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Abstract

The Ising model is a remarkable model which originated in physics and chemistry but has

a wide range of applications in other fields. However, it makes a crucial approximation: all

far-range interactions are ignored in the Ising model for the sake of simplicity, even though

far-range interactions are almost always present. It is unknown to what degree the inclusion

of these interactions will affect the dynamics of the Ising model. We generalize the tensor

renormalization group (TRG) method of analyzing 2D classical lattices to account for next

nearest neighbor (NNN) interactions in a square lattice. We find that NNN interactions do

not in fact have a significant impact on the behavior of the square Ising lattice. This adapted

TRG method more rigorously justifies the nearest neighbor approximation, however, and

could help resolve the long-standing problem of geometrical frustration in 2D lattices.

Summary

The Ising model is a remarkably elegant and powerful model in physics and chemistry,

and is capable of explaining phenomena as varied as neuron interactions and de facto racial

segregation in cities. However, the Ising model makes a crucial approximation: all far-range

interactions are ignored in the Ising model for the sake of simplicity, even though far-range

interactions are almost always present. It is unknown to what degree the inclusion of these

interactions will affect the dynamics of the Ising model. We generalize an existing method

for analyzing the Ising model to account for farther range interactions, and find that these

interactions do not in fact have a significant impact on the behavior of the model. This

generalized method more rigorously justifies the exclusion of far-range interactions in the

Ising model, however, and could also help resolve some long-standing problems in statistical

physics.



1 Introduction

In statistical mechanics, renormalization group methods are powerful tools for understanding

the behavior of classical lattice structures, particularly at phase transitions. Perhaps the most

famous is the square-lattice Ising Model, which is a simple model of ferromagnetism which

displays a phase transition in two or more dimensions. The phase transition temperature,

or critical point, corresponds to the Curie temperature of a material. The 2D Ising model is

a particularly interesting physical system, in part because of its broad applications, which

range from neural networks to lattice gases to de facto segregation in cities. The Ising model is

also interesting because of its simplicity: it describes ferromagnets as a 2D lattice of magnetic

spins of either +1 or −1, where each element only interacts with its nearest neighbors, as

shown in Figure 1. The exact solution to the model was discovered by Lars Onsager in

1943 [1], making it an important benchmark in evaluating the accuracy of renormalization

methods.

Figure 1: The Ising model with nearest neighbor interactions [2]

Renormalization group methods, in spirit, analyze a physical system at increasing length

scales by coarse-graining over finer details to understand the macroscopic behavior of a
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microscopic model. The quantities of particular interest in the analysis are critical exponents,

which that quantitatively describe the behavior of a physical system near a phase transition.

Initial attempts to understand the Ising model lattice in 1895 [3] and 1907 [4] used mean

field theory, which described the behavior of systems in terms of the effective magnetic spin

of each element on the lattice. However, though mean field theory correctly predicts the

existence of a phase transition in a ferromagnet in dimensions of two and greater (and fails

in one dimension), the theory was a failure quantitatively [5]: for example, in two dimensions,

it predicted a critical exponent of β = 0.5, whereas Onsager in 1944 proved that β = 0.125

[1]. Numerical Monte Carlo methods have also been used to understand the behavior of the

2D Ising model, but a more analytic, accurate approach would not come until the 1970s,

when Kadanoff [6] used a block-spin renormalization method to analyze the properties of

the Ising model.

Recently, in 2008, Levin and Nave [7] developed a tensor renormalization approach to

2D classical lattice models, which is thought to be able to approximate the behavior of 2D

lattices to a very high accuracy. This tensor approach is particularly interesting because it has

the potential to resolve the long-standing problem of understanding geometrical frustration

in antiferromagnetic triangular lattices [8].

Because it is energetically favorable for neighboring spins to have opposite directions

in antiferromagnetic materials when only nearest neighbor (NN) interactions are taken into

account, the behavior of antiferromagnetic triangular lattice structures is uncertain (as shown

in Figure 2) and a large number of degenerate states1 must be calculated.

To understand the true behavior of these geometrically frustrated structures, next nearest

neighbor (NNN) couplings, or interactions, are analyzed in this paper, since they may play

an important role in breaking the degeneracy of the model.

