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Abstract The problem of “approximating the crowd” is that of estimating the crowd’s
majority opinion by querying only a subset of it. Algorithms that approximate the
crowd can intelligently stretch a limited budget for a crowdsourcing task. We present
an algorithm, “CrowdSense,” that works in an online fashion where items come one
at a time. CrowdSense dynamically samples subsets of the crowd based on an explo-
ration/exploitation criterion. The algorithm produces a weighted combination of the
subset’s votes that approximates the crowd’s opinion. We then introduce two varia-
tions of CrowdSense that make various distributional approximations to handle distinct
crowd characteristics. In particular, the first algorithm makes a statistical independence
approximation of the labelers for large crowds, whereas the second algorithm finds a
lower bound on how often the current subcrowd agrees with the crowd’s majority vote.
Our experiments on CrowdSense and several baselines demonstrate that we can reli-
ably approximate the entire crowd’s vote by collecting opinions from a representative
subset of the crowd.
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1 Introduction

Our goal is to determine the majority opinion of a crowd on a series of questions
(“examples”), where each member’s opinion is obtained at a cost, and our total budget
is limited. For example, let us consider a sneaker company, wanting to do a customer
survey, where they provide free variants of a new sneaker to the members of a large
crowd of product testers, who each give a “yay” or “nay” to each product, one at a
time. The company wants to know whether the majority of testers approves each new
sneaker variant. Some product testers are more useful than others; some align closely
with the majority vote, and some do not. If the company can identify who are the most
useful product testers, they can send new trial sneakers mostly to them, at a large cost
savings.

This problem of estimating the majority vote on a budget goes well beyond product
testing—the problem occurs for many tasks falling under the umbrella of crowdsourc-
ing, where the collective intelligence of large crowds is leveraged by combining their
input on a set of examples. In crowdsourcing problems, either there is no ground truth
(as the ultimate goal is to determine a judgment), or there is ground truth, but with
no possibility of its being revealed. The application domain of answer services is
relevant to the problem of approximating the crowd. Here are some specific example
applications:

– VizWiz1 (Bigham et al. 2010) is an iPhone app used by visually impaired people
to obtain answers to questions about their surroundings. VizWiz queries multi-
ple Amazon Mechanical Turkers, and on its website, VizWiz issues the statement
“VizWiz will recruit multiple answers from different web workers to help you better
gauge the reliability of answers retrieved in this way.” There may or may not be
ground truth in the questions posed on VizWiz, but either way, the majority vote
of the crowd is likely to be the desired answer to the query. The more turkers you
query, the more confident you can be about the answer. However, if several turkers
need to be queried, it will take longer (with a cost) for the visually impaired person
to retrieve the answer. If a system existed that could learn over time, as queries
proceed, who are the reliable members of the crowd that agree with its majority
vote, then the system could potentially be a valuable contributor to services like
VizWiz.

– IQ Engines2 is a crowdsourced image recognition platform. It uses a combination
of computer vision software and human labelers to identify objects in photographs.
Over time, as it is queried more and more, it would be useful for the system to learn
who are the most reliable humans to answer the queries. This way, fewer humans
need to be involved over time, and only the most reliable humans need to be hired.

1 http://vizwiz.org
2 http://iqengines.com/
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Approximating the crowd

Again, there may or may not be ground truth, but the majority vote of the crowd is
likely to be a desirable, or at least acceptable answer, by computer vision standards.

– Polling is by definition crowdsourced. In product design and manufacturing, com-
panies have taken steps to interact with their customers and having them suggest,
discuss and vote on new product ideas (Ogawa and Piller 2006; Sullivan 2010).
They also commonly rely on focus groups and usability studies to collect the opin-
ions of crowds on existing or new products. These companies would like, with
minimal effort, cost, and speed, to estimate the crowd’s majority vote accurately. In
the absence of sophisticated sampling techniques, collecting more votes per item
increases the likelihood that the crowd’s opinion reflects the majority opinion of
the entire population.In cases where each vote is provided at a cost, collecting a
vote from every member of the crowd in order to determine the majority opinion
can be expensive and may not be attainable under fixed budget constraints.

Because of the open nature of crowdsourcing systems, it is not necessarily easy to
approximate the majority vote of a crowd on a budget by sampling a representative
subset of the voters. For example, the crowd may be comprised of labelers with a
range of capabilities, motives, knowledge, views, personalities, etc. Without any prior
information about the characteristics of the labelers, a small sample of votes is not
guaranteed to align with the true majority opinion. In order to effectively approximate
the crowd, we need to determine who are the most representative members of the
crowd, in that they can best represent the interests of the crowd majority. This is even
more difficult to accomplish when items arrive over time as in the answer services
applications above, and it requires our budget to be used both for (1) estimating the
majority vote, even before we understand the various qualities of each labeler, and (2)
exploring the various labelers until we can estimate their qualities well. Estimating the
majority vote in particular can be expensive before the labelers’ qualities are known,
and we do not want to pay for additional votes that are not likely to impact the decision.

In order to make economical use of our budget, we could determine when just
enough votes have been gathered to confidently align our decision with the crowd
majority. The budget limitation necessitates a compromise: if we pay for many votes
per decision, our estimates will closely align with the crowd majority, but we will only
make a smaller number of decisions, whereas if we pay for fewer votes per decision,
the accuracy may suffer, but more decisions are made. There is clearly an explo-
ration/exploitation tradeoff: before we can exploit by using mainly the best labelers,
we need to explore to determine who these labelers are, based on their agreement with
the crowd.

The main contributions of this work can be broken down into three parts: In the first
part (Sect. 3), we introduce the problem of approximating the crowd, and the notion
of the frontier of cost and accuracy. We solve analytically for the expected values of
the extreme points on the frontier.

In the second part of the paper (Sect. 4), we propose a modular algorithm, Crowd-
Sense, that approximates the wisdom of the crowd. In an online fashion, CrowdSense
dynamically samples a subset of labelers, determines whether it has enough votes to
make a decision, and requests more if the decision is sufficiently uncertain. Crowd-
Sense keeps a balance between exploration and exploitation in its online iterations:
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exploitation in terms of seeking labels from the highest-rated labelers, and explo-
ration so that enough data are obtained about each labeler to ensure that we learn each
labeler’s accuracy sufficiently well. We present experiments across several datasets
and in comparison with several baselines in Sect. 6, where the cost constraint para-
meter was set over several different values, and variants were computed over 100 runs
to ensure the quality of the solution. We then discuss the effects of CrowdSense’s
parameters in Sect. 7, and the effects of the various subcomponents in Sect. 8.

The third part of the paper presents probabilistic variations of CrowdSense, in
Sect. 9. One of the main challenges to approximating the crowd has to do with the
fact that the majority vote is taken as the ground truth (the truth we aim to predict).
This means that there is a complicated relationship (a joint probability distribution)
between the labelers’ accuracies with respect to the majority vote. In Sects. 9.1 and 9.2
of the paper, we introduce two variations of CrowdSense, called CrowdSense.Ind and
CrowdSense.Bin, that make specific distributional approximations to handle distinct
crowd characteristics. In particular, the first algorithm makes a statistical independence
approximation of the probabilities for large crowds, whereas the second algorithm finds
a lower bound on how often the current subcrowd agrees with the crowd majority vote,
using the binomial distribution. For both CrowdSense.Ind and CrowdSense.Bin, even
though explicit probabilistic approximations were made, the accuracy is comparable
to (or lower than) CrowdSense itself. It is difficult to characterize the joint distribution
for the problem of approximating the crowd, due to the constraint that the majority vote
is the true label. CrowdSense, with its easy-to-understand weighted majority voting
scheme, seems to capture the essence of the problem, and yet has the best performance
within the pool of algorithms we tried. Experiments comparing the three CrowdSense
variants are in Sect. 10.

In the supplementary file3, in Section A, we present a proposition for Crowd-
Sense.Bin that states that the computed scores are non-negative. Section B presents
a “flipping” technique – a heuristic for taking the opposite vote of labelers that have
low quality estimates. In Section C, we discuss the possibility of learning the labelers’
quality estimates using machine learning. Section D presents the runtime performance
of the algorithms. Section E presents the effect of gold standard data in initialization.

Throughout the paper, a “majority vote” refers to the simple, every day sense of
voting wherein every vote is equal, with no differential weighting of the votes. This
is in contrast to a weighted majority vote, as we use in CrowdSense, wherein each
labeler’s vote is multiplied by the labeler’s quality estimate. This weighting scheme
ensures that the algorithm places a higher emphasis on the votes of higher quality
labelers.

