This error suggests that the expression arm corresponding to the noted pattern will never be reached as for all possible values of the expression being matched, one of the preceding patterns will match.
This means that perhaps some of the preceding patterns are too general, this one is too specific or the ordering is incorrect.
For example, the following match
block has too many arms:
match Some(0) { Some(bar) => {/* ... */} x => {/* ... */} // This handles the `None` case _ => {/* ... */} // All possible cases have already been handled }Run
match
blocks have their patterns matched in order, so, for example, putting
a wildcard arm above a more specific arm will make the latter arm irrelevant.
Ensure the ordering of the match arm is correct and remove any superfluous arms.
This error indicates that an empty match expression is invalid because the type it is matching on is non-empty (there exist values of this type). In safe code it is impossible to create an instance of an empty type, so empty match expressions are almost never desired. This error is typically fixed by adding one or more cases to the match expression.
An example of an empty type is enum Empty { }
. So, the following will work:
enum Empty {} fn foo(x: Empty) { match x { // empty } }Run
However, this won't:
fn foo(x: Option<String>) { match x { // empty } }Run
Not-a-Number (NaN) values cannot be compared for equality and hence can never match the input to a match expression. So, the following will not compile:
const NAN: f32 = 0.0 / 0.0; let number = 0.1f32; match number { NAN => { /* ... */ }, _ => {} }Run
To match against NaN values, you should instead use the is_nan()
method in a
guard, like so:
let number = 0.1f32; match number { x if x.is_nan() => { /* ... */ } _ => {} }Run
This error indicates that the compiler cannot guarantee a matching pattern for one or more possible inputs to a match expression. Guaranteed matches are required in order to assign values to match expressions, or alternatively, determine the flow of execution. Erroneous code example:
enum Terminator { HastaLaVistaBaby, TalkToMyHand, } let x = Terminator::HastaLaVistaBaby; match x { // error: non-exhaustive patterns: `HastaLaVistaBaby` not covered Terminator::TalkToMyHand => {} }Run
If you encounter this error you must alter your patterns so that every possible
value of the input type is matched. For types with a small number of variants
(like enums) you should probably cover all cases explicitly. Alternatively, the
underscore _
wildcard pattern can be added after all other patterns to match
"anything else". Example:
enum Terminator { HastaLaVistaBaby, TalkToMyHand, } let x = Terminator::HastaLaVistaBaby; match x { Terminator::TalkToMyHand => {} Terminator::HastaLaVistaBaby => {} } // or: match x { Terminator::TalkToMyHand => {} _ => {} }Run
Patterns used to bind names must be irrefutable, that is, they must guarantee that a name will be extracted in all cases. Erroneous code example:
let x = Some(1); let Some(y) = x; // error: refutable pattern in local binding: `None` not coveredRun
If you encounter this error you probably need to use a match
or if let
to
deal with the possibility of failure. Example:
let x = Some(1); match x { Some(y) => { // do something }, None => {} } // or: if let Some(y) = x { // do something }Run
This error indicates that the bindings in a match arm would require a value to
be moved into more than one location, thus violating unique ownership. Code
like the following is invalid as it requires the entire Option<String>
to be
moved into a variable called op_string
while simultaneously requiring the
inner String
to be moved into a variable called s
.
let x = Some("s".to_string()); match x { op_string @ Some(s) => {}, // error: cannot bind by-move with sub-bindings None => {}, }Run
See also the error E0303.
Names bound in match arms retain their type in pattern guards. As such, if a name is bound by move in a pattern, it should also be moved to wherever it is referenced in the pattern guard code. Doing so however would prevent the name from being available in the body of the match arm. Consider the following:
match Some("hi".to_string()) { Some(s) if s.len() == 0 => {}, // use s. _ => {}, }Run
The variable s
has type String
, and its use in the guard is as a variable of
type String
. The guard code effectively executes in a separate scope to the
body of the arm, so the value would be moved into this anonymous scope and
therefore becomes unavailable in the body of the arm.
The problem above can be solved by using the ref
keyword.
match Some("hi".to_string()) { Some(ref s) if s.len() == 0 => {}, _ => {}, }Run
Though this example seems innocuous and easy to solve, the problem becomes clear when it encounters functions which consume the value:
struct A{} impl A { fn consume(self) -> usize { 0 } } fn main() { let a = Some(A{}); match a { Some(y) if y.consume() > 0 => {} _ => {} } }Run
In this situation, even the ref
keyword cannot solve it, since borrowed
content cannot be moved. This problem cannot be solved generally. If the value
can be cloned, here is a not-so-specific solution:
#[derive(Clone)] struct A{} impl A { fn consume(self) -> usize { 0 } } fn main() { let a = Some(A{}); match a{ Some(ref y) if y.clone().consume() > 0 => {} _ => {} } }Run
If the value will be consumed in the pattern guard, using its clone will not move its ownership, so the code works.
In a pattern, all values that don't implement the Copy
trait have to be bound
the same way. The goal here is to avoid binding simultaneously by-move and
by-ref.
This limitation may be removed in a future version of Rust.
Erroneous code example:
struct X { x: (), } let x = Some((X { x: () }, X { x: () })); match x { Some((y, ref z)) => {}, // error: cannot bind by-move and by-ref in the // same pattern None => panic!() }Run
You have two solutions:
Solution #1: Bind the pattern's values the same way.
struct X { x: (), } let x = Some((X { x: () }, X { x: () })); match x { Some((ref y, ref z)) => {}, // or Some((y, z)) => {} None => panic!() }Run
Solution #2: Implement the Copy
trait for the X
structure.
However, please keep in mind that the first solution should be preferred.
#[derive(Clone, Copy)] struct X { x: (), } let x = Some((X { x: () }, X { x: () })); match x { Some((y, ref z)) => {}, None => panic!() }Run
The value of statics and constants must be known at compile time, and they live for the entire lifetime of a program. Creating a boxed value allocates memory on the heap at runtime, and therefore cannot be done at compile time. Erroneous code example:
#![feature(box_syntax)] const CON : Box<i32> = box 0;Run
Static and const variables can refer to other const variables. But a const
variable cannot refer to a static variable. For example, Y
cannot refer to
X
here:
static X: i32 = 42; const Y: i32 = X;Run
To fix this, the value can be extracted as a const and then used:
const A: i32 = 42; static X: i32 = A; const Y: i32 = A;Run
The only functions that can be called in static or constant expressions are
const
functions, and struct/enum constructors. const
functions are only
available on a nightly compiler. Rust currently does not support more general
compile-time function execution.
const FOO: Option<u8> = Some(1); // enum constructor struct Bar {x: u8} const BAR: Bar = Bar {x: 1}; // struct constructorRun
See RFC 911 for more details on the design of const fn
s.
Blocks in constants may only contain items (such as constant, function definition, etc...) and a tail expression. Erroneous code example:
const FOO: i32 = { let x = 0; x }; // 'x' isn't an item!Run
To avoid it, you have to replace the non-item object:
const FOO: i32 = { const X : i32 = 0; X };Run
References in statics and constants may only refer to immutable values. Erroneous code example:
static X: i32 = 1; const C: i32 = 2; // these three are not allowed: const CR: &'static mut i32 = &mut C; static STATIC_REF: &'static mut i32 = &mut X; static CONST_REF: &'static mut i32 = &mut C;Run
Statics are shared everywhere, and if they refer to mutable data one might violate memory safety since holding multiple mutable references to shared data is not allowed.
If you really want global mutable state, try using static mut
or a global
UnsafeCell
.
The value of static and constant integers must be known at compile time. You can't cast a pointer to an integer because the address of a pointer can vary.
For example, if you write:
static MY_STATIC: u32 = 42; static MY_STATIC_ADDR: usize = &MY_STATIC as *const _ as usize; static WHAT: usize = (MY_STATIC_ADDR^17) + MY_STATIC_ADDR;Run
Then MY_STATIC_ADDR
would contain the address of MY_STATIC
. However,
the address can change when the program is linked, as well as change
between different executions due to ASLR, and many linkers would
not be able to calculate the value of WHAT
.
On the other hand, static and constant pointers can point either to a known numeric address or to the address of a symbol.
static MY_STATIC: u32 = 42; static MY_STATIC_ADDR: &'static u32 = &MY_STATIC; const CONST_ADDR: *const u8 = 0x5f3759df as *const u8;Run
This does not pose a problem by itself because they can't be accessed directly.
A function call isn't allowed in the const's initialization expression because the expression's value must be known at compile-time. Erroneous code example:
enum Test { V1 } impl Test { fn test(&self) -> i32 { 12 } } fn main() { const FOO: Test = Test::V1; const A: i32 = FOO.test(); // You can't call Test::func() here! }Run
Remember: you can't use a function call inside a const's initialization expression! However, you can totally use it anywhere else:
enum Test { V1 } impl Test { fn func(&self) -> i32 { 12 } } fn main() { const FOO: Test = Test::V1; FOO.func(); // here is good let x = FOO.func(); // or even here! }Run
This error indicates that an attempt was made to divide by zero (or take the remainder of a zero divisor) in a static or constant expression. Erroneous code example:
#[deny(const_err)] const X: i32 = 42 / 0; // error: attempt to divide by zero in a constant expressionRun
Constant functions are not allowed to mutate anything. Thus, binding to an argument with a mutable pattern is not allowed. For example,
const fn foo(mut x: u8) { // do stuff }Run
Is incorrect because the function body may not mutate x
.
Remove any mutable bindings from the argument list to fix this error. In case
you need to mutate the argument, try lazily initializing a global variable
instead of using a const fn
, or refactoring the code to a functional style to
avoid mutation if possible.
