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Introduction
We present a new statistical model for predicting discrete
events continuously in time, called Reactive Point Processes
(RPP’s). RPP’s are a natural fit for many domains where
time-series data are available, and their development was
motivated by the important problem of predicting serious
events (fires, explosions, power failures) in the underground
electrical grid of New York City (NYC). RPP’s capture sev-
eral important properties of this domain:

• There is an instantaneous rise in vulnerability to future
serious events immediately following an occurrence of a
past serious event, and this rise in vulnerability gradually
fades back to the baseline level. This is a type of self-
exciting property.

• There is an instantaneous decrease in vulnerability due to
an inspection or repair. The effect of this inspection fades
gradually over time. This is a self-regulating property.

• The cumulative effect of events or inspections can satu-
rate, ensuring that vulnerability levels never stray too far
beyond their baseline level. This captures diminishing re-
turns of many events or inspections in a row.

RPP’s are related to Hawkes processes (Hawkes 1971a;
1971b), and more specifically, self-exciting point processes
(SEPP). Demonstrated to be highly effective for earthquake
modeling (Ogata 1988; 1998), SEPP have been used in a
vast array of domains, including criminology (Mohler et al.
2011), neuroscience (Krumin, Reutsky, and Shoham 2010)
and social networks (Crane and Sornette 2008). A common
theme in these applications is that the likelihood of an event
at a certain time is probabilistically dependent on earlier
events, even after controlling for covariates. RPP’s extend
these models to a much broader array of settings where ex-
ternal events can cause vulnerability levels to drop or where
diminishing returns can occur.

We apply RPP’s to the critical problem of predicting
power failures in New York City using data from a large-
scale ongoing collaboration with Con Edison, New York
City’s power utility company (Rudin et al. 2010; 2012).
Manholes are access points to NYC’s underground electri-
cal grid, and we have features of each manhole that can be
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useful in predicting vulnerability to serious events such as
manhole fires and explosions, which can cause power fail-
ures. The RPP model takes into account past events that are
correlated with increased future vulnerability, past inspec-
tions that reduce future risk, and also the manhole’s charac-
teristics (e.g., number and age of cables entering the man-
hole). The dataset is comprised of processed trouble tickets,
inspection reports, and cable information for all manholes in
Manhattan (total 213,504 records for 53,525 manholes). We
have data from the year 1995 up to and including 2010.

Model
Our approach models events as being generated from a non-
homogenous Poisson process for entity (manhole) j with in-
tensity λj(t) where

λj(t) = λ0

[
1+g1

( ∑
∀te<t

g2(t− te)

)

− g3

( ∑
∀t̄i<t

g4(t− t̄i)

)
+ c11[N(τ)≥1]

]
where te are event times and t̄i are inspection times. λ0 de-
notes the baseline vulnerability. The vulnerability level per-
manently goes up by c1 if the number of events on the in-
terval [0, τ ], N(τ), is more than zero. The constant c1 can
be fitted from the observed data. Functions g2 and g4 are the
self-excitation and self-regulation functions, which have ini-
tially large amplitudes and fade over time. Note that SEPP’s
have only g2, and not the other functions. Functions g1 and
g3 are the saturation functions, which start out as the iden-
tity function and then flatten farther from the origin. If the
total sum of the excitation terms is large, g1 will prevent the
vulnerability level from increasing too much. Similarly, g3

controls the total possible amount of self-regulation.
For the electrical grid data, we used a family of functions

of the form

g1(x) = a11 ×
(
1− log(1 + e−a11x)

log(2)

)
, g2(x) =

1

1 + eβx

g3(x) = −a31 ×
(
1− log(1 + e−a32x)

log(2)

)
, g4(x) =

−1

1 + e−γx
,

where a11, a12, a31, a32, β, and γ are parameters that can be
either constant across all manholes, or can be adapted based
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Figure 1: Results for the Manhattan Dataset. Figures 1(a) and 1(b) show the fitted functions for the Manhattan dataset from
Case Control. Figures 1(c) and 1(d) show the KL Divergence from ABC and the Log-Likelihood, respectively.