2 Related work

The low cost of crowdsourcing labor has increasingly led to the use of resources such as
Amazon Mechanical Turk4 (AMT) to label data for machine learning purposes, where

3 http://github.com/CrowdSense/SupplementaryMaterial
4 http://www.mturk.com
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collecting multiple labels from non-expert annotators can yield results that rival those
of experts. This cost-effective way of generating labeled collections using AMT has
also been used in several studies (Nakov 2008; Snow et al. 2008; Sorokin and Forsyth
2008; Kaisser and Lowe 2008; Dakka and Ipeirotis 2008; Nowak and Rüger 2010;
Bernstein et al. 2010, 2011). While crowdsourcing clearly is highly effective for easy
tasks that require little to no training of the labelers, the rate of disagreement among
labelers has been shown to increase with task difficulty (Sorokin and Forsyth 2008;
Gillick and Liu 2010), labeler expertise (Hsueh et al. 2009) and demographics (Downs
et al. 2010). Regardless of the difficulty of the task or their level of expertise, offering
better financial incentives does not improve the reliability of the labelers (Mason and
Watts 2009; Marge et al. 2010), so there is a need to identify the level of expertise of
the labelers, to determine how much we should trust their judgment.

Dawid and Skene (1979) presented a methodology to estimate the error rates based
on the results from multiple diagnostic tests without a gold standard using latent
variable models. Smyth et al. (1994a,b) used a similar approach to investigate the
benefits of repeatedly labeling same data points via a probabilistic framework that
models a learning scheme from uncertain labels. Although a range of approaches are
being developed to manage the varying reliability of crowdsourced labor (see, for
example Ipeirotis et al. 2010; Law and von Ahn 2011; Quinn and Bederson 2011;
Callison-Burch and Dredze 2010; Wallace et al. 2011), the most common method for
labeling data via the crowd is to obtain multiple labels for each item from different
labelers and treat the majority label as an item’s true label. Sheng et al. (2008), for
example, demonstrated that repeated labeling can be preferable to single labeling in
the presence of label noise, especially when the cost of data preprocessing is non-
negligible. Dekel and Shamir (2009a) proposed a methodology to identify low quality
annotators for the purpose of limiting their impact on the final attribution of labels to
examples. To that effect, their model identifies each labeler as being either good or bad,
where good annotators assign labels based on the marginal distribution of the true label
conditioned on the instance and bad annotators provide malicious answers. Dekel and
Shamir (2009b) proposed an algorithm for pruning the labels of less reliable labelers
in order to improve the accuracy of the majority vote of labelers. First collecting
labels from labelers and then discarding the lower quality ones presents a different
viewpoint than our work, where we achieve the same “pruning effect” by estimating
the qualities of the labelers and not asking the low quality ones to vote in the first
place. A number of researchers have explored approaches for learning how much
to trust different labelers, typically by comparing each labeler’s predictions to the
majority-vote prediction of the full set. These approaches often use methods to learn
both labeler quality characteristics and latent variables representing the ground-truth
labels of items that are available (e.g. Kasneci et al. 2011; Warfield et al. 2004; Dekel
et al. 2010), sometimes in tandem with learning values for other latent variables such
as task difficulty (Whitehill et al. 2009; Welinder et al. 2010), classifier parameters
(Yan et al. 2010a,b; Raykar et al. 2010), or domain-specific information about the task
(Welinder et al. 2010).

Our work appears similar to the preceding efforts in that we similarly seek predic-
tions from multiple labelers on a collection of items, and seek to understand how to
assign weights to them based on their prediction quality. However, previous work on
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this topic viewed labelers mainly as a resource to use in order to lower uncertainty
about the true labels of the data. In our work, we could always obtain the true labels by
collecting all labelers’ votes and determining their majority vote. We seek to approx-
imate the correct prediction at lower cost by decreasing the number of labelers used,
as opposed to increasing accuracy by turning to additional labelers at additional cost.
In other words, usually we do not know the classifier and try to learn it, whereas here
we know the classifier (it is precisely the majority vote) and are trying to approximate
it. This work further differs from most of the preceding efforts in that they presume
that learning takes place after obtaining a collection of data, whereas our method also
works in online settings, where it simultaneously processes a stream of arriving data
while learning the different quality estimates for the labelers. Sheng et al. (2008) is one
exception, performing active learning by reasoning about the value of seeking addi-
tional labels on data given the data obtained thus far. Donmez et al. (2009) propose an
algorithm, IEThresh, to simultaneously estimate labeler accuracies and train a classi-
fier using labelers’ votes to actively select the next example for labeling. Zheng et al.
(2010) present a two-phase approach where the first phase is labeler quality estimation
and identification of high quality labelers, and the second phase is the selection of a
subset of labelers that yields the best cost/accuracy tradeoff. The final prediction of
the subset of labelers is determined based on their simple majority vote. We discuss
the approach taken by Donmez et al. (2009) further in Sect. 5 as one of the baselines to
which we compare our results. IEThresh uses a technique from reinforcement learn-
ing and bandit problems, where exploration is done via an upper confidence bound
on the quality of each labeler. CrowdSense’s quality estimates are instead smoothed
estimates of the labelers’ qualities. Early results of this work appeared in Collective
Intelligence 2012 conference (Ertekin et al. 2012).

3 Fundamentals of approximating the crowd

We define an “approximating the crowd” problem to be characterized by a sequence
of random vectors Vt for t = 1 . . . T , where each Vt is drawn iid from an unknown
distribution μ on {−1, 1}M , i.e. Vt ∼ μ({−1, 1}M ). Vt represents the set of votes that
are given by all M labelers at time t , if they were selected to vote. The value Yt for
each t is computed deterministically as a function of random variable Vt by

Yt =
{

1 if
∑M

i=1 Vti > 0
−1 otherwise.

(1)

An algorithm for “approximating the crowd” is a policy π that, at each time t ,
determines:

– Which votes Vti should be revealed, where each vote is obtained at a given fixed
unit cost, and in which order the votes should be obtained,

– When to stop requesting votes (when we are certain enough to estimate Yt ),
– How to combine votes to obtain an estimate of Yt , called Ŷt .
– The total cost is Cost(π) = #Votes(π).
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The accuracy of algorithm π is defined as Reward(π) = 1
T

∑T
t=1 1

[
Ŷt=Yt

]. The goal

of an algorithm π for approximating the crowd is to maximize reward subject to a
constraint on the cost, given policy π for approximating the crowd. These constraints
can be either hard or soft. Thus the goal of approximating the crowd can be written in
either of the two ways below:
Hard-constrained

max
π

E{Vt }t :Vt∼μ [Reward | π ] s.t. Cost(π) ≤ Chard.

Soft-constrained

max
π

E{Vt }t :Vt∼μ [Reward− Csoft · Cost(π) | π ] .

The user defines which goal (hard or soft) is appropriate for the problem.
Algorithms for approximating the crowd must use their budget to balance exploring

the qualities of the labelers and exploiting the high quality labelers.When comparing
two algorithms against each other, one can consider reward and cost along separate
dimensions. It is possible that π1 could be better than π2 in both reward and cost, in
which case π1 dominates π2. That is, We say that algorithm π1 dominates π2 on a
particular dataset if:

Cost(π1) < Cost(π2) and Reward(π1) ≥ Reward(π2), or

Cost(π1) ≤ Cost(π2) and Reward(π1) > Reward(π2).

In the second condition above, π1 is able to achieve a higher accuracy with a lower cost
than π2, meaning it achieves a better value of the hard-constrained objective function
(higher reward for a fixed cost). If either of the two conditions above for domination
are met, π1 achieves a better value of the soft-constrained objective than π2.

As we adjust Chard for the hard-constrained problem, we can trace out an efficient
frontier of solutions; these are the solutions that maximize expected accuracy for each
fixed cost. The algorithms we present in this paper each have a “cost” parameter that
the user can adjust. By adjusting the parameter, we obtain different accuracy values
for each possible cost. This allows us to empirically trace out a frontier of solutions
for the algorithm. It is difficult to determine the efficient frontier, as an optimal policy
would depend on the distribution of the labelers.

3.1 Understanding the frontier

Parts of the frontier can be analytically determined under specific conditions, for
instance whenμ({−1, 1}M ) is a product distribution, where each labeler chooses their
label in a way that is conditionally independent from other labelers. We construct such
a distribution as follows. To ensure that there is no prior information available to the
algorithm, we start with a binary signal chosen uniformly at random, taking values +1
or -1, that is: X signal

t ∼ [Bernoulli(0.5)]×2−1. Each labeler agrees with X signal
t with
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probability pall. Assume pall is known, pall > 0.5 (without loss of generality, since
we can reverse the vote if pall < 0.5). As usual

Yt =
{

1 if
∑M

i=1 Vti > 0
−1 otherwise.