1Degenerate states are states that all have the same calculated energy, and thus no uniquely favorable
state can be selected from among them.
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Figure 2: Geometrical frustration [9]
When two spins on a triangular lattice unit have defined spins, the third has no favorable energetic state, i.e. the state of the

triangular unit is twofold degenerate. As the lattice is expanded, this degeneracy causes the analysis of the lattice to be

extremely complex, as it is unclear what spin configuration is energetically favorable.

In addition, understanding the effects of NNN couplings on the behavior of an Ising lattice

gives insight into the validity of the nearest-neighbor approximation and the effects of NNN

couplings on Ising model dynamics. This paper analyzes the inclusion of NNN couplings in

an Ising square lattice (as shown in Figure 3), keeping in mind the potential applications of

the approach to a triangular lattice.

Figure 3: Next nearest neighbor couplings in the Ising model [2]
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2 Generalized Tensor Renormalization Group Method

The higher order tensor renormalization group (HOTRG) method outlined in this paper

closely follows that of Ueda et. al. [10]. We adapt the method to account for NNN interactions

by redefining the hamiltonian in Equation (3), and analyze the consequences of including

NNN interactions in the square lattice Ising model.

The quantity of interest for any model in statistical mechanics is the partition function

Z. The partition function can be used to calculate many important quantities describing

the system, such as the Helmholtz free energy F = −T logZ, where T is the temperature.2

The behavior of F around the critical point is what ultimately allows the calculation of the

critical indices of the 2D Ising model.

The partition function is defined as

Z =
∑
{s}

e−βH =
∑
{s}

e−
H
T , (1)

where β = 1
kBT
≡ 1

T
, H is the hamiltonian of the system, and the sum is taken over all

possible microstates of the system.

In the classical Ising model,

H = −K
∑
〈i,j〉

SiSj, (2)

where K is a positive constant, 〈i, j〉 denotes each pair of nearest neighbors, and Si ∈ {−1, 1}

[11]. Thus, the energy is minimized when the spins are parallel, and maximized when the

spins are antiparallel.

In this paper, the effects of next nearest neighbor couplings, as shown in Figure 4, are

analyzed, so that

2Temperature is measured in units of energy, such that the Boltzmann constant kB = 1.
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H = −K
∑
〈i,j〉

SiSj −K ′
∑
〈i,k〉

SiSk, (3)

where 〈i, k〉 denotes each pair of next nearest neighbors and K ′ is the coupling constant for

NNN interactions. It is assumed that K ′ < K in all real-world situations.

Figure 4: Square lattice with next nearest neighbor interactions

In order to account for all NN interactions, we define tensors on a dual lattice, where

each tensor represents the magnetic spin interactions of one unit square. The indices of the

tensor are not the vertex spins S. Instead, the indices are the link variables σ, as shown in

Figure 5. Each σ is a scalar equal to either +1 or −1, and is the product of adjacent spins

on the lattice. Thus, σxi ≡ S1S2.

Figure 5: Definition of tensors on the square lattice [10, 11]

Because we define a tensor at the center of every unit square of the lattice in Figure 4 (in
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constrast with the more common checkerboard lattice approach3 [12]), we can account for

all NNN interactions by defining the diagonal spin variables σD1 and σD2 on every tensor,

where σD1 ≡ S1S3 and σD2 ≡ S2S4. Because the indices of the tensor are σxi , σx′i , σyi , and σy′i ,

not σD1 and σD2 , we evaluate σD1and σD2 by defining S1 ≡ 1 4 and recursively calculating

S1σx = S2, S2σy = S3, and S3σx′ = S4. For any real (i.e. possible) configuration of link

variables (σxi , σx′i , σyi , σy′i), S4σy′ = S1 = 1, or, equivalently, S1S4 = σy′ .
5

Thus, we define the tensor T , which represents the magnetic spin interactions of one unit

square in the lattice, as

Txix′iyiy′i =
1 + σxiσx′iσyiσy′i

2
exp

[
K

2T
(σxi + σx′i + σyi + σy′i) +

K ′

T
(σD1 + σD2)