A pattern used to match against an enum variant must provide a sub-pattern for each field of the enum variant. This error indicates that a pattern attempted to extract an incorrect number of fields from a variant.
enum Fruit { Apple(String, String), Pear(u32), }Run
Here the Apple
variant has two fields, and should be matched against like so:
enum Fruit { Apple(String, String), Pear(u32), } let x = Fruit::Apple(String::new(), String::new()); // Correct. match x { Fruit::Apple(a, b) => {}, _ => {} }Run
Matching with the wrong number of fields has no sensible interpretation:
enum Fruit { Apple(String, String), Pear(u32), } let x = Fruit::Apple(String::new(), String::new()); // Incorrect. match x { Fruit::Apple(a) => {}, Fruit::Apple(a, b, c) => {}, }Run
Check how many fields the enum was declared with and ensure that your pattern uses the same number.
Each field of a struct can only be bound once in a pattern. Erroneous code example:
struct Foo { a: u8, b: u8, } fn main(){ let x = Foo { a:1, b:2 }; let Foo { a: x, a: y } = x; // error: field `a` bound multiple times in the pattern }Run
Each occurrence of a field name binds the value of that field, so to fix this error you will have to remove or alter the duplicate uses of the field name. Perhaps you misspelled another field name? Example:
struct Foo { a: u8, b: u8, } fn main(){ let x = Foo { a:1, b:2 }; let Foo { a: x, b: y } = x; // ok! }Run
This error indicates that a struct pattern attempted to extract a non-existent
field from a struct. Struct fields are identified by the name used before the
colon :
so struct patterns should resemble the declaration of the struct type
being matched.
// Correct matching. struct Thing { x: u32, y: u32 } let thing = Thing { x: 1, y: 2 }; match thing { Thing { x: xfield, y: yfield } => {} }Run
If you are using shorthand field patterns but want to refer to the struct field by a different name, you should rename it explicitly.
Change this:
struct Thing { x: u32, y: u32 } let thing = Thing { x: 0, y: 0 }; match thing { Thing { x, z } => {} }Run
To this:
struct Thing { x: u32, y: u32 } let thing = Thing { x: 0, y: 0 }; match thing { Thing { x, y: z } => {} }Run
This error indicates that a pattern for a struct fails to specify a sub-pattern
for every one of the struct's fields. Ensure that each field from the struct's
definition is mentioned in the pattern, or use ..
to ignore unwanted fields.
For example:
struct Dog { name: String, age: u32, } let d = Dog { name: "Rusty".to_string(), age: 8 }; // This is incorrect. match d { Dog { age: x } => {} }Run
This is correct (explicit):
struct Dog { name: String, age: u32, } let d = Dog { name: "Rusty".to_string(), age: 8 }; match d { Dog { name: ref n, age: x } => {} } // This is also correct (ignore unused fields). match d { Dog { age: x, .. } => {} }Run
In a match expression, only numbers and characters can be matched against a range. This is because the compiler checks that the range is non-empty at compile-time, and is unable to evaluate arbitrary comparison functions. If you want to capture values of an orderable type between two end-points, you can use a guard.
let string = "salutations !"; // The ordering relation for strings can't be evaluated at compile time, // so this doesn't work: match string { "hello" ... "world" => {} _ => {} } // This is a more general version, using a guard: match string { s if s >= "hello" && s <= "world" => {} _ => {} }Run
When matching against a range, the compiler verifies that the range is non-empty. Range patterns include both end-points, so this is equivalent to requiring the start of the range to be less than or equal to the end of the range.
For example:
match 5u32 { // This range is ok, albeit pointless. 1 ... 1 => {} // This range is empty, and the compiler can tell. 1000 ... 5 => {} }Run
This error indicates that a pointer to a trait type cannot be implicitly dereferenced by a pattern. Every trait defines a type, but because the size of trait implementors isn't fixed, this type has no compile-time size. Therefore, all accesses to trait types must be through pointers. If you encounter this error you should try to avoid dereferencing the pointer.
let trait_obj: &SomeTrait = &"some_value"; // This tries to implicitly dereference to create an unsized local variable. let &invalid = trait_obj; // You can call methods without binding to the value being pointed at. trait_obj.method_one(); trait_obj.method_two();Run
You can read more about trait objects in the Trait Objects section of the Reference.
The compiler doesn't know what method to call because more than one method has the same prototype. Erroneous code example:
struct Test; trait Trait1 { fn foo(); } trait Trait2 { fn foo(); } impl Trait1 for Test { fn foo() {} } impl Trait2 for Test { fn foo() {} } fn main() { Test::foo() // error, which foo() to call? }Run
To avoid this error, you have to keep only one of them and remove the others. So let's take our example and fix it:
struct Test; trait Trait1 { fn foo(); } impl Trait1 for Test { fn foo() {} } fn main() { Test::foo() // and now that's good! }Run
However, a better solution would be using fully explicit naming of type and trait:
struct Test; trait Trait1 { fn foo(); } trait Trait2 { fn foo(); } impl Trait1 for Test { fn foo() {} } impl Trait2 for Test { fn foo() {} } fn main() { <Test as Trait1>::foo() }Run
One last example:
trait F { fn m(&self); } trait G { fn m(&self); } struct X; impl F for X { fn m(&self) { println!("I am F"); } } impl G for X { fn m(&self) { println!("I am G"); } } fn main() { let f = X; F::m(&f); // it displays "I am F" G::m(&f); // it displays "I am G" }Run
Trait objects like Box<Trait>
can only be constructed when certain
requirements are satisfied by the trait in question.
Trait objects are a form of dynamic dispatch and use a dynamically sized type
for the inner type. So, for a given trait Trait
, when Trait
is treated as a
type, as in Box<Trait>
, the inner type is 'unsized'. In such cases the boxed
pointer is a 'fat pointer' that contains an extra pointer to a table of methods
(among other things) for dynamic dispatch. This design mandates some
restrictions on the types of traits that are allowed to be used in trait
objects, which are collectively termed as 'object safety' rules.
Attempting to create a trait object for a non object-safe trait will trigger this error.
There are various rules:
Self: Sized
When Trait
is treated as a type, the type does not implement the special
Sized
trait, because the type does not have a known size at compile time and
can only be accessed behind a pointer. Thus, if we have a trait like the
following:
trait Foo where Self: Sized { }Run
We cannot create an object of type Box<Foo>
or &Foo
since in this case
Self
would not be Sized
.
Generally, Self : Sized
is used to indicate that the trait should not be used
as a trait object. If the trait comes from your own crate, consider removing
this restriction.
Self
type in its arguments or return typeThis happens when a trait has a method like the following:
trait Trait { fn foo(&self) -> Self; } impl Trait for String { fn foo(&self) -> Self { "hi".to_owned() } } impl Trait for u8 { fn foo(&self) -> Self { 1 } }Run
(Note that &self
and &mut self
are okay, it's additional Self
types which
cause this problem.)
In such a case, the compiler cannot predict the return type of foo()
in a
situation like the following:
trait Trait { fn foo(&self) -> Self; } fn call_foo(x: Box<Trait>) { let y = x.foo(); // What type is y? // ... }Run
If only some methods aren't object-safe, you can add a where Self: Sized
bound
on them to mark them as explicitly unavailable to trait objects. The
functionality will still be available to all other implementers, including
Box<Trait>
which is itself sized (assuming you impl Trait for Box<Trait>
).
trait Trait { fn foo(&self) -> Self where Self: Sized; // more functions }Run
Now, foo()
can no longer be called on a trait object, but you will now be
allowed to make a trait object, and that will be able to call any object-safe
methods. With such a bound, one can still call foo()
on types implementing
that trait that aren't behind trait objects.
As mentioned before, trait objects contain pointers to method tables. So, if we have:
trait Trait { fn foo(&self); } impl Trait for String { fn foo(&self) { // implementation 1 } } impl Trait for u8 { fn foo(&self) { // implementation 2 } } // ...Run
At compile time each implementation of Trait
will produce a table containing
the various methods (and other items) related to the implementation.
This works fine, but when the method gains generic parameters, we can have a problem.
Usually, generic parameters get monomorphized. For example, if I have
fn foo<T>(x: T) { // ... }Run
The machine code for foo::<u8>()
, foo::<bool>()
, foo::<String>()
, or any
other type substitution is different. Hence the compiler generates the
implementation on-demand. If you call foo()
with a bool
parameter, the
compiler will only generate code for foo::<bool>()
. When we have additional
type parameters, the number of monomorphized implementations the compiler
generates does not grow drastically, since the compiler will only generate an
implementation if the function is called with unparametrized substitutions
(i.e., substitutions where none of the substituted types are themselves
parametrized).
However, with trait objects we have to make a table containing every object that implements the trait. Now, if it has type parameters, we need to add implementations for every type that implements the trait, and there could theoretically be an infinite number of types.
For example, with:
trait Trait { fn foo<T>(&self, on: T); // more methods } impl Trait for String { fn foo<T>(&self, on: T) { // implementation 1 } } impl Trait for u8 { fn foo<T>(&self, on: T) { // implementation 2 } } // 8 more implementationsRun
Now, if we have the following code:
fn call_foo(thing: Box<Trait>) { thing.foo(true); // this could be any one of the 8 types above thing.foo(1); thing.foo("hello"); }Run
We don't just need to create a table of all implementations of all methods of
Trait
, we need to create such a table, for each different type fed to
foo()
. In this case this turns out to be (10 types implementing Trait
)*(3
types being fed to foo()
) = 30 implementations!
With real world traits these numbers can grow drastically.
To fix this, it is suggested to use a where Self: Sized
bound similar to the
fix for the sub-error above if you do not intend to call the method with type
parameters:
trait Trait { fn foo<T>(&self, on: T) where Self: Sized; // more methods }Run
If this is not an option, consider replacing the type parameter with another
trait object (e.g. if T: OtherTrait
, use on: Box<OtherTrait>
). If the number
of types you intend to feed to this method is limited, consider manually listing
out the methods of different types.