We can solve analytically for the two important points on the frontier: the expected
accuracy for the nontrivial policy that makes one vote per example, Cost=T · u, where
u is the unit cost of one vote from one labeler (Theorem 1), and the expected cost for
the optimal policy achieving perfect accuracy, Reward=1 (Theorem 2). We present
these values in the case of M total labelers.

Theorem 1 Assume M labelers, with the product distribution described above. For
the (low-cost) policy that pays for exactly one vote per example at each time t, the
expected accuracy is

E{V1,...,VT∼μ({−1,1}M )} = pall ·
⎡
⎢⎣

M−1∑
x= M−1

2

Bin(x,M − 1, pall)

⎤
⎥⎦

+ (1− pall) ·
⎡
⎢⎣

M−1∑
x= M−1

2

Bin(x,M − 1, 1− pall)

⎤
⎥⎦,

where Bin(x, n, p) represents the x’th entry in the binomial distribution with para-

meters n and p, i.e. Bin(x, n, p) =
(

n
x

)
px (1− p)n−x .

Here is the result for the other extreme point.

Theorem 2 The expected cost of the optimal policy that achieves perfect accuracy in
predicting the crowd’s majority vote is

� = T
M∑

j=
(

M + 1
2

)
(

j − 1
M−1

2

)[
p

M+1
2

all (1− pall)
j− M+1

2 + (1− pall)
M+1

2 p
j− M+1

2
all

]
× j.

This policy purchases as many labels as necessary to determine the crowd’s majority
vote with probability 1.

Note that the extreme point in Theorem 2 comes from the optimal policy for achiev-
ing maximal reward, and is thus on the efficient frontier. We lead up to the proofs of
Theorem 1 and Theorem 2.

Since each pall is known, we do not learn labeler qualities over time. Thus, the
expected value of the accuracy over time is the expected value of accuracy for a single
measurement. Thus, we eliminate the “t” index in the proofs. We define Vi to be the
vote from labeler i .
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Proof (Theorem 1) Our algorithm chooses Ŷ = VM for all t , that is, we will pay
for only one labeler’s vote per time, namely the Mth labeler’s vote, without loss of
generality. Without obtaining at least one labeler’s vote, the accuracy would be exactly
0.5. Note that pall is not the accuracy of the labeler with respect to the crowd’s majority,
it is simply the probability of agreement with the signal. We need to calculate the
accuracy of Ŷ = VM , which is the probability that labeler M agrees with the majority,
1
2 P(Y = 1|VM = 1) + 1

2 P(Y = −1|VM = −1). Due to the symmetry of the
problem, we have P(Y = 1|VM = 1) = P(Y = −1|VM = −1). Thus, it is sufficient
to calculate P(Y = 1|VM = 1), which is the probability that the majority vote is 1
given that labeler votes 1.

P(Y = 1|VM = 1) = P(Y = 1|VM = 1, X signal = 1)P(X signal = 1|VM = 1)

+ P(Y = 1|VM = 1, X signal = −1)P(X signal = −1|VM = 1) (2)

where

P(X signal = 1|VM = 1) = P(VM = 1|X signal = 1)P(X signal = 1)

P(VM = 1)

= P(VM = 1|X signal = 1) = pall

since P(X signal = 1) = 1
2 and P(VM = 1) = 1

2 . Also,

P(X signal = −1|VM = 1) = 1− P(VM = 1|X signal = 1) = 1− pall.

To calculate the other terms of (2) we need to compute

P(Y = 1|VM = 1, X signal = 1)

= P

(
at least

M − 1

2
of voters 1, . . . , M-1 vote 1|X signal = 1

)

=
M−1∑

x= M−1
2

Bin(x,M − 1, pall),

since we are summing independent Bernoulli random variables. Further,

P(Y = 1|VM = 1, X signal = −1)

= P

(
at least

M − 1

2
of voters 1, . . . , M-1 vote 1|X signal = −1

)

=
M−1∑

x= M−1
2

Bin(x,M − 1, 1− pall).
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Putting it together,

P(Y = 1|VM = 1) =
⎡
⎢⎣

M−1∑
x= M−1

2

Bin(x,M − 1, pall)

⎤
⎥⎦ pall

+
⎡
⎢⎣

M−1∑
x= M−1

2

Bin(x,M − 1, 1− pall)

⎤
⎥⎦ (1− pall).

��

Proof (Theorem 2) Let us say that the (hidden) majority class label is positive without
loss of generality. We will purchase labels until we have gathered M+1

2 positive labels;
if we have at least that many positive labels, we will have determined that the majority
class must be positive.

When we stop gathering labels, the final label we will have collected is the M+1
2 ’st

positive label. Its probability of being positive is pall if the signal is positive or 1− pall
if the signal is negative.

Prior to paying for the final positive label, we must have purchased exactly M+1
2 −

1 = M−1
2 other positive labels and at most M total labels. Thus, we sum over the

possibilities of purchasing j labels, where j ranges from M+1
2 total labels (this is the

case where we had been lucky to purchase all the positive labels we need in a row) to
j = M total labels (where we had purchased M−1

2 positive labels and M−1
2 negative

labels and the last vote is the deciding vote).
Let us fix j , where we say we pay for j total labels, where the final label is positive,

and there were M−1
2 other positive labels purchased among the remaining j −1 labels

purchased. The probability of this happening is

p
M+1

2
all (1− pall)

j− M+1
2

when the signal is positive, and

(1− pall)
M+1

2 p
j− M+1

2
all

when the signal is negative. The number of ways this could have occurred is

(
j − 1
M−1

2

)
.

Thus the expected number of labels we need to pay for over T times is

�=T
M∑

(
j = M+1

2

)
(

j−1
M−1

2

)[
p

M+1
2

all (1− pall)
j− M+1

2 +(1− pall)
M+1

2 p
j− M+1

2
all

]
× j.
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Fig. 1 Results from Theorems 1 and 2

The two theorems above pinpoint two ends of the frontier. The strategy used in
Theorem 1 has a fixed cost of T total votes over the T examples, and attains low
accuracy, provided within the theorem. The strategy used in Theorem 2 has perfect
accuracy, but has a high cost, provided within the theorem. In general we would like
to be somewhere along (but not necessarily at either end of) the frontier. CrowdSense
and its variants have internal parameters that govern where on its frontier the result
will lie. In the experimental sections that follow, we plot the result of each algorithm
in cost-accuracy space. If an algorithm achieves comparably better accuracy with the
same cost along the full frontier, then it dominates its competitor for that dataset across
all possible hard cost constraints.

A plot of the expected accuracy provided by Theorem 1 as a function of pall, as
well as a plot of the expected cost per time as a function of pall from Theorem 2 are
found in Fig. 1, for 101 labelers. Note in particular that even if only one labeler is
chosen when pall = 0.5, the expected accuracy from Theorem 1 is well above 0.5.
This is because the labeler whose vote we paid for contributes to the crowd’s majority
vote, and thus contains some information about the true majority. The unit cost per
labeler in Fig. 1 is u = 1.

We can connect the theoretical endpoints of the frontier with experimental results.
Figure 2 shows the theoretical results from Theorems 1 and 2 on the frontier, for 7
labelers and 50 K examples, where pall was set at 0.5. This figure also shows results
from CrowdSense.Bin, using a dataset simulated with the same specifications.

Now that we have formally defined “approximating the crowd,” we present Crowd-
Sense for approximately solving it. It is difficult to create an algorithm whose solution
lies near the efficient frontier for most distributions of labelers, but CrowdSense seems
to be able to adapt nicely to a wide variety of distributions.

4 CrowdSense

Let us first model the labelers’ quality estimates as a measure of their agreement with
the crowd majority. These quality estimates indicate whether a labeler is “representa-
tive” of the crowd.

Let L = {l1, l2, . . . , lM }, lk : X → {−1, 1} denote the set of labelers and
{x1, x2, . . . , xt , . . . , xN }, xt ∈ X denote the sequence of examples, which could arrive
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Fig. 2 We bridge theoretical and empirical results by plotting the frontier from CrowdSense.Bin, and
including results from Theorems 1 and 2

one at a time. We define Vit := li (xt ) as li ’s vote on xt and St ⊂ {1, . . . ,M} as the set
of labelers selected to label xt . For each labeler li , we then define cit as the number
of times we have observed a label from li so far:

cit :=
t∑

t̃=1

1[i∈St̃ ] (3)

and define ait as how many of those labels were consistent with the other labelers:

ait :=
t∑

t̃=1

1[
i∈St̃ ,Vit̃=VSt̃ t̃

] (4)

where VSt t = sign
(∑

i∈St
Vit Qit

)
is the weighted majority vote of the labelers in St .

