a validation set to assess classification accuracy.

2.3 Feature extraction from simulated DNA sequence data

For each SNP, we computed the five component statistical tests from CMS (FST , ∆DAF ,

iHS, ∆iHH, and XP -EHH) to utilize as input variables in our machine learning model. FST

measures allele frequency differentiation between two populations and was computed with

Weir and Cockerham’s unbiased estimator [12]. The ∆DAF score assesses the prevalence
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of high frequency derived alleles and is calculated by subtracting the average derived allele

frequency in the non-selected populations from the derived allele frequency in the population

under selection [2]. The iHS [13], ∆iHH [2], and XP -EHH [14] statistics all derive from

extended haplotype homozygosity (EHH), the probability that a haplotype, extending from

the SNP for a certain genetic distance, is identical for two random chromosomes in the

selected population.

We also implemented two additional test statistics – Tajima’s D and locus specific branch

lengths (LSBL). Tajima’s D assesses high frequency derived alleles and differentiates between

genomic regions evolving under neutrality and selection by comparing the number of seg-

regating sites and the number of pairwise differences in a population [15]. LSBL offers an

advantage over FST calculations, as it can compare allele frequency disparities between more

than two populations [16].

In addition to the seven statistical tests discussed above, we also developed four types of

novel higher-level features to capture information regarding the distribution of scores across

an entire genomic region. First, for a given statistical test, a SNP’s percentile rank com-

pares its score to the scores of other SNPs in the candidate region. Second, scores usually

increase in areas close to the selected variant, so for each SNP, we identified its 20 closest

neighbors according to genetic distance. Computing mean score of the neighbors and score

difference (how much a score is greater than its neighbors’ mean score) provides insight into

the various peaks of the score distribution. However, since score magnitudes may vary sub-

stantially between different replicates, we also introduced non-parametric versions (e.g. mean

percentile rank of neighbors, percentile rank fold change, and percentile rank difference) of

the previously discussed peak features. Third, we considered a SNP’s genetic, physical, and

Euclidean distance to the highest-scoring SNP in the candidate region. Finally, the relation-

ships between statistics may be informative, since scores tend to exhibit weak correlation

for neutral variants, but strong correlation in regions close to the selected variant. These
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high-level features were extracted from each of the seven statistical scores, generating a total

of 102 features for each SNP (Figure 2).

... 

Statistical tests for positive selection 
•  LSBL 
•    
•  Tajima’s D 
•      
•    
•    
•    

FST

ΔDAF
iHS
ΔiHH
XP −EHH

Population differentiation 

High-frequency derived alleles 

Long haplotype structures 

A. 

B. 

C. 

CEU Population 

Position on chromosome 2 (cM) 

CEU Population 

Position on chromosome 2 (cM) 

F S
T 

S
co

re
 

F S
T 

S
co

re
 

Take the 20 closest SNPs  Overall score 
distribution features  
to identify peaks (e.g. 
mean score across the 
20 neighboring SNPs) 

Distance-based 
features (each SNP’s 
distance from the 
highest-scoring SNP) 

Figure 2: Extracting SNP features from sequence data. (A) For each SNP, we computed
seven statistical scores testing for population differentiation, high-frequency derived alleles,
and long haplotype structures. (B) To test if a SNP resides in a peak or high-scoring region,
we compared its score to the scores of its 20 closest neighbors and calculated features such as
mean score and mean percentile rank. (C) For all seven statistics, we calculated each SNP’s
distance from the highest-scoring SNP (measured by physical position, genetic distance, and
Euclidean distance).

2.4 Sample selection to improve classifier performance

The data presented two major challenges, namely a high degree of class imbalance (for ev-

ery selected variant, there are between 2,000 and 2,800 neutral variants) and the massive

number of training examples (approximately 2,000,000 SNPs in each of the three population

datasets). Developing supervised learning models on such data is computationally expensive
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and exceedingly time consuming. Furthermore, the extreme imbalance would inevitably re-

sult in trivial classifiers that predict all SNPs to be neutral, achieving overall accuracy rates

greater than 99.95 percent, but failing to identify true positives. The two most common and

straightforward solutions are the non-heuristic random over-sampling and under-sampling

approaches, which aim to achieve class balance through arbitrary duplication of minority

class examples and removal of majority class examples, respectively. However, exact dupli-

cation of minority cases introduces no new information and may lead to overfitting, while

random under-sampling potentially eliminates important data points that are essential to

the learning process. Therefore, to address the two aforementioned challenges, we devised

a novel three-step sample selection pipeline, tailored to the unique properties of our large,

skewed training sets (Figure 3).