Methods that do not take a self
parameter can't be called since there won't be
a way to get a pointer to the method table for them.
trait Foo { fn foo() -> u8; }Run
This could be called as <Foo as Foo>::foo()
, which would not be able to pick
an implementation.
Adding a Self: Sized
bound to these methods will generally make this compile.
trait Foo { fn foo() -> u8 where Self: Sized; }Run
Just like static functions, associated constants aren't stored on the method table. If the trait or any subtrait contain an associated constant, they cannot be made into an object.
trait Foo { const X: i32; } impl Foo {}Run
A simple workaround is to use a helper method instead:
trait Foo { fn x(&self) -> i32; }Run
Self
as a type parameter in the supertrait listingThis is similar to the second sub-error, but subtler. It happens in situations like the following:
trait Super<A> {} trait Trait: Super<Self> { } struct Foo; impl Super<Foo> for Foo{} impl Trait for Foo {}Run
Here, the supertrait might have methods as follows:
trait Super<A> { fn get_a(&self) -> A; // note that this is object safe! }Run
If the trait Foo
was deriving from something like Super<String>
or
Super<T>
(where Foo
itself is Foo<T>
), this is okay, because given a type
get_a()
will definitely return an object of that type.
However, if it derives from Super<Self>
, even though Super
is object safe,
the method get_a()
would return an object of unknown type when called on the
function. Self
type parameters let us make object safe traits no longer safe,
so they are forbidden when specifying supertraits.
There's no easy fix for this, generally code will need to be refactored so that
you no longer need to derive from Super<Self>
.
It is not allowed to manually call destructors in Rust. It is also not
necessary to do this since drop
is called automatically whenever a value goes
out of scope.
Here's an example of this error:
struct Foo { x: i32, } impl Drop for Foo { fn drop(&mut self) { println!("kaboom"); } } fn main() { let mut x = Foo { x: -7 }; x.drop(); // error: explicit use of destructor method }Run
You can't use type parameters on foreign items. Example of erroneous code:
extern { fn some_func<T>(x: T); }Run
To fix this, replace the type parameter with the specializations that you need:
extern { fn some_func_i32(x: i32); } extern { fn some_func_i64(x: i64); }Run
Rust only supports variadic parameters for interoperability with C code in its FFI. As such, variadic parameters can only be used with functions which are using the C ABI. Examples of erroneous code:
#![feature(unboxed_closures)] extern "rust-call" { fn foo(x: u8, ...); } // or fn foo(x: u8, ...) {}Run
To fix such code, put them in an extern "C" block:
extern "C" { fn foo (x: u8, ...); }Run
Items are missing in a trait implementation. Erroneous code example:
trait Foo { fn foo(); } struct Bar; impl Foo for Bar {} // error: not all trait items implemented, missing: `foo`Run
When trying to make some type implement a trait Foo
, you must, at minimum,
provide implementations for all of Foo
's required methods (meaning the
methods that do not have default implementations), as well as any required
trait items like associated types or constants. Example:
trait Foo { fn foo(); } struct Bar; impl Foo for Bar { fn foo() {} // ok! }Run
This error indicates that an attempted implementation of a trait method has the wrong number of type parameters.
For example, the trait below has a method foo
with a type parameter T
,
but the implementation of foo
for the type Bar
is missing this parameter:
trait Foo { fn foo<T: Default>(x: T) -> Self; } struct Bar; // error: method `foo` has 0 type parameters but its trait declaration has 1 // type parameter impl Foo for Bar { fn foo(x: bool) -> Self { Bar } }Run
This error indicates that an attempted implementation of a trait method has the wrong number of function parameters.
For example, the trait below has a method foo
with two function parameters
(&self
and u8
), but the implementation of foo
for the type Bar
omits
the u8
parameter:
trait Foo { fn foo(&self, x: u8) -> bool; } struct Bar; // error: method `foo` has 1 parameter but the declaration in trait `Foo::foo` // has 2 impl Foo for Bar { fn foo(&self) -> bool { true } }Run
The parameters of any trait method must match between a trait implementation and the trait definition.
Here are a couple examples of this error:
trait Foo { fn foo(x: u16); fn bar(&self); } struct Bar; impl Foo for Bar { // error, expected u16, found i16 fn foo(x: i16) { } // error, types differ in mutability fn bar(&mut self) { } }Run
It is not allowed to cast to a bool. If you are trying to cast a numeric type to a bool, you can compare it with zero instead:
let x = 5; // Not allowed, won't compile let x_is_nonzero = x as bool;Run
let x = 5; // Ok let x_is_nonzero = x != 0;Run
During a method call, a value is automatically dereferenced as many times as
needed to make the value's type match the method's receiver. The catch is that
the compiler will only attempt to dereference a number of times up to the
recursion limit (which can be set via the recursion_limit
attribute).
For a somewhat artificial example:
#![recursion_limit="2"] struct Foo; impl Foo { fn foo(&self) {} } fn main() { let foo = Foo; let ref_foo = &&Foo; // error, reached the recursion limit while auto-dereferencing &&Foo ref_foo.foo(); }Run
One fix may be to increase the recursion limit. Note that it is possible to create an infinite recursion of dereferencing, in which case the only fix is to somehow break the recursion.
When invoking closures or other implementations of the function traits Fn
,
FnMut
or FnOnce
using call notation, the number of parameters passed to the
function must match its definition.
An example using a closure:
let f = |x| x * 3; let a = f(); // invalid, too few parameters let b = f(4); // this works! let c = f(2, 3); // invalid, too many parametersRun
A generic function must be treated similarly:
fn foo<F: Fn()>(f: F) { f(); // this is valid, but f(3) would not work }Run
The built-in function traits are generic over a tuple of the function arguments.
If one uses angle-bracket notation (Fn<(T,), Output=U>
) instead of parentheses
(Fn(T) -> U
) to denote the function trait, the type parameter should be a
tuple. Otherwise function call notation cannot be used and the trait will not be
implemented by closures.
The most likely source of this error is using angle-bracket notation without wrapping the function argument type into a tuple, for example:
#![feature(unboxed_closures)] fn foo<F: Fn<i32>>(f: F) -> F::Output { f(3) }Run
It can be fixed by adjusting the trait bound like this:
#![feature(unboxed_closures)] fn foo<F: Fn<(i32,)>>(f: F) -> F::Output { f(3) }Run
Note that (T,)
always denotes the type of a 1-tuple containing an element of
type T
. The comma is necessary for syntactic disambiguation.
External C functions are allowed to be variadic. However, a variadic function
takes a minimum number of arguments. For example, consider C's variadic printf
function:
use std::os::raw::{c_char, c_int}; extern "C" { fn printf(_: *const c_char, ...) -> c_int; }Run
Using this declaration, it must be called with at least one argument, so
simply calling printf()
is invalid. But the following uses are allowed:
unsafe { use std::ffi::CString; let fmt = CString::new("test\n").unwrap(); printf(fmt.as_ptr()); let fmt = CString::new("number = %d\n").unwrap(); printf(fmt.as_ptr(), 3); let fmt = CString::new("%d, %d\n").unwrap(); printf(fmt.as_ptr(), 10, 5); }Run
The number of arguments passed to a function must match the number of arguments specified in the function signature.
For example, a function like:
fn f(a: u16, b: &str) {}Run
Must always be called with exactly two arguments, e.g. f(2, "test")
.
Note that Rust does not have a notion of optional function arguments or variadic functions (except for its C-FFI).
This error indicates that during an attempt to build a struct or struct-like enum variant, one of the fields was specified more than once. Erroneous code example:
struct Foo { x: i32, } fn main() { let x = Foo { x: 0, x: 0, // error: field `x` specified more than once }; }Run
Each field should be specified exactly one time. Example:
struct Foo { x: i32, } fn main() { let x = Foo { x: 0 }; // ok! }Run
This error indicates that during an attempt to build a struct or struct-like enum variant, one of the fields was not provided. Erroneous code example:
struct Foo { x: i32, y: i32, } fn main() { let x = Foo { x: 0 }; // error: missing field: `y` }Run
Each field should be specified exactly once. Example:
struct Foo { x: i32, y: i32, } fn main() { let x = Foo { x: 0, y: 0 }; // ok! }Run
Box placement expressions (like C++'s "placement new") do not yet support any
place expression except the exchange heap (i.e. std::boxed::HEAP
).
Furthermore, the syntax is changing to use in
instead of box
. See RFC 470
and RFC 809 for more details.
The left-hand side of a compound assignment expression must be a place expression. A place expression represents a memory location and includes item paths (ie, namespaced variables), dereferences, indexing expressions, and field references.
Let's start with some erroneous code examples:
use std::collections::LinkedList; // Bad: assignment to non-place expression LinkedList::new() += 1; // ... fn some_func(i: &mut i32) { i += 12; // Error : '+=' operation cannot be applied on a reference ! }Run
And now some working examples:
let mut i : i32 = 0; i += 12; // Good ! // ... fn some_func(i: &mut i32) { *i += 12; // Good ! }Run
The compiler found a function whose body contains a return;
statement but
whose return type is not ()
. An example of this is:
// error fn foo() -> u8 { return; }Run
Since return;
is just like return ();
, there is a mismatch between the
function's return type and the value being returned.
The left-hand side of an assignment operator must be a place expression. An place expression represents a memory location and can be a variable (with optional namespacing), a dereference, an indexing expression or a field reference.
More details can be found in the Expressions section of the Reference.
Now, we can go further. Here are some erroneous code examples:
struct SomeStruct { x: i32, y: i32 } const SOME_CONST : i32 = 12; fn some_other_func() {} fn some_function() { SOME_CONST = 14; // error : a constant value cannot be changed! 1 = 3; // error : 1 isn't a valid place! some_other_func() = 4; // error : we can't assign value to a function! SomeStruct.x = 12; // error : SomeStruct a structure name but it is used // like a variable! }Run
And now let's give working examples:
struct SomeStruct { x: i32, y: i32 } let mut s = SomeStruct {x: 0, y: 0}; s.x = 3; // that's good ! // ... fn some_func(x: &mut i32) { *x = 12; // that's good ! }Run
You tried to use structure-literal syntax to create an item that is not a structure or enum variant.