Labeler li ’s quality estimate is then defined as

Qit := ait + K

cit + 2K
(5)

where t is the number of examples that we have collected labels for and K is a
smoothing parameter. Qit is a smoothed estimate of the probability that labeler i will
agree with the crowd, pulling values down toward 1/2 when there are not enough
data to get a more accurate estimate. This ensures that labelers who have seen fewer
examples are not considered more valuable than labelers who have seen more examples
and whose performance is more certain. CrowdSense uses a pessimistic estimate of
the mean rather than an upper (e.g. 95 %) confidence interval that IEThresh (Donmez
et al. 2009) (and UCB algorithms) use.

At the beginning of an online iteration to label a new example, the labeler pool
is initialized with three labelers; we select two “exploitation” labelers that have the
highest quality estimates Qit and select another one uniformly at random for “explo-
ration”. This initial pool of seed labelers enables the algorithm to maintain a balance
between exploitation of quality estimates and exploration of the quality of the entire
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Algorithm 1 Pseudocode for CrowdSense.
1. Input: Examples {x1, x2, . . . , xN }, Labelers {l1, l2, . . . , lM }, confidence threshold ε, smoothing para-

meter K .
2. Initialize: ai1 ← 0, ci1 ← 0 for i = 1, . . . ,M and Qit ← 0 for i = 1 . . .M, t = 1 . . . N ,

L Q = {l(1), . . . , l(M)} random permutation of labeler id’s
3. For t = 1, ..., N

(a) Compute quality estimates Qit = ait+K
cit+2K , i = 1, . . . ,M . Update L Q = {l(1), . . . , l(M)}, labeler

id’s in descending order of their quality estimates. If quality estimates are identical, randomly
permute labelers with identical qualities to attain an order.

(b) St = {l(1), l(2), l(k)}, where k is chosen uniformly at random from the set {3, . . .M}.
(c) For j = 3 . . .M, j �= k

i. Score(St ) =∑
i∈St

Vit Qit , lcandidate = l( j).

ii. If
|Score(St )|−Qlcandidate,t|St |+1 < ε, then St ← St ∪ lcandidate. Otherwise exit loop to stop adding

new labelers to St .

(d) Return the weighted majority vote of the labelers: VSt t = sign
(∑

i∈St
Vit Qit

)
(e) ∀i ∈ St where Vit = VSt t , ait ← ait + 1
(f) ∀i ∈ St , cit ← cit + 1

4. End

set of labelers. We ask each of these 3 labelers to vote on the example. The votes
obtained from these labelers for this example are then used to generate a confidence
score, given as

Score(St ) =
∑
i∈St

Vit Qit

which represents the weighted majority vote of the labelers. Next, we determine
whether we are certain that the sign of Score(St ) reflects the crowd’s majority vote,
and if we are not sure, we repeatedly ask another labeler to vote on this example until
we are sufficiently certain about the label. To measure how certain we are, we greedily
see whether adding an additional labeler might make us uncertain about the decision.
Specifically, we select the labeler with the highest quality estimate Qit , who is not
already in St , as a candidate to label this example. We then check whether this labeler
could potentially either change the weighted majority vote if his vote were included,
or if his vote could bring us into the regime of uncertainty where the Score(St ) is
close to zero, and the vote is approximately a tie. We check this before we pay for
this labeler’s vote, by temporarily assigning him a vote that is opposite to the current
subcrowd’s majority. The criteria for adding the candidate labeler to St is defined as:

|Score(St )| − Qlcandidate,t

|St | + 1
< ε (6)

where ε controls the level of uncertainty we are willing to permit, 0 < ε ≤ 1. If (6) is
true, the candidate labeler is added to St and we get (pay for) this labeler’s vote for xt .
We then recompute Score(St ) and follow the same steps for the next-highest-quality
candidate from the pool of unselected labelers. If the candidate labeler is not added to
St , we are done adding labelers for example t , and assign the weighted majority vote
as the predicted label of this example. We then proceed to label the next example in
the collection. Pseudocode for the CrowdSense algorithm is given in Algorithm 1.
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Ş. Ertekin et al.

5 Datasets and baselines

In order for us to evaluate the quality of a system for approximating the crowd, we
require databases with many examples, for which all of the labelers’ votes are known
on each example (so the majority can be calculated). This allows an unbiased, offline
evaluation to be performed. Ground truth labels may or may not be present; as in
the answer services applications, even if ground truth exists, we assume there is no
realistic way to obtain it. One of the most commonly known crowdsourced databases
was used in the Netflix Contest5. This database contains 100 million anonymous movie
ratings, and could definitely be used to predict the crowds opinion on movies, even
though it was not explicitly designed for that purpose (however it is no longer publicly
available). For our experiments, we used various synthetic and real-world datasets that
model a crowd from two separate perspectives; the first perspective models the crowd
in the traditional sense where the crowd comprises of human labelers, whereas the
second perspective models the crowd in terms of competing predictive models and the
goal is to approximate the common prediction of these models.

This paper thus develops the largest collection of complete crowdsourced databases
available with the necessary characteristics for these types of experiments. We also
varied the amount of various types of noise in the datasets, to account for a broader
type of data than is publicly available, and to provide a type of sensitivity analysis.
The number of examples in each dataset and the true accuracies of the labelers are
shown in Table 1. Our datasets are publicly available6.

All reported results are averages of 100 runs, each with a random ordering of
examples to prevent bias due to the order in which examples are presented.

MovieLens is a movie recommendation dataset of user ratings on a collection of
movies, and our goal is to find the majority vote of these reviewers. The dataset is
originally very sparse, meaning that only a small subset of (human) users have rated
each movie. We compiled a smaller subset of this dataset where each movie is rated
by each user in the subset, to enable comparative experiments, where labels can be
“requested” on demand at a cost. We mapped the original rating scale of [0–5] to
votes of −1, 1 by using 2.5 as the threshold. The resulting dataset has the benefits of
having both human labelers and the completeness required to evaluate algorithms for
approximating the crowd. There is no ground truth in movie ratings, other than the
crowd’s majority vote.

ChemIR is a dataset of chemical patent documents from the 2009 TREC Chemistry
Track. This track defines a “Prior Art Search” task, where the competition is to develop
algorithms that, for a given set of patents, retrieve other patents that they consider
relevant to those patents. The evaluation criteria is based on whether there is an overlap
of the original citations of patents and the patents retrieved by the algorithm. The
ChemIR dataset that we compiled is the complete list of citations of several chemistry
patents, and the +1,−1 votes indicate whether or not an algorithm has successfully
retrieved a true citation of a patent. In our dataset, we do not consider false positives;

5 http://www.netflixprize.com
6 Dataset are available at http://github.com/CrowdSense/Datasets
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Table 1 The number of examples in each dataset and the true accuracies of the labelers

MovieLens ChemIR Reuters Adult SpamBase MTurk

Number of examples

137 1,165 6,904 32,561 2,300 673

Labeler accuracies

48.17(L1) 50.72(L1) 80.76(L1) 81.22(L1) 86.30(L1) 52.60(L1)

89.78(L2) 46.78(L2) 83.00(L2) 80.59(L2) 86.35(L2) 63.30(L2)

93.43(L3) 84.46(L3) 89.70(L3) 86.22(L3) 91.22(L3) 54.98(L3)

48.90(L4) 88.41(L4) 82.98(L4) 87.63(L4) 94.04(L4) 79.64(L4)

59.12(L5) 86.69(L5) 88.12(L5) 91.12(L5) 75.91(L5) 61.52(L5)

96.35(L6) 87.46(L6) 87.04(L6) 94.11(L6) 82.04(L6) 72.22(L6)

87.59(L7) 49.52(L7) 95.42(L7) 56.68(L7) 68.39(L7) 74.00(L7)

54.01(L8) 78.62(L8) 80.21(L8) 85.51(L8) 90.83(L8)

47.44(L9) 82.06(L9) 78.68(L9) 81.32(L9) 94.35(L9)

94.16(L10) 50.12(L10) 95.06(L10) 85.54(L10)

95.62(L11) 50.98(L11) 82.88(L11) 79.74(L11)

71.57(L12) 84.86(L12)

87.54(L13) 96.71(L13)

that is, the predicted citations that are not in the original citations are not counted as
−1 votes. Both MovieLens and ChemIR datasets have 11 labelers in total. The ground
truth in the ChemIR dataset is debatable: it is possible that the crowd has identified
citations that should have been made in the patent, but were not. So it is possible that
the crowd’s majority vote could be more valuable to future patent citation suggestion
than an algorithm that actually models ground truth citations.