]
. (4)

Because some spin configurations (σxi , σx′i , σyi , σy′i) are impossible, e.g. (+1,+1,+1,−1), we

include the term
1+σxiσx′i

σyiσy′i
2

in Equation (4) to restrict Txix′iyiy′i to allowed dual lattice

microstates. For any real configuration of spins, σxiσx′iσyiσy′i = (S1S2)(S2S3)(S3S4)(S4S1) =

(S1)2(S2)2(S3)2(S4)2 = 1. For every impossible spin configuration, where σy′ 6= S4S1 (as

shown in the recursive process previously described), σxiσx′iσyiσy′i = −1 [11].

In 2010, Xiang et. al. demonstrated that the partition function in Equation (1) can be

reformulated in terms of tensors such as that in Equation (4) [11]. This reformulated partition

function is shown in Equation (5).

3In the checkerboard lattice approach, only every other square on the lattice has a tensor defined on it.
Naturally, this makes accounting for all NNN couplings difficult, so we employ a dual-lattice approach which
allows us to define a tensor on every square of the lattice.

4This is necessary because a set of link variables (σxi
, σx′

i
, σyi

, σy′
i
) defines two sets of vertex spin variables

(S1, S2, S3, S4). This is because both (S1, S2, S3, S4) and (−S1,−S2,−S3,−S4) are represented by the same
set of link variables (σxi , σx′

i
, σyi , σy′

i
). In the calculation of σD1 and σD2 , it does not matter whether S1 is

defined as +1 or −1, only that an explicit set of vertex spins (S1, S2, S3, S4) is calculated.
5This is valid because S2 = 1. Thus, S4σy′ = S1 can be rewritten as S4(S4σy′) = S4(S1) = σy′ .
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Z = Tr
∏
i

Txix′iyiy′i (5)

The trace is defined on all bond indices, and is the equivalent of the sum over all possible

states in Equation (1). The product
∏
i

Ti is over all tensors in the lattice. Note that the K
T

term in Equation (4) is halved because each nearest neighbor coupling is summed twice in

the product
∏
i

T . Thus, Equations (4) and (5) account for every NN and NNN interaction

once, and together are equivalent to Equation (1).

To actually evaluate the partition function, we begin with one tensor W
(0)
xx′yy′ = Txix′iyiy′i ,

where W is the vertex weight of the current lattice, and 20 is the linear dimension L of the

current lattice structure. Thus, a weight W
(n)
xax′ayay

′
a

describes a lattice with dimensions L×L,

where L = 2n. The subscripts xa, x
′
a, ya, and y′a are defined as {x1, x2...xL}, {x′1, x′2...x′L},

etc., as shown in Figure 6.

Figure 6: Definition of spins on the square lattice [10]

We begin with W
(0)
xx′yy′ and continually expand the lattice through the renormalization

group process W (0) →M (0,1) → W (1) →M (1,2) → W (2) . . . We expand the lattice by linking

two tensor weights W
(n)
xax′ayay

′
a

and W
(n)

xbx
′
byby

′
b

vertically by summing over a common indice y

(shown graphically in Figure 7), obtaining a composite tensor

M
(n,n+1)

xaxbx′ax
′
byay

′
b

=
∑
y

W
(n)
xax′ayay

W
(n)

xbx
′
byy

′
b
, (6)
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where W
(n)

xbx
′
byby

′
b

is above W
(n)
xax′ayay

′
a
. M

(n,n+1)

xaxbx′ax
′
byay

′
b

represents a lattice with dimensions L×2L.

We rewrite the index pairs {xaxb} and {x′ax′b} as Xab and X ′ab, respectively, so that M (n,n+1)

is once again a rank four tensor, with bond dimensions6 (D2, D2, D,D). The result is shown

in Figure 7.