Example of erroneous code:
type U32 = u32; let t = U32 { value: 4 }; // error: expected struct, variant or union type, // found builtin type `u32`Run
To fix this, ensure that the name was correctly spelled, and that the correct form of initializer was used.
For example, the code above can be fixed to:
enum Foo { FirstValue(i32) } fn main() { let u = Foo::FirstValue(0i32); let t = 4; }Run
When defining a recursive struct or enum, any use of the type being defined
from inside the definition must occur behind a pointer (like Box
or &
).
This is because structs and enums must have a well-defined size, and without
the pointer, the size of the type would need to be unbounded.
Consider the following erroneous definition of a type for a list of bytes:
// error, invalid recursive struct type struct ListNode { head: u8, tail: Option<ListNode>, }Run
This type cannot have a well-defined size, because it needs to be arbitrarily
large (since we would be able to nest ListNode
s to any depth). Specifically,
size of `ListNode` = 1 byte for `head`
+ 1 byte for the discriminant of the `Option`
+ size of `ListNode`
One way to fix this is by wrapping ListNode
in a Box
, like so:
struct ListNode { head: u8, tail: Option<Box<ListNode>>, }Run
This works because Box
is a pointer, so its size is well-known.
You cannot define a struct (or enum) Foo
that requires an instance of Foo
in order to make a new Foo
value. This is because there would be no way a
first instance of Foo
could be made to initialize another instance!
Here's an example of a struct that has this problem:
struct Foo { x: Box<Foo> } // errorRun
One fix is to use Option
, like so:
struct Foo { x: Option<Box<Foo>> }Run
Now it's possible to create at least one instance of Foo
: Foo { x: None }
.
When using the #[simd]
attribute on a tuple struct, the components of the
tuple struct must all be of a concrete, nongeneric type so the compiler can
reason about how to use SIMD with them. This error will occur if the types
are generic.
This will cause an error:
#![feature(repr_simd)] #[repr(simd)] struct Bad<T>(T, T, T);Run
This will not:
#![feature(repr_simd)] #[repr(simd)] struct Good(u32, u32, u32);Run
The #[simd]
attribute can only be applied to non empty tuple structs, because
it doesn't make sense to try to use SIMD operations when there are no values to
operate on.
This will cause an error:
#![feature(repr_simd)] #[repr(simd)] struct Bad;Run
This will not:
#![feature(repr_simd)] #[repr(simd)] struct Good(u32);Run
When using the #[simd]
attribute to automatically use SIMD operations in tuple
struct, the types in the struct must all be of the same type, or the compiler
will trigger this error.
This will cause an error:
#![feature(repr_simd)] #[repr(simd)] struct Bad(u16, u32, u32);Run
This will not:
#![feature(repr_simd)] #[repr(simd)] struct Good(u32, u32, u32);Run
When using the #[simd]
attribute on a tuple struct, the elements in the tuple
must be machine types so SIMD operations can be applied to them.
This will cause an error:
#![feature(repr_simd)] #[repr(simd)] struct Bad(String);Run
This will not:
#![feature(repr_simd)] #[repr(simd)] struct Good(u32, u32, u32);Run
This error indicates that the compiler was unable to sensibly evaluate an constant expression that had to be evaluated. Attempting to divide by 0 or causing integer overflow are two ways to induce this error. For example:
enum Enum { X = (1 << 500), Y = (1 / 0) }Run
Ensure that the expressions given can be evaluated as the desired integer type. See the FFI section of the Reference for more information about using a custom integer type:
Enum discriminants are used to differentiate enum variants stored in memory. This error indicates that the same value was used for two or more variants, making them impossible to tell apart.
// Bad. enum Enum { P = 3, X = 3, Y = 5, }Run
// Good. enum Enum { P, X = 3, Y = 5, }Run
Note that variants without a manually specified discriminant are numbered from top to bottom starting from 0, so clashes can occur with seemingly unrelated variants.
enum Bad { X, Y = 0 }Run
Here X
will have already been specified the discriminant 0 by the time Y
is
encountered, so a conflict occurs.
When you specify enum discriminants with =
, the compiler expects isize
values by default. Or you can add the repr
attibute to the enum declaration
for an explicit choice of the discriminant type. In either cases, the
discriminant values must fall within a valid range for the expected type;
otherwise this error is raised. For example:
#[repr(u8)] enum Thing { A = 1024, B = 5, }Run
Here, 1024 lies outside the valid range for u8
, so the discriminant for A
is
invalid. Here is another, more subtle example which depends on target word size:
enum DependsOnPointerSize { A = 1 << 32, }Run
Here, 1 << 32
is interpreted as an isize
value. So it is invalid for 32 bit
target (target_pointer_width = "32"
) but valid for 64 bit target.
You may want to change representation types to fix this, or else change invalid discriminant values so that they fit within the existing type.
An unsupported representation was attempted on a zero-variant enum.
Erroneous code example:
#[repr(i32)] enum NightsWatch {} // error: unsupported representation for zero-variant enumRun
It is impossible to define an integer type to be used to represent zero-variant enum values because there are no zero-variant enum values. There is no way to construct an instance of the following type using only safe code. So you have two solutions. Either you add variants in your enum:
#[repr(i32)] enum NightsWatch { JonSnow, Commander, }Run
or you remove the integer represention of your enum:
enum NightsWatch {}Run
Too many type parameters were supplied for a function. For example:
fn foo<T>() {} fn main() { foo::<f64, bool>(); // error, expected 1 parameter, found 2 parameters }Run
The number of supplied parameters must exactly match the number of defined type parameters.
You gave too many lifetime parameters. Erroneous code example:
fn f() {} fn main() { f::<'static>() // error: too many lifetime parameters provided }Run
Please check you give the right number of lifetime parameters. Example:
fn f() {} fn main() { f() // ok! }Run
It's also important to note that the Rust compiler can generally determine the lifetime by itself. Example:
struct Foo { value: String } impl Foo { // it can be written like this fn get_value<'a>(&'a self) -> &'a str { &self.value } // but the compiler works fine with this too: fn without_lifetime(&self) -> &str { &self.value } } fn main() { let f = Foo { value: "hello".to_owned() }; println!("{}", f.get_value()); println!("{}", f.without_lifetime()); }Run
Not enough type parameters were supplied for a function. For example:
fn foo<T, U>() {} fn main() { foo::<f64>(); // error, expected 2 parameters, found 1 parameter }Run
Note that if a function takes multiple type parameters but you want the compiler to infer some of them, you can use type placeholders:
fn foo<T, U>(x: T) {} fn main() { let x: bool = true; foo::<f64>(x); // error, expected 2 parameters, found 1 parameter foo::<_, f64>(x); // same as `foo::<bool, f64>(x)` }Run
You gave too few lifetime parameters. Example:
fn foo<'a: 'b, 'b: 'a>() {} fn main() { foo::<'static>(); // error, expected 2 lifetime parameters }Run
Please check you give the right number of lifetime parameters. Example:
fn foo<'a: 'b, 'b: 'a>() {} fn main() { foo::<'static, 'static>(); }Run
You gave an unnecessary type parameter in a type alias. Erroneous code example:
type Foo<T> = u32; // error: type parameter `T` is unused // or: type Foo<A,B> = Box<A>; // error: type parameter `B` is unusedRun
Please check you didn't write too many type parameters. Example:
type Foo = u32; // ok! type Foo2<A> = Box<A>; // ok!Run
You tried to declare an undefined atomic operation function. Erroneous code example:
#![feature(intrinsics)] extern "rust-intrinsic" { fn atomic_foo(); // error: unrecognized atomic operation // function }Run
Please check you didn't make a mistake in the function's name. All intrinsic functions are defined in librustc_trans/trans/intrinsic.rs and in libcore/intrinsics.rs in the Rust source code. Example:
#![feature(intrinsics)] extern "rust-intrinsic" { fn atomic_fence(); // ok! }Run
You declared an unknown intrinsic function. Erroneous code example:
#![feature(intrinsics)] extern "rust-intrinsic" { fn foo(); // error: unrecognized intrinsic function: `foo` } fn main() { unsafe { foo(); } }Run
Please check you didn't make a mistake in the function's name. All intrinsic functions are defined in librustc_trans/trans/intrinsic.rs and in libcore/intrinsics.rs in the Rust source code. Example:
#![feature(intrinsics)] extern "rust-intrinsic" { fn atomic_fence(); // ok! } fn main() { unsafe { atomic_fence(); } }Run
You gave an invalid number of type parameters to an intrinsic function. Erroneous code example:
#![feature(intrinsics)] extern "rust-intrinsic" { fn size_of<T, U>() -> usize; // error: intrinsic has wrong number // of type parameters }Run
Please check that you provided the right number of type parameters and verify with the function declaration in the Rust source code. Example:
#![feature(intrinsics)] extern "rust-intrinsic" { fn size_of<T>() -> usize; // ok! }Run
This error indicates that a lifetime is missing from a type. If it is an error inside a function signature, the problem may be with failing to adhere to the lifetime elision rules (see below).
Here are some simple examples of where you'll run into this error:
struct Foo1 { x: &bool } // ^ expected lifetime parameter struct Foo2<'a> { x: &'a bool } // correct struct Bar1 { x: Foo2 } // ^^^^ expected lifetime parameter struct Bar2<'a> { x: Foo2<'a> } // correct enum Baz1 { A(u8), B(&bool), } // ^ expected lifetime parameter enum Baz2<'a> { A(u8), B(&'a bool), } // correct type MyStr1 = &str; // ^ expected lifetime parameter type MyStr2<'a> = &'a str; // correctRun
Lifetime elision is a special, limited kind of inference for lifetimes in function signatures which allows you to leave out lifetimes in certain cases. For more background on lifetime elision see the book.