Reuters is a popular dataset of articles that appeared on the Reuters newswire in
1987. We selected documents from the money-fx category. The Reuters data is divided
into a “training set” and a “test set,” which is not the format we need to test algorithms
for approximating the crowd. We used the first half of the training set (3,885 examples)
to develop our labelers. Specifically, we trained several machine learning algorithms
on these data: AdaBoost, Naïve Bayes, SVM, Decision Trees, and Logistic Regression,
where we used several different parameter settings for SVM and Decision Trees. Each
algorithm with its specific parameter setting is used to generate one labeler and there
were 10 labelers generated this way. Additionally, we selected 3 features of the dataset
as labelers, for a total of 13 labelers. We combined the other half of the training set
(omitting the labels) with the test set, which provided 6,904 total examples over which
we used to measure the performance of CrowdSense and the baselines. The same
simulation of a crowd that we conducted for the Reuters dataset was also used for the
Adult dataset from the UCI Machine Learning Repository, which is collected from
the 1994 Census database, where we aim to predict whether a persons annual income
exceeds $50 K/yr.

Spambase is another popular dataset from the UCI repository comprised of content
features extracted from spam and non-spam email messages and the task is to distin-
guish these two types. Similar to the Reuters and Adult datasets, we trained various
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Ş. Ertekin et al.

machine learning algorithms with various settings on half of the dataset, and used
their predictions on the other half as the votes for those examples. In total, our dataset
contains 2,300 examples, each voted on by 9 labelers.

Finally, we experimented with the HITSpam dataset7, which includes descriptions
of tasks posted on the Amazon Mechanical Turk marketplace. This dataset was com-
piled by asking workers on Mechanical Turk to examine whether a task is “legitimate”
or if the purpose of the task is to game social media metrics, such as asking workers
to follow a user on Twitter, to “like” a video on YouTube, etc. This dataset contains
5,840 tasks voted on by 135 labelers for a total of 28,354 votes. While the dataset is
large in terms of the total number of votes, there are very few tasks that have been
voted on by the same set of labelers. Even if we consider the 5 labelers that have
labeled the most tasks, there are only 89 tasks that are voted on by all of them. If
we consider the top 7 labelers, there are no tasks that are voted on by all of them. In
order to obtain a sizable set of tasks that have votes from all labelers, we proceeded as
follows: First, we identified pairs of labelers li and l j where both labelers have labeled
at least 10 tasks in common, and the votes of li and l j on all common-labeled tasks are
identical. We considered such a pair as a single labeler, and the votes of this labeler
were set to the union of the labels of li and l j . From there, we selected the 7 labelers
that labeled the most tasks, and we selected the tasks that have been labeled by at least
5 of the labelers. In total, there were 673 tasks that matched this criteria. For the cases
in which a labeler had not labeled a task, we generated a label randomly according to
the labeler’s accuracy (i.e. agreement with the majority vote) on the tasks that she has
labeled.

For MovieLens, we added 50 % noise and for ChemIR we added 60 % noise to 5
of the labelers to introduce a greater diversity of judgments. This is because all the
original labelers had comparable qualities and did not strongly reflect the diversity of
labelers and other issues that we aim to address. For the Reuters and Adult datasets, we
varied the parameters of the algorithms’ labelers, which are formed from classification
algorithms, to yield predictions with varying performance.

We compared CrowdSense with several baselines: (a) the accuracy of the average
labeler, represented as the mean accuracy of the individual labelers, (b) the accuracy
of the overall best labeler in hindsight, and (c) the algorithm that selects just over
half the labelers (i.e. �11/2� = 6 for ChemIR and MovieLens, �13/2� = 7 for
Reuters and Adult) uniformly at random, which combines the votes of labelers with
no quality assessment using a majority vote. In Section C of the supplementary file, we
also discuss the possibility of learning the labelers’ quality estimates using machine
learning.

Another baseline that we use to compare CrowdSense is IEThresh (Donmez et al.
2009). IEThresh builds upon Interval Estimation (IE) learning, and estimates an upper
confidence interval UI for the mean reward for an action, which is a technique used in
reinforcement learning. In IEThresh, an action refers to asking a labeler to vote on an
item, and a reward represents the labeler’s agreement with the majority vote. The U I
metric for IEThresh is defined for a sample “a” as:

7 http://github.com/ipeirotis/Get-Another-Label/tree/master/data/HITspam-UsingMTurk
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U I (a) = m(a)+ t (n−1)
α
2

s(a)√
n

(7)

where m(a) and s(a) are the sample mean and standard deviation for a, n is the sample
size observed from a and t (n−1)

α
2

is the critical value for the Student’s t-distribution.

The sample “a” for a labeler is the vector of±1’s indicating agreement of that labeler
with the majority. IEThresh updates the U I scores of the labelers after observing new
votes, and given {U I1,U I2, . . . ,U Ik} for the labelers, IEThresh selects all labelers
with U I j̃ > ε×max j̃ (U I j̃ ). The ε parameter in both CrowdSense and IEThresh algo-
rithms tunes the size of the subset of labelers selected for voting, so we report results
for a range of ε values. Note that tuning ε exhibits opposite behavior in CrowdSense
and IEThresh; increasing ε relaxes CrowdSense’s selection criteria to ask for votes
from more labelers, whereas larger ε causes IEThresh to have a more strict selection
policy. So a given value of ε for CrowdSense does not directly correspond to a par-
ticular value of ε for IEThresh. On the other hand, since ε controls the number of
labelers used for each example in both algorithms, it also controls the total number
of labelers used for the entire collection of examples. (This is proportional to the cost
of the full experiment.) When we adjust the ε values for CrowdSense and IEThresh
so that the total number of labelers is similar, we can directly see which algorithm is
more accurate, given that comparable total cost is spent on each. In Section D of the
supplementary file, we present the runtime performance of CrowdSense and IEThresh
and demonstrate that CrowdSense achieves higher accuracy even though it collects
fewer labels than IEThresh.

It is worth noting that we do not assess the performance of the algorithms on
separate test splits of the datasets. Rather, we make a single pass over the entire
dataset and select labelers for each example based on the quality estimates available
at that particular time. This is different than how IEThresh was evaluated by Donmez
et al. (2009), where the labelers’ qualities were first learned on a training set, and
then the single best labeler with the highest accuracy was selected to label all the
examples in a separate test set. In order to have a valid comparative assessment of the
iterative nature of quality estimation, the majority vote for each example in IEThresh is
computed based on the majority vote of the selected subcrowd, similar to CrowdSense.

We compared CrowdSense against two additional methods, namely labeling quality
uncertainty (LU) (Sheng et al. 2008) and new label uncertainty (NLU) (Ipeirotis et
al. 2013), that provide smoothed estimates of the uncertainty of the labels for each
example. These algorithms work offline, in that they are allowed to go back to any
selected example they choose and request another label. (This could potentially give
these algorithms a large advantage over CrowdSense and IEThresh.) In LU, given l p

positive and ln negative labels for an example, the posterior probability of the true
label p(y) follows a Beta distribution B(l p + 1, ln + 1) and the level of uncertainty
is measured as the tail probability below the labeling decision threshold of 0.5. The
example that is closest to this threshold is the one that has the most uncertain label and
the next set of labels should be selected for this instance. This calculation makes the
approximation that all labelers have the same quality when labeling a given example,
which is not an assumption of CrowdSense.
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For NLU, any example that we have observed l p > ln labels has the posterior
probability for the positive class

Pr(+|l p, ln) =
(

1+ 1− Pr(+)
Pr(+) ·

(
(ln + l p)!

)2

(2ln)! · (2l p)!

)−1

where Pr(+) denotes the prior for the positive class that can be computed iteratively
using a marginal maximum likelihood algorithm. For examples with ln > l p labels,
the posterior above is symmetric. Similar to the LU case, the example with the most
uncertain label is the one that has the score closest to 0.5 and the algorithm queries for
new labels for that example in the next iteration. We used the setting of LU and NLU
as they are presented in (Sheng et al. 2008) and (Ipeirotis et al. 2013) respectively.

6 Overall performance

We compare CrowdSense with the baselines to demonstrate its ability to accurately
approximate the crowd’s vote. Accuracy is calculated as the proportion of examples
where the algorithm agreed with the majority vote of the entire crowd.