Figure 7: Vertical tensor contraction and index redefinition [10]

Now, we perform a higher-order singular value decomposition (HOSVD) to truncate

the bond dimension of Xab and X ′ab down to D. We do this by performing an orthogonal

transformation on MXX′yy′ , where the orthogonal matrix O is chosen according to the theory

of HOSVD [13], so that

∑
X′yy′

MX1X′yy′MX2X′yy′ = M ′
X1X2

= OX1IΛIJO
T
JX2

, (7)

where O is a D2 ×D2 matrix of of eigenvectors, and Λ is a diagonal matrix of eigenvalues,

such that the eigenvalues are in decreasing order. Using a largest eigenvalue approximation,

justified in the thermodynamic limit of the system, we then truncate the second dimension

of OXI from D2 to D, calling this new truncated matrix OXµ. 7

We now update the expanded vertex weight M (n,n+1) such that

M
(n,n+1)
µµ′yy′ =

∑
X,X′

OXµOX′µM
(n,n+1)
XX′yy′ (8)

6The bond dimension of a tensor index is the number of degrees of freedom of the index.
7Throughout this paper, following the convention of Ueda et. al. [10], we use Greek letters such as µ and

ν to denote renormalized variables which have at most D degrees of freedom.
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Using this process, we can then join two tensors M (n,n+1) horizontally, to obtain an

expanded tensor W
(n+1)
µµ′νν′ representing a lattice with dimensions 2L× 2L. We iterate through

this process while imposing the normalization

γn
∑
µν

M (n,n+1)
µµνν = γ′n

∑
µν

W (n+1)
µµνν = 1, (9)

We retain the normalization constants γn and γ′n, and use them to obtain the ultimate

value of the partition function per site,8

log z =
n∑
i=0

1

22i
(log γi +

1

2
log γ′i) (10)

By calculating the free energy of the lattice via F = −T logZ, we analyze the effect of

different coupling constant ratios K′
/K on the phase transition behavior of the square-lattice

Ising model.

We then use the TRG process to compute the spontaneous magnetization M of the lattice

via Equation (11) below,

M = −
(
∂F

∂B

)
T

, (11)

where the temperature T is constant. In order to calculate M , we must evaluate F as a

function of an external magnetic field B. We do this by generalizing the hamiltonian in

Equation (3) to include interactions with B, as shown in Equation (12).

H = −K
∑
〈i,j〉

SiSj −K ′
∑
〈i,k〉

SiSk −B
∑
i

Si (12)

8The 1
22i term divides each γi by the total size of the lattice (L2) when γi was computed. Since each

horizontal expansion doubles the size of the lattice, log γ′i requires another 1
2 term for normalization. Thus,

(9) takes the sum of each log γ per site, ultimately calculating the value of the partition function for every
site.
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Including external field interactions in a tensor defined on a dual lattice is non-trivial

because a set of spins (σxi , σx′i , σyi , σy′i) defines two sets of vertex spin variables (S1, S2, S3, S4).

Unlike the case of NNN interactions,
∑
i

Si is not invariant under the transformation (S1, S2, S3, S4)→

(−S1,−S2,−S3,−S4). Thus, to account for both sets of vertex spins, the number degrees

of freedom of the tensor Txix′iyiy′i must be increased from two to four. The full process of

generalizing the tensor to account for an external magnetic field is not outlined here.

After F = −T logZ is evaluated as a function of B, the quantity −∂F
∂B
|B=0 is computed.

This is a one sided derivative, because, when the temperature is below the critical point Tc,

M is an even function which is not differentiable at B = 0. However, due to spontaneous

symmetry breaking, when T < Tc, the right and left derivatives −∂F
∂B
|B=0 are opposite each

other, finite, and nonzero. From the relationship between the magnetization |M | and the

temperature T , we hope to calculate the critical exponent β, where M ∝
∣∣T−Tc
Tc

∣∣β, and

compare it to the exact value calculated by Onsager [1], β = 0.125. Further work is still to

come.

3 Results and Conclusion

We analyze the effect of differing coupling constant ratios K′
/K on the relationship between

free energy and temperature9, as shown in Figure 8.

The graphs in Figure 8 suggest that taking into account NNN interactions increases

the critical temperature Tc of the lattice, which was expected. At low temperatures, the

magnetic spins are well-ordered due to the interactions among nearby lattice elements. As

the temperature increases, this order is broken as the increasing thermal energy scrambles

the magnetic interactions among the spins.