The lifetime elision rules require that any function signature with an elided output lifetime must either have
&self
or &mut self
receiverIn the first case, the output lifetime is inferred to be the same as the unique
input lifetime. In the second case, the lifetime is instead inferred to be the
same as the lifetime on &self
or &mut self
.
Here are some examples of elision errors:
// error, no input lifetimes fn foo() -> &str { } // error, `x` and `y` have distinct lifetimes inferred fn bar(x: &str, y: &str) -> &str { } // error, `y`'s lifetime is inferred to be distinct from `x`'s fn baz<'a>(x: &'a str, y: &str) -> &str { }Run
Lifetime elision in implementation headers was part of the lifetime elision RFC. It is, however, currently unimplemented.
This error means that an incorrect number of lifetime parameters were provided for a type (like a struct or enum) or trait:
struct Foo<'a, 'b>(&'a str, &'b str); enum Bar { A, B, C } struct Baz<'a> { foo: Foo<'a>, // error: expected 2, found 1 bar: Bar<'a>, // error: expected 0, found 1 }Run
You tried to give a type parameter to a type which doesn't need it. Erroneous code example:
type X = u32<i32>; // error: type parameters are not allowed on this typeRun
Please check that you used the correct type and recheck its definition. Perhaps it doesn't need the type parameter.
Example:
type X = u32; // this compilesRun
Note that type parameters for enum-variant constructors go after the variant,
not after the enum (Option::None::<u32>
, not Option::<u32>::None
).
You tried to give a lifetime parameter to a type which doesn't need it. Erroneous code example:
type X = u32<'static>; // error: lifetime parameters are not allowed on // this typeRun
Please check that the correct type was used and recheck its definition; perhaps it doesn't need the lifetime parameter. Example:
type X = u32; // ok!Run
You can only define an inherent implementation for a type in the same crate
where the type was defined. For example, an impl
block as below is not allowed
since Vec
is defined in the standard library:
impl Vec<u8> { } // errorRun
To fix this problem, you can do either of these things:
Note that using the type
keyword does not work here because type
only
introduces a type alias:
type Bytes = Vec<u8>; impl Bytes { } // error, same as aboveRun
This error indicates a violation of one of Rust's orphan rules for trait implementations. The rule prohibits any implementation of a foreign trait (a trait defined in another crate) where
Here's one example of this error:
impl Drop for u32 {}Run
To avoid this kind of error, ensure that at least one local type is referenced
by the impl
:
pub struct Foo; // you define your type in your crate impl Drop for Foo { // and you can implement the trait on it! // code of trait implementation here } impl From<Foo> for i32 { // or you use a type from your crate as // a type parameter fn from(i: Foo) -> i32 { 0 } }Run
Alternatively, define a trait locally and implement that instead:
trait Bar { fn get(&self) -> usize; } impl Bar for u32 { fn get(&self) -> usize { 0 } }Run
For information on the design of the orphan rules, see RFC 1023.
You're trying to write an inherent implementation for something which isn't a struct nor an enum. Erroneous code example:
impl (u8, u8) { // error: no base type found for inherent implementation fn get_state(&self) -> String { // ... } }Run
To fix this error, please implement a trait on the type or wrap it in a struct. Example:
// we create a trait here trait LiveLongAndProsper { fn get_state(&self) -> String; } // and now you can implement it on (u8, u8) impl LiveLongAndProsper for (u8, u8) { fn get_state(&self) -> String { "He's dead, Jim!".to_owned() } }Run
Alternatively, you can create a newtype. A newtype is a wrapping tuple-struct.
For example, NewType
is a newtype over Foo
in struct NewType(Foo)
.
Example:
struct TypeWrapper((u8, u8)); impl TypeWrapper { fn get_state(&self) -> String { "Fascinating!".to_owned() } }Run
There are conflicting trait implementations for the same type. Example of erroneous code:
trait MyTrait { fn get(&self) -> usize; } impl<T> MyTrait for T { fn get(&self) -> usize { 0 } } struct Foo { value: usize } impl MyTrait for Foo { // error: conflicting implementations of trait // `MyTrait` for type `Foo` fn get(&self) -> usize { self.value } }Run
When looking for the implementation for the trait, the compiler finds
both the impl<T> MyTrait for T
where T is all types and the impl MyTrait for Foo
. Since a trait cannot be implemented multiple times,
this is an error. So, when you write:
trait MyTrait { fn get(&self) -> usize; } impl<T> MyTrait for T { fn get(&self) -> usize { 0 } }Run
This makes the trait implemented on all types in the scope. So if you try to implement it on another one after that, the implementations will conflict. Example:
trait MyTrait { fn get(&self) -> usize; } impl<T> MyTrait for T { fn get(&self) -> usize { 0 } } struct Foo; fn main() { let f = Foo; f.get(); // the trait is implemented so we can use it }Run
An attempt was made to implement Drop on a trait, which is not allowed: only structs and enums can implement Drop. An example causing this error:
trait MyTrait {} impl Drop for MyTrait { fn drop(&mut self) {} }Run
A workaround for this problem is to wrap the trait up in a struct, and implement Drop on that. An example is shown below:
trait MyTrait {} struct MyWrapper<T: MyTrait> { foo: T } impl <T: MyTrait> Drop for MyWrapper<T> { fn drop(&mut self) {} } Run
Alternatively, wrapping trait objects requires something like the following:
trait MyTrait {} //or Box<MyTrait>, if you wanted an owned trait object struct MyWrapper<'a> { foo: &'a MyTrait } impl <'a> Drop for MyWrapper<'a> { fn drop(&mut self) {} }Run
In order to be consistent with Rust's lack of global type inference, type placeholders are disallowed by design in item signatures.
Examples of this error include:
fn foo() -> _ { 5 } // error, explicitly write out the return type instead static BAR: _ = "test"; // error, explicitly write out the type insteadRun
An attempt was made to add a generic constraint to a type alias. This constraint is entirely ignored. For backwards compatibility, Rust still allows this with a warning. Consider the example below:
trait Foo{} type MyType<R: Foo> = (R, ()); fn main() { let t: MyType<u32>; }Run
We're able to declare a variable of type MyType<u32>
, despite the fact that
u32
does not implement Foo
. As a result, one should avoid using generic
constraints in concert with type aliases.
You declared two fields of a struct with the same name. Erroneous code example:
struct Foo { field1: i32, field1: i32, // error: field is already declared }Run
Please verify that the field names have been correctly spelled. Example:
struct Foo { field1: i32, field2: i32, // ok! }Run
Type parameter defaults can only use parameters that occur before them. Erroneous code example:
struct Foo<T=U, U=()> { field1: T, filed2: U, } // error: type parameters with a default cannot use forward declared // identifiersRun
Since type parameters are evaluated in-order, you may be able to fix this issue by doing:
struct Foo<U=(), T=U> { field1: T, filed2: U, }Run
Please also verify that this wasn't because of a name-clash and rename the type parameter if so.
You declared a pattern as an argument in a foreign function declaration. Erroneous code example:
extern { fn foo((a, b): (u32, u32)); // error: patterns aren't allowed in foreign // function declarations }Run
Please replace the pattern argument with a regular one. Example:
struct SomeStruct { a: u32, b: u32, } extern { fn foo(s: SomeStruct); // ok! }Run
Or:
extern { fn foo(a: (u32, u32)); // ok! }Run
It is not possible to define main
with type parameters, or even with function
parameters. When main
is present, it must take no arguments and return ()
.
Erroneous code example:
fn main<T>() { // error: main function is not allowed to have type parameters }Run
A function with the start
attribute was declared with type parameters.
Erroneous code example:
#![feature(start)] #[start] fn f<T>() {}Run
It is not possible to declare type parameters on a function that has the start
attribute. Such a function must have the following type signature (for more
information: http://doc.rust-lang.org/stable/book/first-edition/no-stdlib.html):
fn(isize, *const *const u8) -> isize;Run
Example:
#![feature(start)] #[start] fn my_start(argc: isize, argv: *const *const u8) -> isize { 0 }Run
Unsafe code was used outside of an unsafe function or block.
Erroneous code example:
unsafe fn f() { return; } // This is the unsafe code fn main() { f(); // error: call to unsafe function requires unsafe function or block }Run
Using unsafe functionality is potentially dangerous and disallowed by safety checks. Examples:
These safety checks can be relaxed for a section of the code by wrapping the
unsafe instructions with an unsafe
block. For instance:
unsafe fn f() { return; } fn main() { unsafe { f(); } // ok! }Run
See also https://doc.rust-lang.org/book/first-edition/unsafe.html
A binary can only have one entry point, and by default that entry point is the
function main()
. If there are multiple such functions, please rename one.
More than one function was declared with the #[main]
attribute.
Erroneous code example:
#![feature(main)] #[main] fn foo() {} #[main] fn f() {} // error: multiple functions with a #[main] attributeRun
This error indicates that the compiler found multiple functions with the
#[main]
attribute. This is an error because there must be a unique entry
point into a Rust program. Example:
#![feature(main)] #[main] fn f() {} // ok!Run
More than one function was declared with the #[start]
attribute.
Erroneous code example:
#![feature(start)] #[start] fn foo(argc: isize, argv: *const *const u8) -> isize {} #[start] fn f(argc: isize, argv: *const *const u8) -> isize {} // error: multiple 'start' functionsRun
This error indicates that the compiler found multiple functions with the
#[start]
attribute. This is an error because there must be a unique entry
point into a Rust program. Example:
#![feature(start)] #[start] fn foo(argc: isize, argv: *const *const u8) -> isize { 0 } // ok!Run
There are various restrictions on transmuting between types in Rust; for example types being transmuted must have the same size. To apply all these restrictions, the compiler must know the exact types that may be transmuted. When type parameters are involved, this cannot always be done.