Figure 3 shows the comparison of CrowdSense against baseline (b) and IEThresh.
On the subplots in Fig. 3, the accuracy of the best labeler in hindsight (baseline (b))
is indicated as a straight line. Note that the accuracy of the best labeler is computed
separately as a constant. Baselines (a) and (c), which are the average labeler and the
unweighted random labelers, achieved performance beneath that of the best labeler.
For the MovieLens dataset, the values for these baselines are 74.05 and 83.69 %
respectively; for ChemIR these values are 68.71 and 73.13 %, for Reuters, 84.84 and
95.25 %, for Adult 83.94 and 95.03 %, for Mechanical Turk 65.46 and 77.12 %, and for
Spambase the values are 85.49 and 93.43 %. The results indicate that uniformly across
different values of ε, CrowdSense consistently achieved the highest accuracy against
these baselines, indicating that CrowdSense uses any fixed budget more effectively
than the baselines. Generally, the quality estimates of CrowdSense better reflect the
true accuracy of the members of the crowd and therefore, it can identify and pick
a more representative subset of the crowd. Also, the results demonstrate that asking
for labels from labelers at random may yield poor performance for representing the
majority vote, highlighting the importance of making informed decisions for selecting
the representative members of the crowd. Asking the best and average labeler were
also not effective approximators of the majority vote.

For the LU and NLU experiments, we initialized both algorithms by randomly
selecting three labelers and acquiring their votes on each example in the dataset. At
each round of collecting more labels for the most uncertain example, we acquired two
additional labels to prevent ties. We did not specify a stopping criteria for either LU or
NLU, so both algorithms ran until acquiring all labels for all examples in the dataset
(therefore both algorithms eventually converge to 100 % accuracy). The comparison
of CrowdSense with LU and NLU is presented in Fig. 4. The results demonstrate that
CrowdSense achieves better general performance, where its impact is most pronounced
on the MovieLens, ChemIR, Mechanical Turk and Spambase datasets. We remark that
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Fig. 3 Tradeoff curves for CrowdSense, baseline (b), and IEThresh, averaged over 100 runs. The x-axis
is the total number of votes (the total cost) used by the algorithm to label the entire dataset. The y-axis
indicates the accuracy on the full dataset

LU and NLU are permitted to look backwards in time, where CrowdSense is not. LU
and NLU make very strong explicit probabilistic approximations (i.e. independence)
that are not necessarily true. Later in the paper we will present CrowdSense.Bin and
CrowdSense.Ind that also make explicit probabilistic approximations that are not true,
and they also do not yield better performance than CrowdSense. CrowdSense’s proba-
bilistic assumptions are more implicit, and translate into the smoothed quality estimates
of the labelers and the use of the regime of uncertainty.

7 Effect of parameters

In this section, we discuss the impact of various settings of ε and K on CrowdSense’s
performance. Evaluation of our specific choices that we made for exploration and
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Fig. 4 Tradeoff curves for CrowdSense, LU and NLU, averaged over 100 runs. The x-axis is the total
number of votes (the total cost) used by the algorithm to label the entire dataset. The y-axis indicates the
accuracy on the full dataset

exploitation in the different components of CrowdSense is presented in Sect. 8. We
also present experimental results that demonstrate the effect of initialization with gold
standard data in Section E of the supplementary file.

7.1 Effect of the ε parameter

As discussed throughout Sects. 4 and 5, the ε parameter is a trade-off between the
total cost that we are willing to spend and the accuracy that we would like to achieve.
Figure 5 illustrates the average running performance over 100 runs of CrowdSense for
various values of epsilon. Each final point on each of the Fig. 5 curves corresponds
to a single point in Fig. 3. Figure 5 shows that over the full time course, increasing
epsilon leads to increased accuracy, at a higher cost.
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Fig. 5 Comparison of the running accuracy of CrowdSense at various ε values, averaged over 100 runs.
In the plots, we show how many total votes were requested at each ε value

7.2 Effect of the K parameter

The K parameter helps with both exploration at early stages and exploitation at later
stages. In terms of exploration, K ensures that labelers who have seen fewer examples
(smaller cit ) are not considered more valuable than labelers who have seen many
examples. The quality estimate in (5) is a shrinkage estimator, lowering probabilities
when there is uncertainty. Consider a labeler who was asked to vote on just one
example and correctly voted. His vote should not be counted as highly as a voter who
has seen 100 examples and correctly labeled 99 of them. This can be achieved using
K sufficiently large.

Increasing K also makes the quality estimates more stable, which helps to permit
exploration. Since the quality estimates are all approximately equal in early stages,
the weighted majority vote becomes almost a simple majority vote. This prevents
CrowdSense from trusting any labeler too much early on. Having the Qit ’s be almost
equal also increases the chance to put CrowdSense into the “regime of uncertainty”
where it requests more votes per example, allowing it to explore the labelers more.

We demonstrate the impact of K by comparing separate runs of CrowdSense with
different K in Fig. 6. Considering the MovieLens dataset, at K = 100, the quality
estimates tilt the selection criteria towards an exploratory scheme in most of the itera-
tions. At the other extreme, K = 0 causes the quality estimates to be highly sensitive
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Fig. 6 Comparison of running accuracy with varying K. All curves use ε = 0.005, and are averaged over
100 runs

to the accuracy of the labels right from the start. Furthermore, it is also interesting to
note that removing K achieves worse performance than K = 10 despite collecting
slightly more votes. This indicates that the results are better when more conservative
quality estimates are used in early iterations.

8 Specific choices for exploration and exploitation in CrowdSense

The algorithm template underlying CrowdSense has three components that can be
instantiated in different ways: (i) the composition of the initial seed set of labelers
(step 4(b) in the pseudocode), (i i) how subsequent labelers are added to the set (step
4(c)), and (i i i) the weighting scheme, that is, the quality estimates. This weighting
scheme affects the selection of the initial labeler set, the way the additional labelers
are incorporated, as well as the strategy for combining the votes of the labelers (steps
4(b)(c)(d)).

Our overall results of this section are the algorithm is fairly robust to components
(i) and (i i), but not to component (i i i): the weighting scheme is essential, but chang-
ing the composition of the seed set and the way subsequent labelers are added does
not heavily affect accuracy. There is a good reason why CrowdSense is robust to
changes in (i) and (i i). CrowdSense already has an implicit mechanism for explo-
ration, namely the smoothing done on the estimates of quality, discussed in Sect. 7.2,
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Fig. 7 Performance of CrowdSense and several of its variants, averaged over 100 runs. The x-axis is the
total number of votes (the total cost), and the y-axis is the running accuracy on those examples. For the
plots, we used ε = 0.005 for MovieLens, ε = 0.01 for ChemIR, ε = 0.2 for Reuters, and ε = 0.1 for Adult
dataset

so the exploration provided in (i) is not the only exploration mechanism. When adding
new labelers in (i i), this is already after forming the initial set, including good labelers
for exploitation. So exploitation in adding new labelers does not always make an addi-
tional impact. In other words, even if we reduce exploration or exploitation somewhere
within CrowdSense, other means of exploration/exploitation can compensate, which
makes CrowdSense’s result fairly robust. We tested the effect of the first component
(i) by running separate experiments that initialize the labeler set with three (3Q), one
(1Q), and no (0Q) labelers that have the highest quality estimates, where for the lat-
ter two, additional labelers are selected at random to complete the set of three initial
labelers. 3Q removes the exploration capability of the initial set whereas the latter two
make limited use of the quality estimates.

Figure 7 shows the time course, averaged over 100 runs for a specific choice of ε
for all three variants. The most important points in this figure are the final accuracy
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of final total number of labels (i.e. the budget). Note that each variant implements
a separate labeler selection and/or label weighting scheme which, in turn, affects
the total number of labels collected by each variant. Some of the datasets (Reuters,
ChemIR) did not show much change. The MovieLens dataset, the smallest dataset in
our experiments, shows the largest gain in the predictive performance of CrowdSense
compared to the other three variants. This is also the dataset where the difference in
the number of labels collected for each curve is reasonably comparable across the
variants—so for the same total budget, the performance of CrowdSense was better.
For the Adult dataset, 1Q achieves the highest final accuracy, but it also collects close
to 10 K more labels than CrowdSense, so the accuracies are not directly comparable
because the budget is different. This agrees with the compromise that we discussed
in the Introduction, regarding the decisions on how to spend the budget on collecting
labels.

We experimented with the second component (i i) by adding labelers randomly
rather than in order of their qualities. In this case, exploitation is limited, and the
algorithm again tends not to perform as well on most datasets (as shown in Fig. 7 for
the curve marked “Component 2”) either in terms of accuracy or budget.

To test the effect of the weighting scheme in the third component (i i i), we first
removed the use of weights from the algorithm. This corresponds to selecting the
initial seed of labelers and the additional labelers at random without using their quality
estimates. In addition, when combining the votes of the individual labelers, we use
majority voting, rather than a weighted majority vote. This approach performs the
worst among all the variants in all four datasets, demonstrating the significance of
using quality estimates for labeler selection and the calculation of the weighted vote.