A. 

Original imbalanced training set 

B. 

Mini-batch and Hartigan-Wong  
k-means clustering 

C. 

Randomly select representative 
examples and remove Tomek links 

D. 

Adaptive synthetic oversampling 
(ADASYN) 

Figure 3: This figure offers a simple graphical representation of our three-step sample se-
lection pipeline. Note that the example has 2 dimensions, while our datasets are in 102-
dimensional space.
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2.4.1 Clustering analysis to eliminate redundant examples

Following a concept introduced by Reinartz et al. [17], we proposed utilizing k -means cluster-

ing of majority class examples to identify groups of neutral SNPs that share similar feature

values. In this way, only the representative cases are retained, allowing redundant examples

to be removed without the loss of important information. Due to the large dataset size, stan-

dard k -means was too computationally expensive, so we first generated 50 rough clusters by

applying the mini-batch k -means algorithm, which operates on small subsets of data during

each iteration and updates cluster centroids through gradient descent [18]. The 50 clusters

were further refined into a total of 2,500 sub clusters with a standard k -means implemen-

tation, and N points were chosen randomly from each sub cluster to serve as representative

examples, with N selected according to the desired training set balance.

2.4.2 Removing Tomek links

The second step establishes well-defined class clusters by identifying Tomek links to elim-

inate noisy and borderline examples, thereby reducing the likelihood of overfitting during

supervised learning and improving the models generalization capabilities. If d(Ei, Ej) is the

Euclidean distance between examples Ei and Ej, then the two examples form a Tomek link if

they belong to different classes, and there is no example Ek such that d(Ei, Ek) < d(Ei, Ej)

or d(Ej, Ek) < d(Ei, Ej) [19].

2.4.3 Synthetic over-sampling of minority examples

The final step involved a modified version of the Synthetic Minority Over-sampling Tech-

nique (SMOTE), which interpolates between each minority class example and its nearest

neighbors to artificially generate new minority cases [20]. We utilized the adaptive synthetic

sampling (ADASYN) method to assign weights and create varying amounts of artificial data

for examples, depending on how challenging they are for the model to learn [21].
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2.5 Developing supervised learning models

Missing inputs were imputed with average values, and data were normalized so that each

feature had a mean of zero and variance of one across the training and validation examples.

For each of our three datasets, we trained four different population-specific supervised learn-

ing models in the R programming environment (support vector machines with the e1071

package, random forests with the randomForest package, artificial neural networks with the

nnet package, and LASSO regression models with the glmnet package). We tested neural

network structures with different numbers of hidden neurons, and performed a grid search

with varying and γ and cost (C) values to tune the support vector machines, as these models

are especially sensitive to small parameter changes. After assessing classification accuracy

with the held-out validation sets, we applied the trained classifiers to empirical data from

the 1000 Genomes Project pilot phase [22], predicting selected SNPs from the full genome

sequences of 120 Northern Europeans from Utah, 120 East Asians from China and Japan,

and 118 West Africans from Nigeria.

2.6 Enrichment analysis to elucidate pathways under selection

We used the National Institute of Healths Database for Annotation, Visualization, and In-

tegrated Discovery (DAVID) to discover pathways, themes, and functionally related gene

clusters that are highly represented in the models’ predictions. Through evaluation of en-

riched biological terms and pathways compiled from the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases, we were able to explore mecha-

nisms that potentially explain responses to recent selective pressures.
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3 Results

3.1 Assessing classifier performance

For a given genomic region displaying signals of positive selection, classifiers are tasked with

pinpointing one or two causal variants in a background of thousands of neutral variants. Since

they must identify small sets of potential SNPs that are tractable enough for experimental

functional characterization, while ensuring with high confidence that the true selected variant

is among the predicted candidates, we put particular emphasis on two performance measures:

sensitivity, the proportion of selected SNPs that are correctly classified, and false positive

rate (FPR), the proportion of neutral SNPs that are incorrectly classified as selected.