So, for example, the following is not allowed:
use std::mem::transmute; struct Foo<T>(Vec<T>); fn foo<T>(x: Vec<T>) { // we are transmuting between Vec<T> and Foo<F> here let y: Foo<T> = unsafe { transmute(x) }; // do something with y }Run
In this specific case there's a good chance that the transmute is harmless (but
this is not guaranteed by Rust). However, when alignment and enum optimizations
come into the picture, it's quite likely that the sizes may or may not match
with different type parameter substitutions. It's not possible to check this for
all possible types, so transmute()
simply only accepts types without any
unsubstituted type parameters.
If you need this, there's a good chance you're doing something wrong. Keep in mind that Rust doesn't guarantee much about the layout of different structs (even two structs with identical declarations may have different layouts). If there is a solution that avoids the transmute entirely, try it instead.
If it's possible, hand-monomorphize the code by writing the function for each possible type substitution. It's possible to use traits to do this cleanly, for example:
use std::mem::transmute; struct Foo<T>(Vec<T>); trait MyTransmutableType: Sized { fn transmute(_: Vec<Self>) -> Foo<Self>; } impl MyTransmutableType for u8 { fn transmute(x: Vec<u8>) -> Foo<u8> { unsafe { transmute(x) } } } impl MyTransmutableType for String { fn transmute(x: Vec<String>) -> Foo<String> { unsafe { transmute(x) } } } // ... more impls for the types you intend to transmute fn foo<T: MyTransmutableType>(x: Vec<T>) { let y: Foo<T> = <T as MyTransmutableType>::transmute(x); // do something with y }Run
Each impl will be checked for a size match in the transmute as usual, and since there are no unbound type parameters involved, this should compile unless there is a size mismatch in one of the impls.
It is also possible to manually transmute:
unsafe { ptr::read(&v as *const _ as *const SomeType) // `v` transmuted to `SomeType` }Run
Note that this does not move v
(unlike transmute
), and may need a
call to mem::forget(v)
in case you want to avoid destructors being called.
A lang item was redefined.
Erroneous code example:
#![feature(lang_items)] #[lang = "panic_fmt"] struct Foo; // error: duplicate lang item found: `panic_fmt`Run
Lang items are already implemented in the standard library. Unless you are writing a free-standing application (e.g. a kernel), you do not need to provide them yourself.
You can build a free-standing crate by adding #![no_std]
to the crate
attributes:
#![no_std]Run
See also https://doc.rust-lang.org/book/first-edition/no-stdlib.html
Imports (use
statements) are not allowed after non-item statements, such as
variable declarations and expression statements.
Here is an example that demonstrates the error:
fn f() { // Variable declaration before import let x = 0; use std::io::Read; // ... }Run
The solution is to declare the imports at the top of the block, function, or file.
Here is the previous example again, with the correct order:
fn f() { use std::io::Read; let x = 0; // ... }Run
See the Declaration Statements section of the reference for more information about what constitutes an Item declaration and what does not:
const
and static
mean different things. A const
is a compile-time
constant, an alias for a literal value. This property means you can match it
directly within a pattern.
The static
keyword, on the other hand, guarantees a fixed location in memory.
This does not always mean that the value is constant. For example, a global
mutex can be declared static
as well.
If you want to match against a static
, consider using a guard instead:
static FORTY_TWO: i32 = 42; match Some(42) { Some(x) if x == FORTY_TWO => {} _ => {} }Run
A value was moved. However, its size was not known at compile time, and only values of a known size can be moved.
Erroneous code example:
#![feature(box_syntax)] fn main() { let array: &[isize] = &[1, 2, 3]; let _x: Box<[isize]> = box *array; // error: cannot move a value of type [isize]: the size of [isize] cannot // be statically determined }Run
In Rust, you can only move a value when its size is known at compile time.
To work around this restriction, consider "hiding" the value behind a reference:
either &x
or &mut x
. Since a reference has a fixed size, this lets you move
it around as usual. Example:
#![feature(box_syntax)] fn main() { let array: &[isize] = &[1, 2, 3]; let _x: Box<&[isize]> = box array; // ok! }Run
An if-let pattern attempts to match the pattern, and enters the body if the
match was successful. If the match is irrefutable (when it cannot fail to
match), use a regular let
-binding instead. For instance:
struct Irrefutable(i32); let irr = Irrefutable(0); // This fails to compile because the match is irrefutable. if let Irrefutable(x) = irr { // This body will always be executed. // ... }Run
Try this instead:
struct Irrefutable(i32); let irr = Irrefutable(0); let Irrefutable(x) = irr; println!("{}", x);Run
This error means that an attempt was made to match a struct type enum variant as a non-struct type:
enum Foo { B { i: u32 } } fn bar(foo: Foo) -> u32 { match foo { Foo::B(i) => i, // error E0164 } }Run
Try using {}
instead:
enum Foo { B { i: u32 } } fn bar(foo: Foo) -> u32 { match foo { Foo::B{i} => i, } }Run
A while-let pattern attempts to match the pattern, and enters the body if the
match was successful. If the match is irrefutable (when it cannot fail to
match), use a regular let
-binding inside a loop
instead. For instance:
struct Irrefutable(i32); let irr = Irrefutable(0); // This fails to compile because the match is irrefutable. while let Irrefutable(x) = irr { // ... }Run
Try this instead:
struct Irrefutable(i32); let irr = Irrefutable(0); loop { let Irrefutable(x) = irr; // ... }Run
Enum variants are qualified by default. For example, given this type:
enum Method { GET, POST, }Run
You would match it using:
enum Method { GET, POST, } let m = Method::GET; match m { Method::GET => {}, Method::POST => {}, }Run
If you don't qualify the names, the code will bind new variables named "GET" and
"POST" instead. This behavior is likely not what you want, so rustc
warns when
that happens.
Qualified names are good practice, and most code works well with them. But if you prefer them unqualified, you can import the variants into scope:
use Method::*; enum Method { GET, POST }Run
If you want others to be able to import variants from your module directly, use
pub use
:
pub use Method::*; pub enum Method { GET, POST }Run
In types, the +
type operator has low precedence, so it is often necessary
to use parentheses.
For example:
trait Foo {} struct Bar<'a> { w: &'a Foo + Copy, // error, use &'a (Foo + Copy) x: &'a Foo + 'a, // error, use &'a (Foo + 'a) y: &'a mut Foo + 'a, // error, use &'a mut (Foo + 'a) z: fn() -> Foo + 'a, // error, use fn() -> (Foo + 'a) }Run
More details can be found in RFC 438.
No description.
Explicitly implementing both Drop and Copy for a type is currently disallowed. This feature can make some sense in theory, but the current implementation is incorrect and can lead to memory unsafety (see issue #20126), so it has been disabled for now.
An associated function for a trait was defined to be static, but an
implementation of the trait declared the same function to be a method (i.e. to
take a self
parameter).
Here's an example of this error:
trait Foo { fn foo(); } struct Bar; impl Foo for Bar { // error, method `foo` has a `&self` declaration in the impl, but not in // the trait fn foo(&self) {} }Run
An associated function for a trait was defined to be a method (i.e. to take a
self
parameter), but an implementation of the trait declared the same function
to be static.
Here's an example of this error:
trait Foo { fn foo(&self); } struct Bar; impl Foo for Bar { // error, method `foo` has a `&self` declaration in the trait, but not in // the impl fn foo() {} }Run
Trait objects need to have all associated types specified. Erroneous code example:
trait Trait { type Bar; } type Foo = Trait; // error: the value of the associated type `Bar` (from // the trait `Trait`) must be specifiedRun
Please verify you specified all associated types of the trait and that you used the right trait. Example:
trait Trait { type Bar; } type Foo = Trait<Bar=i32>; // ok!Run
Negative impls are only allowed for auto traits. For more information see the opt-in builtin traits RFC.
where
clauses must use generic type parameters: it does not make sense to use
them otherwise. An example causing this error:
trait Foo { fn bar(&self); } #[derive(Copy,Clone)] struct Wrapper<T> { Wrapped: T } impl Foo for Wrapper<u32> where Wrapper<u32>: Clone { fn bar(&self) { } }Run
This use of a where
clause is strange - a more common usage would look
something like the following:
trait Foo { fn bar(&self); } #[derive(Copy,Clone)] struct Wrapper<T> { Wrapped: T } impl <T> Foo for Wrapper<T> where Wrapper<T>: Clone { fn bar(&self) { } }Run
Here, we're saying that the implementation exists on Wrapper only when the
wrapped type T
implements Clone
. The where
clause is important because
some types will not implement Clone
, and thus will not get this method.
In our erroneous example, however, we're referencing a single concrete type.
Since we know for certain that Wrapper<u32>
implements Clone
, there's no
reason to also specify it in a where
clause.
A type parameter was declared which shadows an existing one. An example of this error:
trait Foo<T> { fn do_something(&self) -> T; fn do_something_else<T: Clone>(&self, bar: T); }Run
In this example, the trait Foo
and the trait method do_something_else
both
define a type parameter T
. This is not allowed: if the method wishes to
define a type parameter, it must use a different name for it.
Your method's lifetime parameters do not match the trait declaration. Erroneous code example:
trait Trait { fn bar<'a,'b:'a>(x: &'a str, y: &'b str); } struct Foo; impl Trait for Foo { fn bar<'a,'b>(x: &'a str, y: &'b str) { // error: lifetime parameters or bounds on method `bar` // do not match the trait declaration } }Run
The lifetime constraint 'b
for bar() implementation does not match the
trait declaration. Ensure lifetime declarations match exactly in both trait
declaration and implementation. Example:
trait Trait { fn t<'a,'b:'a>(x: &'a str, y: &'b str); } struct Foo; impl Trait for Foo { fn t<'a,'b:'a>(x: &'a str, y: &'b str) { // ok! } }Run
Inherent implementations (one that do not implement a trait but provide
methods associated with a type) are always safe because they are not
implementing an unsafe trait. Removing the unsafe
keyword from the inherent
implementation will resolve this error.
struct Foo; // this will cause this error unsafe impl Foo { } // converting it to this will fix it impl Foo { }Run
A negative implementation is one that excludes a type from implementing a particular trait. Not being able to use a trait is always a safe operation, so negative implementations are always safe and never need to be marked as unsafe.