We also experimented with a separate scoring scheme for estimating the labeler
qualities. In particular, we estimated labeler i’s quality at iteration t using a lower con-
fidence interval. The lower confidence limit at level α, using the normal approximation
to the binomial is:

Qit = p̂i t − z1− 1
2α

√
1

ci
p̂i t (1− p̂i t ) (8)

where p̂i t = ait
ci t

is the proportion of labeler i’s labels that were consistent with the
other labelers. The definition and computation of a and c were presented in Sect. 3. In
Figure 7, the curve with the label LCI shows the running accuracy results for estimating
the labelers’ qualities using this scheme at α = 0.25. The results are comparable to
CrowdSense, performing similarly in some datasets, better in one, and worse than
another, indicating that (8) is a reasonable alternative to the choice of labeler quality
estimates for the weighting scheme.

9 Probabilistic algorithms for approximating the crowd

CrowdSense has four important properties: (1) It takes labelers’ votes into account
even if they are right only half of the time. This property is especially beneficial for
approximating small crowds, (2) It trusts “better” labelers more, and places higher
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emphasis on their votes, (3) Its decision rule is derived to be similar to boosting,
and (4) smoothing of the quality estimates. These estimates provide the means for
exploration of labelers in the earlier stages, and exploitation in later stages.

The fact that the majority vote determines the ground truth indicates a complicated
relationship, a joint probability distribution, between the labelers’ accuracies with
respect to the majority vote. CrowdSense makes an implicit approximation on the
joint probability distribution through its boosting-style update. We believe it is possi-
ble to further improve its accuracy by making an explicit approximation on the joint
probability distribution. To that effect, we propose two variations of CrowdSense that
directly incorporate the joint probability distributions of the labelers under different
approximations. These algorithms are designed to bring probabilistic insight into the
workings of CrowdSense and other algorithms for approximating the crowd. The first
variation (CrowdSense.Ind) makes a statistical independence approximation for the
labelers. That is, we will assume that the majority vote is approximately independent
of the votes that we have seen so far. This approximation is useful for large crowds, but
may not be useful for smaller crowds. CrowdSense.Ind’s probabilistic interpretation
replaces the boosting-style update to improve upon property 3; however, it sacrifices
property 1. Therefore, its benefits are geared towards large crowds. The second varia-
tion (CrowdSense.Bin) makes a different probabilistic approximation, which is a lower
bound on how often the current subcrowd agrees with the majority vote. This leads to a
different voting scheme which is based on the binomial distribution of the votes. This
also replaces the boosting-style decision rule in property 3. CrowdSense.Bin does not
include the current subcrowd’s weights in the vote, but the labeler selection criteria
still favors labelers with high accuracy. Consequently, this approach covers the second
property to some extent, but not as strong as the original CrowdSense.

9.1 CrowdSense.Ind

CrowdSense.Ind assumes that the quality of the individual labelers gives much more
information than the count of votes received so far. In other words, that a labeler
who is right 90 % of the time and votes +1 should be counted more than a handful
of mediocre labelers who vote −1. This can be approximately true when there a
large number of labelers, but is not true for a small number of labelers. For instance,
consider a case where we have received three votes so far: [+1,−1,−1], from labelers
with qualities 0.8, 0.5, and 0.5 respectively. Let’s say that there are a total of 500
labelers. The evidence suggests that the majority vote will be +1, in accordance with
the high quality voter, and discounting the low-quality labelers. This is the type of
approximation CrowdSense.Ind makes. Instead, if there were only 5 labelers total,
evidence suggests that the majority vote might be −1, since the low quality labelers
still contribute to the majority vote, and only one more −1 vote is now needed to get
a majority.

Let Vi denote the vote of labeler i on a particular example, and Pi denote the
probability that the labeler will agree with the crowd’s majority vote. Consider that
two labelers have voted 1 and −1, and we want to evaluate the probability that the
majority vote is 1. Then, from Bayes Rule, we have
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P(y = 1|V1 = 1, V2 = −1) = P(V1 = 1, V2 = −1, y = 1)

P(V1 = 1, V2 = −1)
P(V1 = 1, V2 = −1, y = 1) = P(y = 1)P(V1 = 1, V2 = −1|y = 1)

= P(y = 1)P(V1 = Vmaj , V2 �= Vmaj )

= P(y = 1)P1(1− P2)

P(V1 = 1, V2 = −1) = P(y = 1)P(V1 = 1, V2 = −1|y = 1)

+ P(y = −1)P(V1 = 1, V2 = −1|y = −1)

P(y = 1|V1 = 1, V2 = −1) = P1(1− P2)P(y = 1)

P(y = 1)P1(1− P2)+ P(y = −1)(1− P1)P2

where P(y = 1) and P(y = −1) are the ratios of the crowd’s approximated votes of
1 and −1 on the examples voted so far, respectively.

To expand this more generally to arbitrary size subsets of crowds, we define the
following notation: Let V bin

i denote the mapping of labeler i’s vote from {−1, 1} to
{0, 1}, i.e. V bin

i = (Vi + 1)/2. Using the following notation for the joint probabilities
of agreement and disagreement with the crowd:

ψi = P
V bin

i
i (1− Pi )

1−V bin
i (probability of agreement given vote Vbin)

θi = (1− Pi )
V bin

i P
1−V bin

i
i (probability of disagreement given vote Vbin)

the likelihood of the majority vote y being 1 is estimated by the following conditional
probability:

f (xt |votes) = P(y = 1| V1, V2, . . . , Vi︸ ︷︷ ︸
votes of labelers in S

) =
(∏

l∈S ψl
)

P+(∏
l∈S ψl

)
P+ +

(∏
l∈S θl

)
(1− P+)

= 1

1+
(∏

l∈S θl
)
(1− P+)(∏

l∈S ψl
)

P+

(9)

where probabilities higher than 0.5 indicate a majority vote estimate of 1, and −1
otherwise. Further, the more the probability in (9) diverges from 0.5, the more we are
confident of the current approximation of the crowd based on the votes seen so far.

Note that labelers who are accurate less than half the time can be “flipped” so the
opposite of their votes are used. That is, observing a vote Vi with Pi < 0.5 is equivalent
to observing −Vi with probability 1− Pi . In Section B of the supplementary file, we
discuss about this flipping heuristics and present graphs that demonstrate the effect of
this approach.

As in CrowdSense, the decision of whether or not to get a vote from an additional
labeler depends on whether his vote could bring us to the regime of uncertainty. As
in CrowdSense, this corresponds to hypothetically getting a vote from the candidate
labeler that disagrees with the current majority vote. This corresponds to hypothetically
getting a -1 vote when P(y = 1|votes) > 0.5, and getting a 1 vote otherwise. Defining
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Fig. 8 The confidence intervals
of the probabilistic approach
with the independence
approximation of the labelers

ψcandidate =
{

1− Pcandidate f (xt |votes) > 0.5
Pcandidate otherwise

θcandidate =
{

Pcandidate f (xt |votes) > 0.5
1− Pcandidate otherwise

and expanding (9) to include the new hypothetical vote from the candidate labeler, we
get

f (xt |votes, Vcandidate) = 1

1+
(∏

l∈S θl
)
θcandidate (1− P+)(∏

l∈S ψl
)
ψcandidate P+

. (10)

The decision as to whether get a new vote depends on the values of Eqs. (9) and (10).
If we are sufficiently confident of the current majority vote to the point where the next
best labeler we have could not change our view, or is not in the regime of uncertainty
(shown in Fig. 8), then we simply make a decision and do not call any more votes.
Pseudocode of CrowdSense.Ind is in Algorithm 2.

9.2 CrowdSense.Bin

The statistical independence approximation that we made in Sect. 9.1 is useful for
sufficiently large crowds, but it is not a useful approximation when the crowd is
small. In this subsection, we modify our treatment of the joint probability distribution.
Specifically, we estimate a lower bound on how often the subcrowd St agrees with the
crowd’s majority vote.

Consider again the scenario where there are 5 labelers in the crowd, and we already
have observed [+1,−1,−1] votes from three labelers. The simple majority of the
crowd would be determined by 3 votes in agreement, and we already have two votes
of −1. So the problem becomes estimating the likelihood of getting one more vote
of −1 from the two labelers that have not voted yet, which is sufficient to determine
the simple majority vote. If the voters are independent, this can be determined from
a computation on the binomial distribution. Let Nneeded denote the number of votes
needed for a simple majority and let Nunvoted denote the number of labelers that have
not yet voted. (In the example above with 5 labelers, Nneeded = 1 and Nunvoted = 2). In
order to find a lower bound, we consider what happens if the remaining labelers have
the worst possible accuracy, P = 0.5. We then define the score using the probability of
getting enough votes from the remaining crowd that agree with the current majority
vote:
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Algorithm 2 Pseudocode for CrowdSense.Ind.
1. Input: Examples {x1, x2, . . . , xN }, Labelers {l1, l2, . . . , lM }, confidence threshold ε, smoothing para-

meter K .
2. Initialize: ai1 ← 0, ci1 ← 0 for i = 1, . . . ,M and Qit ← 0 for i = 1 . . .M, t = 1 . . . N ,

L Q = {l(1), . . . , l(M)} random permutation of labeler id’s
3. Loop for t = 1, ..., N

(a) Compute quality estimates Qit = ait+K
cit+2K , i = 1, . . . ,M . Update L Q = {l(1), . . . , l(M)}, labeler

id’s in descending order of their quality estimates. If quality estimates are identical, randomly
permute labelers with identical qualities to attain an order.