The optimal training set composition was determined to be a 5:1 ratio of negative to posi-

tive examples ( 10,000 neutral SNPs and 2,000 selected SNPs in each of the three population-

specific training sets), and following supervised learning and parameter tuning, our machine

learning models achieved high accuracy rates when classifying new, unseen cases from the

validation sets. For example, the support vector machines, with γ = 29 and C = 16, on

average correctly predicted 95.0 percent of the selected SNPs with a FPR of 2.6 percent.

The average FPR is slightly inflated by the performance of the YRI model; positive selection

is more difficult to discern in West African populations due to both greater SNP density

and less pronounced linkage disequilibrium. Random forests with 500 trees exhibited similar

performance, identifying 95.2 percent of causal variants at a 1.4 percent FPR. Neural net-

works (30 hidden nodes) and LASSO regression models achieved average sensitivities of 86.2

percent and 93.5 percent, and FPRs of 2.1 percent and 2.4 percent, respectively.

3.2 Developing an ensemble learning model

Each classifier had its strengths and weaknesses regarding prediction accuracy for different

populations and selected allele frequencies. When compared to random forests, the support
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vector machine model performed worse on the East Asian population, but displayed higher

sensitivity for selected variants in the European population. Moreover, although random

forests return substantially fewer false positives, their decision thresholds may be too strin-

gent for application to empirical sequence data. Thus, we utilized a majority voting-based

ensemble learning approach to improve prediction accuracy by integrating the outputs of

the various individual classifiers, enabling them to compensate for one another’s shortcom-

ings. Three ensemble learners, one for each population, were trained and validated with the

corresponding simulated datasets (Figure 4). For a more robust evaluation of classification

performance on imbalanced data, we calculated the area under the receiver operating char-

acteristic curve (AUROC), which is determined by plotting true positive rate against false

positive rate at varying decision thresholds. A perfect classifier has an AUROC of 1, and

any value between 0.9 and 1 is considered to be “excellent”[23]. All AUROC values for our

ensemble models were greater than 0.99.

CEU Model Neutral Selected	  

Neutral 378,898 6 

Selected 8,138 194 

CHB + JPT Model Neutral Selected	  

Neutral 356,866 10 

Selected 7,368 190 

YRI Model Neutral Selected	  

Neutral 484,938 8 

Selected 15,803 192 
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# Neutral: 387,036 / # Selected: 200 # Neutral: 364,234 / # Selected: 200 

# Neutral: 500,741 / Selected: 200 

Population Accuracy Sensitivity FPR AUROC 

CEU 97.9% 97.0% 2.1% 0.994 

CHB + JPT 98.0% 95.0% 2.0% 0.995 

YRI 96.8% 96.0% 3.1% 0.991 

A. B. 

C. D. 

Figure 4: (A-C) These contingency tables visualize the performance of the European (CEU),
East Asian (CHB + JPT), and West African (YRI) ensemble classifiers. The columns repre-
sent instances in an actual class, while rows represent instances in a predicted class. (D) This
table summarizes model performance with four measures: overall accuracy, sensitivity, false
positive rate (FPR), and area under the receiver operating characteristic curve (AUROC).
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3.3 Application to empirical data and positive controls

When applied to empirical full genome sequence data from European, East Asian, and West

African individuals in the 1000 Genomes Project, the ensemble classifiers effectively localized

signals of positive selection and pinpointed causal variants in candidate genomic regions. In

the CEU and YRI populations, we narrowed down the number of potential SNPs from about

1,500 per region to an average of 10. The CHB + JPT model’s localization ability was even

more substantial. For each region of positive selection, an average of 4 variants were predicted

to be selected out of a background of more than 1,550.

Although very few adaptive traits and causal variants are currently known, several se-

lected SNPs have been identified and rigorously characterized, namely mutations in or around

the LCT, PCDH15, SLC25A4, and EDAR genes. As further validation of our methodology,

we utilized these genomic regions as positive controls, and indeed the models correctly pin-

pointed the selected SNP in each case. For instance, the rs182549 polymorphism, located on

the MCM6 gene in chromosome 2, influences the lactase (LCT ) gene and is linked to lactase

persistence in European populations. When applied to the 951 SNPs in the candidate region,

the CEU model identified 20 as selected, assigning the second highest confidence score to

the rs182549 polymorphism.

