Materials Selection Guidelines

Or how to avoid breakage, berylliosis and/or bankruptcy
Overview

- Important material properties
 - Design-centered
 - Environmental
 - Fabrication

- Material classes and common examples
 - Metals
 - Polymers
 - Ceramics
 - Composites
When in doubt, ask your machinist!
Material Properties - Overview

- **Design-Centered Properties**
 - Satisfy functional requirements

- **Environmental Properties**
 - Constraints based on operating environment of apparatus

- **Fabrication Properties**
 - Constraints based on cost, available processes, and manufacturing quantity
Material Properties - Overview

Resources

- MatWeb (www.matweb.com)
- Machinery’s Handbook
- McMaster-Carr (www.mcmaster.com)
Material Properties - Design

- Mechanical Properties
 - Young’s modulus, density, fracture toughness
- Electromagnetic Properties
 - Dielectric strength, transparency, permeability
- Thermal Properties
 - Thermal conductivity, heat capacity
Material Properties – Design
Mechanical Properties

- Young’s Modulus
- Density
- Yield Strength (???)
Material Properties – Design Mechanical Properties

- Failure is not as simple as yield stress!
- Yield stress
 - Processing sensitive, maybe anisotropic
- Creep
 - Stay below 1/3 of melting point (in K)
- Fatigue
 - Some materials fatigue even at low stress
- Fracture
 - Very common failure mode, but very complex
Material Properties – Design

Mechanical Properties

- Watch for tempers, fillers, and/or temperatures used for mechanical property measurements

- Britteness indicators
 - Low elongation (< ~10%)
 - UTS close to yield stress
 - Very different notched/unnotched impact energy (Izod or Charpy tests)
Material Properties – Design
Electromagnetic Properties

- **Dielectric Strength**
 - Watch out for short circuits!

- **Transparency / Color**
 - There are very few clear materials

- **Electrical Conductivity**

- **Magnetic Permeability / Hysteresis**
 - Special alloys with tailored properties are available
Material Properties – Design
Thermal Properties

- Thermal Conductivity
 - Good insulators are not strong materials
- Thermal Diffusivity
Material Properties – Environment

- Operating temperature range
 - Remember to watch the low end, too!
- Chemical resistance
 - If in doubt, buy a material sample and test it
 - Cleaners matter too!
- Radiation resistance
 - Includes solar UV radiation!
- Appearance
 - Does it need to be shiny and impressive?
Material Properties - Fabrication

- You are making one machine, not 10^6
 - Casting, molding, forging, and stamping are not economical
 - Benefits of rapid prototyping may offset poor material properties
- Machinability directly impacts cost
- Hazardous materials more expensive to work
 - DON’T TRY THESE YOURSELF!
 - Beryllium, magnesium, glass-reinforced plastics, etc.
A Reminder:

When in doubt, ask your machinist!
Materials - Metals

- **Aluminum Properties**
 - High strength/weight ratio
 - No fatigue limit (vibration = trouble!)
 - Widely variable toughness
 - Most alloys resistant to air, humidity, solvents
 - Acids and bases very bad!
 - Inexpensive and easy to work
Materials - Metals

- Aluminum Alloys
 - Machining
 - 6061, 2024, 7075
 - Forming
 - 5052, 3003, 6063
 - Welding
 - 6061, 5052
Carbon and Alloy Steel Properties

- Heat treatment allows even a single alloy to have widely variable properties
- In general, toughness and yield strength inversely proportional
- Well-defined fatigue limit
- Poor corrosion resistance
- Inexpensive, but can be hard to machine
- Weldable
Steel Alloys
- 1018: General purpose, low strength
- 4140: Higher strength, heat treatable

Tool Steels
- Many proprietary varieties available
- Difficult to machine or form
- S7 good for high-impact structural applications

Maraging Steels
- Ultra-high strength and toughness, but very expensive
Materials - Metals

- **Stainless Steel Properties**
 - Wide range of corrosion resistance
 - Some little better than alloy steel!
 - Difficult to machine
 - Moderate cost
 - Most corrosion-resistant alloys not strong
 - Good at low temperatures
 - Can be easy to weld
Materials - Metals

- Stainless Steel Alloys
 - 304: Most common, resistant to common conditions
 - 316: Extreme corrosion resistance, very difficult to machine, low strength
 - 440C: High strength, relatively low corrosion resistance
Materials - Metals

- Copper Alloy Properties
 - High thermal and electrical conductivity
 - Widely variable strength and machinability
 - Moderate cost
 - Corrosion resistant, but can tarnish
 - Easy to join by brazing/soldering
Copper Alloys

- Brass
 - Alloy 360 is strong and extremely machinable
- Bronze
 - Alloy 630 is very hard and wear-resistant
- Beryllium Copper
 - Superb properties, but VERY TOXIC
 - Few shops will work it, and only for big $$$
Materials - Metals

- **Magnesium**
 - Lightest structural metal
 - Flammable during machining
 - Tarnishes and corrodes easily

- **Titanium**
 - Very high strength/weight ratio
 - More corrosion resistant than stainless steel
 - Very difficult to machine or form
Materials - Plastics

- Acrylic
 - Transparent and UV resistant
 - Stiff and strong
 - Very brittle
 - Easily solvent-welded
 - Easily laser cut
 - Difficult to drill or machine
Materials - Plastics

- Polycarbonate
 - Transparent, but not UV resistant
 - Impact resistant, but notch-sensitive
 - Easy to machine
Materials - Plastics

- Delrin
 - Very easy to machine
 - Somewhat brittle
 - Low friction
- Teflon
 - Very easy to machine
 - Very solvent resistant
 - Expensive
Materials - Ceramics

- Not machinable without special equipment/experience
 - Even “machinable” ceramics aren’t
- High strength with high dielectric strength
- High temperature capability
- Very brittle
- Very expensive
Materials - Composites

- FR-4 Fiberglass-Epoxy Composite
 - Circuit board material; inexpensive
 - Machining dust is hazardous
 - Strong, but somewhat brittle

- Carbon Fiber
 - Very expensive
 - Sheets, tubes available w/o custom tooling
 - Very strong, but a bit brittle