(b) Select 3 labelers and get their votes. St = {l(1), l(2), l(k)}, where k is chosen uniformly at random
from the set {3, . . . ,M}.

(c) V bin
i t = (Vit+1)

2 , ∀i ∈ St

(d) ψi t = Q
V bin

i t
i t (1− Qit )

1−V bin
i t , ∀i ∈ St

(e) θi t = (1− Qit )
V bin

i t Q
1−V bin

i t
i t , ∀i ∈ St

(f) Loop for candidate = 3 . . .M, candidate �= k

i. f (xt |votes) = 1

1+ (
∏

i∈St
θi t )(1− P+)

(
∏

i∈St
ψi t )P+

, where P+ is the probability of a +1 majority

vote.
ii. ψcandidate = 1− Qcandidate,t

iii. θcandidate = Qcandidate,t

iv. f (xt |votes, Vcandidate,t ) = 1

1+ (
∏

i∈St
θi t )θcandidate(1− P+)

(
∏

i∈St
ψi t )ψcandidate P+

v. If f (xt |votes) ≥ 0.5 and f (xt |votes, Vcandidate,t ) < 0.5+ ε then ShouldBranch = 1
vi. If f (xt |votes) < 0.5 and f (xt |votes, Vcandidate,t ) > 0.5− ε then ShouldBranch = 1

vii. If ShouldBranch = 1 then St = {St ∪ candidate}, get the candidate’s vote. else Don’t need
more labelers, break out of loop.

(g) ŷt = 2× 1[ f (xt |votes)>0.5] − 1
(h) ait = ait + 1, ∀i ∈ St where Vit = ŷt
(i) cit = cit + 1, ∀i ∈ St

4. End

Score = PX∼Bin(·,Nunvoted,0.5)(X ≥ Nneeded)− 0.5

=
⎡
⎣ Nunvoted∑

X=Nneeded

Bin(X, Nunvoted, 0.5)

⎤
⎦− 0.5, (11)

where Bin(X, Nunvoted, 0.5) is the Xth entry in the Binomial distribution with para-
meters Nunvoted and probability of success of 0.5. In other words, this score represents
a lower bound on how confident we are that the breakdown of votes that we have
observed so far is consistent with the majority vote. The score (11) is always nonneg-
ative; this is shown in Section A of the supplementary file. Therefore, the decision to
ask for a new vote can then be tied to our level of confidence, and if it drops below
a certain threshold ε, we can ask for the vote of the highest quality labeler that has
not voted yet. The algorithm stops asking for additional votes once we are sufficiently
confident that the subset of labels that we have observed is a good approximation of
the crowd’s vote. The pseudocode of this approach is given in Algorithm 3.
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Algorithm 3 Pseudocode for CrowdSense.Bin
1. Input: Examples {x1, x2, . . . , xN }, Labelers {l1, l2, . . . , lM }, confidence threshold ε, smoothing para-

meter K .
2. Initialize: ai1 ← 0, ci1 ← 0 for i = 1, . . . ,M and Qit ← 0 for i = 1 . . .M, t = 1 . . . N ,

L Q = {l(1), . . . , l(M)} random permutation of labeler id’s
3. For t = 1, ..., N

(a) Compute quality estimates Qit = ait+K
cit+2K , i = 1, . . . ,M . Update L Q = {l(1), . . . , l(M)}, labeler

id’s in descending order of their quality estimates. If quality estimates are identical, randomly
permute labelers with identical qualities to attain an order.

(b) St = {l(1), l(2), l(k)}, where k is randomly sampled from the set {3, . . . ,M}.
(c) For candidate = 3 . . .M, j �= k

i. l+ :=∑
St
1[Vlt=1

] and l− :=∑
St
1[Vlt=−1

]
ii. lcurrent_maj = max(l+, l−)

iii. Majority_Is =
⌈

M
2

⌉
iv. Num_Needed_For_Majority = Majority_Is - lcurrent_maj

v. Score =
[∑Nunvoted

X=Nneeded
Bin(X, Nunvoted, 0.5)

]
− 0.5

vi. If Score < ε then St = St ∪ l(candidate) Else Don’t need more labelers, break out of loop
(d) End
(e) ŷ = 1− 21[|l−|>|l+|]
(f) ∀i ∈ St where Vit = ŷ, ait ← ait + 1
(g) ∀i ∈ St , cit ← cit + 1

4. End

10 Comparative experiments with CrowdSense, CrowdSense.Ind and
CrowdSense.Bin

We generated two datasets that simulate small and large crowds with synthetically
generated labelers; a precedent for using synthetically generated “radiologist” labelers
is provided by Raykar et al. (2010). For the large crowd dataset, we simulated labelers
from the (50, 90 %] accuracy range. Starting from accuracy 90 % and one labeler,
we reduce the required accuracy by 2 % while increasing the number of labelers to
generate by 2. That is, we generate 3 labelers with accuracy 88 %, 5 labelers with
accuracy 86 %, etc. for a total of 401 labelers. For the small crowd dataset, there are
a total of 7 labelers with approximately equal qualities that are as low as possible.
Since the labeler accuracies are determined by the majority vote of the crowd, it is
not possible to have all labelers vote with accuracy very close to 50 %; the variance
among the labeler accuracies reaches the minimum when the accuracies of the labelers
are around 65 %. Both the small and large crowd datasets have 50,000 examples. The
large crowd dataset enables us to assess the statistical independence approximation for
the labelers in CrowdSense.Ind, whereas the small crowd dataset can help us validate
setting a lower bound on how often the current subcrowd agrees with the majority vote
in CrowdSense.Bin.

We show the breakdown of the labelers’ accuracies in Fig. 9. We also present the
tradeoff curves for CrowdSense, CrowdSense.Ind, CrowdSense.Bin and IE Thresh in
Fig. 10. In most experiments, CrowdSense achieves better performance than Crowd-
Sense.Ind and CrowdSense.Bin. On the other hand, the results on the simulated
datasets show that CrowdSense.Ind and CrowdSense.Bin perform as well as, and
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Fig. 9 Accuracy and labeler distribution of simulated datasets with large and small crowds. N and M denote
the number of examples and the labelers in each dataset, respectively

sometimes better, than CrowdSense in simulated large and small crowds, respec-
tively. In accordance with its derivation, the statistical independence approximation
of CrowdSense.Ind can be valid for large crowds, but does not necessarily hold of
small crowds. This behavior is observed in Fig. 10, where CrowdSense.Ind yields the
highest accuracy for the large crowd, but performs poorly in the small crowd case.
Conversely, CrowdSense.Bin mostly outperforms all other approaches in the small
crowd case by favoring labelers with high accuracy, but lags the other CrowdSense
variants on the large crowd dataset.

11 Conclusions

Our goal is to “approximate the crowd,” that is, to estimate the crowd’s majority
vote by asking only certain members of it to vote. This problem appears frequently
in answer services applications and polling. We discussed exploration/exploitation
in this context, specifically, exploration for estimating the qualities of the labelers,
and exploitation (that is, repeatedly using the best labelers) for obtaining a good esti-
mate of the crowd’s majority vote. We presented a modular outline that CrowdSense
follows, which is that a small pool of labelers vote initially, then labelers are added
incrementally until the estimate of the majority is sufficiently certain, then a weighted
majority vote is taken as the overall prediction. We compared our results to several
baselines, indicating that CrowdSense, and the overall exploration/exploitation ideas
behind it, can be useful for approximating the crowd. We then presented two varia-
tions of CrowdSense, namely CrowdSense.Ind, which is based on an independence
approximation, and CrowdSense.Bin, where calculations are based on the binomial
distribution. These two algorithms make probabilistic approximations or bounds on
the joint distribution of the votes, and depending on the crowd they can potentially
perform better than CrowdSense as shown in our experiments.
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Fig. 10 Tradeoff curves for all datasets at comparable ε values. We used K = 10 for CrowdSense and
variants, and initialized all algorithms with 4 examples as the gold standard data
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