The PCDH15 gene plays a crucial role in sensory perception and is associated with

retinal photoreceptor maintenance, inner ear hair cell development, Usher Syndrome and

hearing loss [2]. The nonsynonymous D440A mutation (rs4935502) and a polymorphism

in the gene’s transcription factor binding site (rs16905686) have been hypothesized to be

targets of positive selection in East Asian populations. The CHB + JPT classifier successfully

localized the signal and narrowed down the candidates from 2,584 SNPs to 7, assigning

rs4935502 and rs16905686 with the fourth and sixth highest confidence scores. In comparison

to the field standard CMS test, our methodology performs similarly on the LCT case, but

offers significant improvements when detecting the two PCDH15 variants (Figure 5).
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Figure 5: (A) CMS scores for SNPs in the candidate region containing the selected lactase
persistence allele. The red dot represents the actual causal variant. (B) Machine learning
decision values in the same LCT candidate region. The red dot represents the actual causal
variant, green dots are SNPs identified as selected, and blue dots are SNPs predicted to
be neutral. (C-D) CMS and machine learning scores in the candidate region containing the
selected PCDH15 variants. Our machine learning methodology performs significantly better
than CMS in this case.
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In addition to the four well-characterized positive control variants, our machine learning

models detected SNPs in various genes proposed to be under positive selection and implicated

in important biological processes. A few examples include FOXP1 in East Asians, as well

as FOXP2, LARGE, and HBB in West Africans. FOXP1 and FOXP2 play important roles

in development of vital organs and speech capabilities [24], while mutations in LARGE and

HBB confer resistance to Lassa fever and malaria, respectively [25, 8].

3.4 Computational functional annotation

We compiled a list of all genes within 50 kilobases of SNPs that were predicted to be under

positive selection and conducted gene set enrichment analysis to gain a better understanding

of the affected biological pathways and potential adaptive phenotypes. Consistent with our

understanding of recent selective pressures such as infectious disease, climate change, and

diet alteration, numerous gene sets related to immune response, metabolic processes, sensory

perception, and nervous system development were observed to be highly represented across

all three populations (Figure 6). Some population-specific results include enrichment of skin

pigmentation-related genes in the European population and oxygen transport-related genes

in the West African population.

3.5 Discovering novel targets of selection

After confirming the effectiveness of our approach on empirical sequences – by validating

with multiple positive controls – we applied the classifiers to the 1000 Genomes Project data

to discover new variants that have not been previously studied as targets of natural selection

(Figure 7). Out of the 3077 SNPs classified as selected, 20 were found to be nonsynonymous

mutations that changed the amino acid sequence of the protein. Functional annotation of

these hits, 18 of which were novel, reveals important biological processes (Table 1).
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CD4 T cell differentiation 0.017 B cell differentiation 0.0063 MHC peptide loading 
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Figure 6: Gene sets related to immune response (e.g. CD4 T cell differentiation), metabolic
processes (e.g. fatty acid metabolism), and sensory perception and brain functions (e.g.
olfaction) are highly enriched for selection in all three populations. This is consistent with
recent selective pressures, such as infectious disease, climate change, and diet alteration.

Chrom Population Position SNP ID Gene Mutation Potential Biological Processes 

1 YRI 171784170 rs7551131 SLC9C2 T481M Pneumonia, neurological diseases 
2 CEU 74543547 rs2268416 MOGS P293S Resistance to viral infection, N-linked oligosaccharide processing 
2 CEU 162917139 rs17783344 GCA S80A Preeclampsia susceptibility, cardiovascular disease, type 1 diabetes 
5 CEU 131704219 rs1050152 SLC22A4 L327F Crohn's disease, type 1 diabetes, rheumatoid arthritis 
9 CEU 129924574 rs13283456 PTGES2 R107H Body mass index, type 2 diabetes in Germans 

11 YRI 5320871 rs12273630 OR51B5 V154I Olfactory receptor 
11 YRI 5431658 rs10450603 OR51I2 R122C Olfactory receptor 
11 YRI 5466972 rs7935144 OR52D1 R154C Olfactory receptor 
11 YRI 5467151 rs7924754 OR52D1 D213E Olfactory receptor 
12 YRI 121907152 rs7972242 HIP1R K504Q Spindle attachment for chromosomal segregation during mitosis 
16 CEU 76978276 rs12918952 WWOX A179T High-density lipoprotein cholesterol levels in French individuals 
19 CEU 38297140 rs10416265 GPATCH1 H724R Meningitis and osteoporosis susceptibility 
19 CEU 38297152 rs10421769 GPATCH1 L728S Meningitis and osteoporosis susceptibility 