on the manhole’s features. For instance, our experimental
analysis covers both constant β across all manholes as well
as an adaptive β, modeled for manhole k as:

βk = log
(

1 + e−
∑n

i=1 θifik
)

where θi is the coefficient of feature i and fik is the value of
feature i for manhole k. For our dataset, the features include
the number of main phase cables, age of the oldest cable,
and the total number of cable sets inside the manhole.

Model Fitting and Experiments
We will introduce several methods for fitting RPP’s below.
To verify that the methods are working properly, we used
simulated data where ground truth was available (not shown
here) to demonstrate that the underlying function could be
recovered.

Case Control
The Case Control method allows us to nonparametrically
trace out the shapes of g1, g2, g3, and g4, using only rele-
vant manholes to estimate specific points of each function.
Figures 1(a) and 1(b) show g2 and g1 from Manhattan man-
holes, traced out (in blue) using the Case Control method,
and parameterized (in red) afterwards. For the g1 curve, the
range of observed

∑
g2 values in the data was discretized

into equal sized bins, and the likelihood of an event if the
sum value falls within the range of a bin was used to fit g1.

Bayesian and Maximum Likelihood Approaches
The Case Control method is useful for finding parameteriza-
tions of the functions, but there are not enough data to permit
its use when we would like to customize g1, g2, g3, and g4 to
each individual manhole. Based on insights gleaned from the
Case Control method we explore both Bayesian and Maxi-
mum Likelihood approaches to model fitting.

For our Bayesian approach, we use the model for the βk’s
with covariates described above, where each coefficient has
a Gaussian prior distribution. We fit the model using Ap-
proximate Bayesian Computation (ABC). To do this, we
evaluated the suitability of simulated data generated using
a given candidate parameter via two statistics, one consist-
ing of the number of events and another related to the dis-
tribution of time between events. Since RPP’s model associ-
ation between event times, the second statistic is important.

We use KL Divergence to measure differences in the dis-
tribution of time between events for the observed data and
the distribution of time between events generated using our
candidate parameter values. In Figure 1(c) the blue bound-
ary corresponds to the region that yields the minimum diver-
gence, and the optimum parameter values can be derived by
fitting a manifold on that region.

We also experimented with model fitting using Maximum
Likelihood techniques. Figure 1(d) demonstrates the region
of maximum likelihood (shown in dark red), where the sim-
ulated vulnerabilities are in closest proximity of actual vul-
nerabilities.

Prediction Performance Evaluation

We assessed the predictive performance of our RPP model
by comparing it against Cox Proportional Hazards Model
(Cox 1972), which is a commonly used technique in sur-
vival analysis. We trained both an RPP model and a Cox
model (available in the survival package in R) on the histor-
ical event records up to the year 2010 and used the models
to predict vulnerabilities of each manhole on each day of
2010. We then generated a ranked list of manholes for each
day with the most vulnerable manhole ranked at the top. For
each manhole that had an event during a day, we compared
the rank of that manhole in the two ranked lists. Aggregated
over days in 2010 where an event was recorded, the RPP
model ranked the manholes with events significantly higher
than the Cox model in its lists, indicating that the RPP model
more accurately measures short term vulnerabilities.

Understanding the Impact of Inspection Policies

Beyond identifying the vulnerable manholes to be targeted
for repair and inspection, we used the RPP model to sim-
ulate the effect of different broad inspection policies. Our
simulations show that there is a natural inverse relationship
between the number of events and the number of inspec-
tions: more inspections lead to fewer events. Using our sim-
ulations, we can quantify an optimal trade off between the
anticipated number of events and the cost of inspections.
This can assist Con Edison to make decisions between can-
didate inspection policies.
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