#![feature(optin_builtin_traits)] struct Foo; // unsafe is unnecessary unsafe impl !Clone for Foo { }Run
This will compile:
#![feature(optin_builtin_traits)] struct Foo; auto trait Enterprise {} impl !Enterprise for Foo { }Run
Please note that negative impls are only allowed for auto traits.
Safe traits should not have unsafe implementations, therefore marking an implementation for a safe trait unsafe will cause a compiler error. Removing the unsafe marker on the trait noted in the error will resolve this problem.
struct Foo; trait Bar { } // this won't compile because Bar is safe unsafe impl Bar for Foo { } // this will compile impl Bar for Foo { }Run
Unsafe traits must have unsafe implementations. This error occurs when an implementation for an unsafe trait isn't marked as unsafe. This may be resolved by marking the unsafe implementation as unsafe.
struct Foo; unsafe trait Bar { } // this won't compile because Bar is unsafe and impl isn't unsafe impl Bar for Foo { } // this will compile unsafe impl Bar for Foo { }Run
It is an error to define two associated items (like methods, associated types, associated functions, etc.) with the same identifier.
For example:
struct Foo(u8); impl Foo { fn bar(&self) -> bool { self.0 > 5 } fn bar() {} // error: duplicate associated function } trait Baz { type Quux; fn baz(&self) -> bool; } impl Baz for Foo { type Quux = u32; fn baz(&self) -> bool { true } // error: duplicate method fn baz(&self) -> bool { self.0 > 5 } // error: duplicate associated type type Quux = u32; }Run
Note, however, that items with the same name are allowed for inherent impl
blocks that don't overlap:
struct Foo<T>(T); impl Foo<u8> { fn bar(&self) -> bool { self.0 > 5 } } impl Foo<bool> { fn bar(&self) -> bool { self.0 } }Run
Inherent associated types were part of RFC 195 but are not yet implemented. See the tracking issue for the status of this implementation.
No description.
An attempt to implement the Copy
trait for a struct failed because one of the
fields does not implement Copy
. To fix this, you must implement Copy
for the
mentioned field. Note that this may not be possible, as in the example of
struct Foo { foo : Vec<u32>, } impl Copy for Foo { }Run
This fails because Vec<T>
does not implement Copy
for any T
.
Here's another example that will fail:
#[derive(Copy)] struct Foo<'a> { ty: &'a mut bool, }Run
This fails because &mut T
is not Copy
, even when T
is Copy
(this
differs from the behavior for &T
, which is always Copy
).
You can only implement Copy
for a struct or enum. Both of the following
examples will fail, because neither i32
(primitive type) nor &'static Bar
(reference to Bar
) is a struct or enum:
type Foo = i32; impl Copy for Foo { } // error #[derive(Copy, Clone)] struct Bar; impl Copy for &'static Bar { } // errorRun
Any type parameter or lifetime parameter of an impl
must meet at least one of
the following criteria:
Suppose we have a struct Foo
and we would like to define some methods for it.
The following definition leads to a compiler error:
struct Foo; impl<T: Default> Foo { // error: the type parameter `T` is not constrained by the impl trait, self // type, or predicates [E0207] fn get(&self) -> T { <T as Default>::default() } }Run
The problem is that the parameter T
does not appear in the self type (Foo
)
of the impl. In this case, we can fix the error by moving the type parameter
from the impl
to the method get
:
struct Foo; // Move the type parameter from the impl to the method impl Foo { fn get<T: Default>(&self) -> T { <T as Default>::default() } }Run
As another example, suppose we have a Maker
trait and want to establish a
type FooMaker
that makes Foo
s:
trait Maker { type Item; fn make(&mut self) -> Self::Item; } struct Foo<T> { foo: T } struct FooMaker; impl<T: Default> Maker for FooMaker { // error: the type parameter `T` is not constrained by the impl trait, self // type, or predicates [E0207] type Item = Foo<T>; fn make(&mut self) -> Foo<T> { Foo { foo: <T as Default>::default() } } }Run
This fails to compile because T
does not appear in the trait or in the
implementing type.
One way to work around this is to introduce a phantom type parameter into
FooMaker
, like so:
use std::marker::PhantomData; trait Maker { type Item; fn make(&mut self) -> Self::Item; } struct Foo<T> { foo: T } // Add a type parameter to `FooMaker` struct FooMaker<T> { phantom: PhantomData<T>, } impl<T: Default> Maker for FooMaker<T> { type Item = Foo<T>; fn make(&mut self) -> Foo<T> { Foo { foo: <T as Default>::default(), } } }Run
Another way is to do away with the associated type in Maker
and use an input
type parameter instead:
// Use a type parameter instead of an associated type here trait Maker<Item> { fn make(&mut self) -> Item; } struct Foo<T> { foo: T } struct FooMaker; impl<T: Default> Maker<Foo<T>> for FooMaker { fn make(&mut self) -> Foo<T> { Foo { foo: <T as Default>::default() } } }Run
For more information, please see RFC 447.
No description.
This error indicates a violation of one of Rust's orphan rules for trait implementations. The rule concerns the use of type parameters in an implementation of a foreign trait (a trait defined in another crate), and states that type parameters must be "covered" by a local type. To understand what this means, it is perhaps easiest to consider a few examples.
If ForeignTrait
is a trait defined in some external crate foo
, then the
following trait impl
is an error:
extern crate foo; use foo::ForeignTrait; impl<T> ForeignTrait for T { } // errorRun
To work around this, it can be covered with a local type, MyType
:
struct MyType<T>(T); impl<T> ForeignTrait for MyType<T> { } // OkRun
Please note that a type alias is not sufficient.
For another example of an error, suppose there's another trait defined in foo
named ForeignTrait2
that takes two type parameters. Then this impl
results
in the same rule violation:
struct MyType2; impl<T> ForeignTrait2<T, MyType<T>> for MyType2 { } // errorRun
The reason for this is that there are two appearances of type parameter T
in
the impl
header, both as parameters for ForeignTrait2
. The first appearance
is uncovered, and so runs afoul of the orphan rule.
Consider one more example:
impl<T> ForeignTrait2<MyType<T>, T> for MyType2 { } // OkRun
This only differs from the previous impl
in that the parameters T
and
MyType<T>
for ForeignTrait2
have been swapped. This example does not
violate the orphan rule; it is permitted.
To see why that last example was allowed, you need to understand the general
rule. Unfortunately this rule is a bit tricky to state. Consider an impl
:
impl<P1, ..., Pm> ForeignTrait<T1, ..., Tn> for T0 { ... }Run
where P1, ..., Pm
are the type parameters of the impl
and T0, ..., Tn
are types. One of the types T0, ..., Tn
must be a local type (this is another
orphan rule, see the explanation for E0117). Let i
be the smallest integer
such that Ti
is a local type. Then no type parameter can appear in any of the
Tj
for j < i
.
For information on the design of the orphan rules, see RFC 1023.
No description.
A generic type was described using parentheses rather than angle brackets. For example:
fn main() { let v: Vec(&str) = vec!["foo"]; }Run
This is not currently supported: v
should be defined as Vec<&str>
.
Parentheses are currently only used with generic types when defining parameters
for Fn
-family traits.
You used an associated type which isn't defined in the trait. Erroneous code example:
trait T1 { type Bar; } type Foo = T1<F=i32>; // error: associated type `F` not found for `T1` // or: trait T2 { type Bar; // error: Baz is used but not declared fn return_bool(&self, _: &Self::Bar, _: &Self::Baz) -> bool; }Run
Make sure that you have defined the associated type in the trait body. Also, verify that you used the right trait or you didn't misspell the associated type name. Example:
trait T1 { type Bar; } type Foo = T1<Bar=i32>; // ok! // or: trait T2 { type Bar; type Baz; // we declare `Baz` in our trait. // and now we can use it here: fn return_bool(&self, _: &Self::Bar, _: &Self::Baz) -> bool; }Run
An attempt was made to retrieve an associated type, but the type was ambiguous. For example:
trait T1 {} trait T2 {} trait Foo { type A: T1; } trait Bar : Foo { type A: T2; fn do_something() { let _: Self::A; } }Run
In this example, Foo
defines an associated type A
. Bar
inherits that type
from Foo
, and defines another associated type of the same name. As a result,
when we attempt to use Self::A
, it's ambiguous whether we mean the A
defined
by Foo
or the one defined by Bar
.
There are two options to work around this issue. The first is simply to rename one of the types. Alternatively, one can specify the intended type using the following syntax:
trait T1 {} trait T2 {} trait Foo { type A: T1; } trait Bar : Foo { type A: T2; fn do_something() { let _: <Self as Bar>::A; } }Run
An attempt was made to retrieve an associated type, but the type was ambiguous. For example:
trait MyTrait {type X; } fn main() { let foo: MyTrait::X; }Run
The problem here is that we're attempting to take the type of X from MyTrait. Unfortunately, the type of X is not defined, because it's only made concrete in implementations of the trait. A working version of this code might look like:
trait MyTrait {type X; } struct MyStruct; impl MyTrait for MyStruct { type X = u32; } fn main() { let foo: <MyStruct as MyTrait>::X; }Run
This syntax specifies that we want the X type from MyTrait, as made concrete in
MyStruct. The reason that we cannot simply use MyStruct::X
is that MyStruct
might implement two different traits with identically-named associated types.