 

Table 1: This table shows potentially selected nonsynonymous mutations that have been
associated with important biological processes or phenotypes.
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Figure 7: A) CMS and machine learning decision value plots for the region containing the
GCA S80A nonsynonymous mutation. The putative causal allele is highlighted in red, and all
other SNPs predicted to be selected are green. (B) CMS and machine learning decision value
plots for the region containing the WWOX A179T nonsynonymous mutation. Homology
models were generated and visualized with SWISS-MODEL, and the mutated residues are
highlighted in red. Plots for the other predicted novel nonsynonymous mutations can be
found in the appendix.
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For example, the PTGES2 Arg107→His and the nonpolar-to-polar WWOX Ala179→Thr

mutations showed strong signals of positive selection in the European population and have

been linked to body mass index, type 2 diabetes, and high-density lipoprotein cholesterol

levels in German and French cohorts [26, 27, 28]. WWOX is of particular interest, as it

resides in human accelerated region 6 and may therefore help explain how humans differen-

tiated from primates [29]. Furthermore, numerous nonsynonymous variants predicted to be

selected in the CEU dataset play crucial roles in disease susceptibility. A nonpolar-to-polar

amino acid change (Leu327→Phe) in SLC22A4 is associated with Crohn’s disease, type 1

diabetes, and rheumatoid arthritis [30, 31], while mutations in MOGS, which encodes the

first enzyme in the N-linked oligosaccharide processing pathway, potentially confer resis-

tance to viral infections, such as influenza, herpes, and hepatitis C [32]. In the West African

population dataset, four potentially selected nonsynonymous mutations were pinpointed in

various olfactory receptor genes on chromosome 5, and the Lys504→Gln variant was classified

as selected in the HIP1R gene, which regulates the function of spindle microtubules during

chromosomal segregation [33].

3.6 Exploring potential selected variants in regulatory regions

Our models’ predictions suggest that the majority of recent positive selection has been

driven by mutations in noncoding regions of the genome, as only 20 of the 3077 candidate

variants lead to amino acid changes. To investigate the remaining mutations, we downloaded

genome-wide association study (GWAS) data from the UCSC Genome Browser database and

identified relevant phenotypic traits for 14 regulatory SNPs (Table 2). Interestingly, multiple

intronic SNPs were related to cholesterol and phospholipid levels, chronic kidney disease,

and cardiac structure. These candidates may be analyzed through expression quantitative

trait loci (eQTL) studies better understand how they lead to the observed traits.
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Chrom Position SNP ID Gene Trait Sample P-value Citation 
2 135554376 rs7570971 RAB3GAP1 Cholesterol 94,595 Europeaan ancestry individuals 1.0E-13 Willer et al. 2013 

15 73505722 rs8028182 SIN3A Sudden cardiac arrest 89 European  cases, 520 controls 3.0E-06 Aouizerat et al. 2011 
16 76816311 rs2059238 WWOX Cardiac structure and function 12,612 European ancestry individuals 3.0E-06 Vasan et al. 2009 
11 61468051 rs2521572 BEST1 Phospholipid levels (plasma) 8,866 European ancestry individuals 2.0E-09 Lemaitre et al. 2011 
17 61529007 rs2319125 CEP112 Glycoprotein levels (plasma) 306 European ancestry individuals 1.0E-06 Athanasiadis et al. 2013 
15 43428517 rs2453533 GATM Chronic kidney disease 67,093 European ancestry individuals 5.0E-22 Kottgen et al. 2010 
15 43486085 rs2467853 SPATA5L1 Renal function and chronic kidney disease 2,388 European cases, 17,489 controls 6.0E-14 Kottgen et al. 2010 
1 30400299 rs2180233 Intergenic Attention deficit hyperactivity disorder 938 European ancestry trios 9.0E-06 Anney et al. 2008 

17 61073004 rs8074751 CCDC46 Attention deficit hyperactivity disorder 735 trios from 732 families 1.0E-06 Mick et al. 2010 
 

Table 2: This table shows potentially selected noncoding mutations that have been associated
with important phenotypes through previous GWAS studies.