When NNN interactions are taken into account, higher temperatures are required to

9Again, temperature is measured in units of energy.
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Figure 8: Effect of NNN couplings on the behavior of free energy

The black line at Temperature = 2.26918531 is the phase transition temperature Tc which was exactly determined by Onsager

[1]. It corresponds to the critical point of F (0), where K′
/K = 0. These values were each calculated at K = 1 after n = 12

iterations, with an approximation degree of D = 12.

break the magnetic ordering of the lattice, and thus the critical temperature Tc is greater.

This is more clearly shown in Figure 9.

Figure 9: Derivative of free energy with respect to temperature

These graphs are the numerical derivatives of the free energy curves in Figure 8.

However, though the inclusion of NNN interactions increases the critical temperature Tc,

so does merely increasing the coupling constant K. In Figure 10 below, we adapt Figure 8

so that Knew = K +K ′ and K ′new = 0.

Thus, an increase in K has the same effect as including NNN interactions. This is demon-

strated in Figure 11. In Figure 11, it can be seen that when the strength of the NN interaction

is replaced by an equally great NNN interaction (i.e. K +K ′ is conserved), the relationship
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Figure 10: Effect of stronger NN interactions on the behavior of free energy

Graphs are of the form F (K), where K′ = 0. Values were calculated with n = 12 iterations, with an approximation degree of

D = 12.

between free energy and temperature is nearly unchanged.

Figure 11: Effect of preserving total coupling strength K+K ′ on the behavior of free energy

There are fifteen different graphs shown in this figure. If each graph is of the form F (K,K′), the red plot (K +K′ = 1) is of

F (1, 0), F (0.75, 0.25), F (0.5, 0.5), and F (0.25, 0.75), F (0, 1). The blue plot (K +K′ = 2) is of F (2, 0), F (1.5, 0.5), F (1, 1),

F (0.5, 1.5), and F (0, 2). The yellow plot (K +K′ = 3) is of F (3, 0), F (2.25, 0.75), F (1.5, 1.5), F (0.75, 2.25), F (0, 3).

To decide whether the relative error between the graphs of each color is acceptable,

we plot the errors in Figure 12, where the error is relative to F (1, 0), F (2, 0), or F (3, 0). We

define the error as
∣∣∣F (a,b)−F (K+K′,0)

F (K+K′,0)

∣∣∣, where a and b are the coupling constants for each graph,

excluding F (1, 0), F (2, 0), and F (3, 0). Thus, a+ b = K +K ′.

As all of the relative errors are below .05, and go to zero as the temperature increases,
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Figure 12: Relative Error

Graphs of the form F (K), where K′ = 0. Values were calculated with n = 12 iterations, with an approximation degree of

D = 12.

we conclude that the behavior of F (a, b) closely follows that of F (K + K ′, 0), and that

the presence of K ′ does not substantially affect the qualitative behavior of the lattice; the

inclusion of NNN interactions do not seem to affect the fundamental structure of the free

energy curve. In addition, because of the apparent interchangeability of K and K ′ in the free

energy graphs (as shown in Figure 11), we predict that the exclusion of NNN interactions

does not quantitatively affect fundamental properties of the phase transition (which are

independent of the value of the coupling constant), such as the critical exponents.

4 Further Study

Although the procedure for calculating the spontaneous magnetization and critical exponent

β of the Ising square lattice with NNN interactions has been fully worked out and shown to

be correct, there has not been an opportunity to carry out the procedure. Further work on

explicitly evaluating β is soon to come.

Though we demonstrate in this paper how to account for NNN couplings with relative

ease in square lattices, accounting for NNN couplings in other lattice structures, such as
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triangular, hexagonal, and kagome, is still an open problem. Although the specific dual-lattice

approach to accounting for NNN interactions taken in this paper is not clearly applicable to

other lattices, the general strategy of redefining the tensor to encompass all NNN interactions

is powerful. Generalizing the TRG method to triangular lattices in particular would be

interesting, as it could give insight into how to solve the problem of geometrical frustration

in antiferromagnetic triangular lattices.
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