3.7 Generalizing to new populations

To identify variants under positive selection in a certain population from the empirical 1000

Genomes Project data, we first trained and validated an ensemble learning model with the

corresponding simulated population data (e.g. a model trained on the simulated CEU data

was used to make predictions for the empirical CEU sequence data). However, for many

of the newly profiled populations from the recent 1000 Genomes Phase 3 release, such as

Gujarati Indians and Gambians, demographic information and calibrated genetic models are

either unavailable or highly inaccurate. We evaluated the generalization capabilities of our

models to investigate the possibility of utilizing this study’s methodology to detect selection

in unstudied populations, and the results were quite promising.

When applied to a validation set of CHB + JPT simulated data, the ensemble model

trained with the CEU simulated data classified selected SNPs with a sensitivity of 95.0

percent and FPR of 2.0 percent. It also successfully pinpointed the two PCDH15 positive

controls in the empirical 1000 Genomes Project DNA sequences, narrowing down the 2,584

candidates to a set of 9 variants. Similarly, the CHB + JPT ensemble model achieved 97.0

percent sensitivity and a 2.1 percent FPR when detecting selection in the simulated CEU

data and pinpointed the LCT positive control to a set of 16 variants. Lastly, when applied

to the CEU and CHB + JPT simulated validation sets, the classifier built with YRI data

maintained high classification accuracy (99 and 96.5 percent sensitivity), although there
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was a slight increase in FPR (3.9 and 3.6 percent). These results suggest the possibility of

using our classifiers to analyze unstudied population data, thus circumventing the need for

developing and validating new demographic models.

4 Discussion

Even with strong population genetic evidence for selection and sufficient support for biolog-

ical impact through extensive computational functional annotation, a SNP cannot truly be

considered a causal variant until the relevant adaptive trait is elucidated and characterized

with in vitro or in vivo experimentation. Nevertheless, this study offers a major improvement

in the most important step of the selection detection process. After conducting genome-wide

scans to search for signatures of selective sweeps, one can utilize machine learning to evaluate

thousands of potential candidates and pinpoint the signal to a small list of variants that is

tractable enough for biological validation.

This study’s methodology offers three main improvements over the CMS test, which cur-

rently serves as the field standard. First, the ensemble learning models provide increased

localization abilities, decreasing the number of false positives while maintaining high sensi-

tivity for the selected variant. CMS captures 90 percent of selected SNPs in the simulated

data and when applied to the empirical 1000 Genomes Project data, returns a set of 20 to

100 candidate SNPs per region. Our classifiers correctly identify 95 to 97 percent of selected

SNPs and return an average of 8 candidate SNPs per region. Second, CMS uses Bayesian

calculations and hence relies extensively on probability distributions from simulated data,

which not only are labor intensive and time consuming to generate, but also require a re-

alistic demographic model for the population or species under analysis. It is impossible to

effectively apply the test to unstudied populations, such as South Asians from the recent

Phase 3 release of the 1000 Genomes Project, since demographic information is unavailable
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or inaccurate. However, a machine learning framework built on a standard calibrated Euro-

pean, East Asian, or African population model can be applied to new populations without

any additional training or simulations. Finally, while CMS often has difficulty detecting low-

frequency selected variants, our machine learning model maintains sensitivities greater than

90 percent when identifying SNPs fixated at present-day frequencies of 20 and 40 percent.

5 Conclusion

Although the advent of DNA sequencing has revolutionized the field of evolutionary genetics

by enabling researchers to leverage genome-wide scans that identify loci exhibiting signatures

of positive natural selection, the detected loci are large and cover thousands of mutations.

The current field standard, the composite of multiple signals (CMS) test, can localize the

signal to a set of 20 to 100 candidate variants, but has three limitations. It assumes that

different population genetics statistics are independent, depends on labor-intensive and time-

consuming demographic simulations, and has difficulty distinguishing low-frequency variants.

In order to address these challenges, this study was the first to develop machine learning

models to pinpoint the exact causal mutations in regions of positive selection. When classify-

ing full genome sequence data from the 1000 Genomes Project, the approach localizes signals

to an average of 8 SNPs per region and correctly predicted well-known causal variants in

the LCT, PCDH15, SLC25A4, and EDAR genes. Moreover, many of the SNPs identified as

selected reside on or near genes that code for important processes, such as immune response,

metabolism, and nervous system development. In the future, we plan to fully validate top

candidate SNPs through rigorous in vitro and in vivo functional characterization experiments

and apply the classifiers to unstudied populations to fully demonstrate the effectiveness of

our predictive framework.
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