This syntax allows disambiguation between the two.
No description.
You attempted to use multiple types as bounds for a closure or trait object. Rust does not currently support this. A simple example that causes this error:
fn main() { let _: Box<std::io::Read + std::io::Write>; }Run
Auto traits such as Send and Sync are an exception to this rule: It's possible to have bounds of one non-builtin trait, plus any number of auto traits. For example, the following compiles correctly:
fn main() { let _: Box<std::io::Read + Send + Sync>; }Run
No description.
No description.
No description.
An associated type binding was done outside of the type parameter declaration
and where
clause. Erroneous code example:
pub trait Foo { type A; fn boo(&self) -> <Self as Foo>::A; } struct Bar; impl Foo for isize { type A = usize; fn boo(&self) -> usize { 42 } } fn baz<I>(x: &<I as Foo<A=Bar>>::A) {} // error: associated type bindings are not allowed hereRun
To solve this error, please move the type bindings in the type parameter declaration:
fn baz<I: Foo<A=Bar>>(x: &<I as Foo>::A) {} // ok!Run
Or in the where
clause:
fn baz<I>(x: &<I as Foo>::A) where I: Foo<A=Bar> {}Run
The #[rustc_on_unimplemented]
attribute lets you specify a custom error
message for when a particular trait isn't implemented on a type placed in a
position that needs that trait. For example, when the following code is
compiled:
#![feature(on_unimplemented)] fn foo<T: Index<u8>>(x: T){} #[rustc_on_unimplemented = "the type `{Self}` cannot be indexed by `{Idx}`"] trait Index<Idx> { /* ... */ } foo(true); // `bool` does not implement `Index<u8>`Run
There will be an error about bool
not implementing Index<u8>
, followed by a
note saying "the type bool
cannot be indexed by u8
".
As you can see, you can specify type parameters in curly braces for
substitution with the actual types (using the regular format string syntax) in
a given situation. Furthermore, {Self}
will substitute to the type (in this
case, bool
) that we tried to use.
This error appears when the curly braces contain an identifier which doesn't
match with any of the type parameters or the string Self
. This might happen
if you misspelled a type parameter, or if you intended to use literal curly
braces. If it is the latter, escape the curly braces with a second curly brace
of the same type; e.g. a literal {
is {{
.
The #[rustc_on_unimplemented]
attribute lets you specify a custom error
message for when a particular trait isn't implemented on a type placed in a
position that needs that trait. For example, when the following code is
compiled:
#![feature(on_unimplemented)] fn foo<T: Index<u8>>(x: T){} #[rustc_on_unimplemented = "the type `{Self}` cannot be indexed by `{Idx}`"] trait Index<Idx> { /* ... */ } foo(true); // `bool` does not implement `Index<u8>`Run
there will be an error about bool
not implementing Index<u8>
, followed by a
note saying "the type bool
cannot be indexed by u8
".
As you can see, you can specify type parameters in curly braces for
substitution with the actual types (using the regular format string syntax) in
a given situation. Furthermore, {Self}
will substitute to the type (in this
case, bool
) that we tried to use.
This error appears when the curly braces do not contain an identifier. Please
add one of the same name as a type parameter. If you intended to use literal
braces, use {{
and }}
to escape them.
The #[rustc_on_unimplemented]
attribute lets you specify a custom error
message for when a particular trait isn't implemented on a type placed in a
position that needs that trait. For example, when the following code is
compiled:
#![feature(on_unimplemented)] fn foo<T: Index<u8>>(x: T){} #[rustc_on_unimplemented = "the type `{Self}` cannot be indexed by `{Idx}`"] trait Index<Idx> { /* ... */ } foo(true); // `bool` does not implement `Index<u8>`Run
there will be an error about bool
not implementing Index<u8>
, followed by a
note saying "the type bool
cannot be indexed by u8
".
For this to work, some note must be specified. An empty attribute will not do anything, please remove the attribute or add some helpful note for users of the trait.
This error indicates that not enough type parameters were found in a type or trait.
For example, the Foo
struct below is defined to be generic in T
, but the
type parameter is missing in the definition of Bar
:
struct Foo<T> { x: T } struct Bar { x: Foo }Run
This error indicates that too many type parameters were found in a type or trait.
For example, the Foo
struct below has no type parameters, but is supplied
with two in the definition of Bar
:
struct Foo { x: bool } struct Bar<S, T> { x: Foo<S, T> }Run
No description.
Two items of the same name cannot be imported without rebinding one of the items under a new local name.
An example of this error:
use foo::baz; use bar::*; // error, do `use foo::baz as quux` instead on the previous line fn main() {} mod foo { pub struct baz; } mod bar { pub mod baz {} }Run
Two items of the same name cannot be imported without rebinding one of the items under a new local name.
Erroneous code example:
use foo::baz; use bar::baz; // error, do `use bar::baz as quux` instead fn main() {} mod foo { pub struct baz; } mod bar { pub mod baz {} }Run
You can use aliases in order to fix this error. Example:
use foo::baz as foo_baz; use bar::baz; // ok! fn main() {} mod foo { pub struct baz; } mod bar { pub mod baz {} }Run
Or you can reference the item with its parent:
use bar::baz; fn main() { let x = foo::baz; // ok! } mod foo { pub struct baz; } mod bar { pub mod baz {} }Run
Attempt was made to import an unimportable value. This can happen when trying to import a method from a trait.
Erroneous code example:
mod foo { pub trait MyTrait { fn do_something(); } } use foo::MyTrait::do_something; // error: `do_something` is not directly importable fn main() {}Run
It's invalid to directly import methods belonging to a trait or concrete type.
Attempt was made to import an item whereas an extern crate with this name has already been imported.
Erroneous code example:
extern crate core; mod foo { pub trait core { fn do_something(); } } use foo::core; // error: an extern crate named `core` has already // been imported in this module fn main() {}Run
To fix issue issue, you have to rename at least one of the two imports. Example:
extern crate core as libcore; // ok! mod foo { pub trait core { fn do_something(); } } use foo::core; fn main() {}Run
You can't import a value whose name is the same as another value defined in the module.
Erroneous code example:
use bar::foo; // error: an item named `foo` is already in scope fn foo() {} mod bar { pub fn foo() {} } fn main() {}Run
You can use aliases in order to fix this error. Example:
use bar::foo as bar_foo; // ok! fn foo() {} mod bar { pub fn foo() {} } fn main() {}Run
Or you can reference the item with its parent:
fn foo() {} mod bar { pub fn foo() {} } fn main() { bar::foo(); // we get the item by referring to its parent }Run
You can't import a type or module when the name of the item being imported is the same as another type or submodule defined in the module.
An example of this error:
use foo::Bar; // error type Bar = u32; mod foo { pub mod Bar { } } fn main() {}Run
The name chosen for an external crate conflicts with another external crate that has been imported into the current module.
Erroneous code example:
extern crate core; extern crate libc as core; fn main() {}Run
The solution is to choose a different name that doesn't conflict with any external crate imported into the current module.
Correct example:
extern crate core; extern crate libc as other_name; fn main() {}Run
The name for an item declaration conflicts with an external crate's name.
Erroneous code example:
extern crate core; struct core;Run
There are two possible solutions:
Solution #1: Rename the item.
extern crate core; struct xyz;Run
Solution #2: Import the crate with a different name.
extern crate core as xyz; struct abc;Run
See the Declaration Statements section of the reference for more information about what constitutes an Item declaration and what does not:
When using a lifetime like 'a
in a type, it must be declared before being
used.
These two examples illustrate the problem:
// error, use of undeclared lifetime name `'a` fn foo(x: &'a str) { } struct Foo { // error, use of undeclared lifetime name `'a` x: &'a str, }Run
These can be fixed by declaring lifetime parameters:
fn foo<'a>(x: &'a str) {} struct Foo<'a> { x: &'a str, }Run
Declaring certain lifetime names in parameters is disallowed. For example,
because the 'static
lifetime is a special built-in lifetime name denoting
the lifetime of the entire program, this is an error:
// error, invalid lifetime parameter name `'static` fn foo<'static>(x: &'static str) { }Run
A lifetime name cannot be declared more than once in the same scope. For example:
// error, lifetime name `'a` declared twice in the same scope fn foo<'a, 'b, 'a>(x: &'a str, y: &'b str) { }Run
An unknown external lang item was used. Erroneous code example:
#![feature(lang_items)] extern "C" { #[lang = "cake"] // error: unknown external lang item: `cake` fn cake(); }Run
A list of available external lang items is available in
src/librustc/middle/weak_lang_items.rs
. Example:
#![feature(lang_items)] extern "C" { #[lang = "panic_fmt"] // ok! fn cake(); }Run
This error indicates that a static or constant references itself. All statics and constants need to resolve to a value in an acyclic manner.
For example, neither of the following can be sensibly compiled:
const X: u32 = X;Run
const X: u32 = Y; const Y: u32 = X;Run
This error indicates the use of a loop keyword (break
or continue
) inside a
closure but outside of any loop. Erroneous code example:
let w = || { break; }; // error: `break` inside of a closureRun
break
and continue
keywords can be used as normal inside closures as long as
they are also contained within a loop. To halt the execution of a closure you
should instead use a return statement. Example:
let w = || { for _ in 0..10 { break; } }; w();Run
This error indicates the use of a loop keyword (break
or continue
) outside
of a loop. Without a loop to break out of or continue in, no sensible action can
be taken. Erroneous code example:
fn some_func() { break; // error: `break` outside of loop }Run
Please verify that you are using break
and continue
only in loops. Example:
fn some_func() { for _ in 0..10 { break; // ok! } }Run
This is because of a type mismatch between the associated type of some
trait (e.g. T::Bar
, where T
implements trait Quux { type Bar; }
)
and another type U
that is required to be equal to T::Bar
, but is not.
Examples follow.
Here is a basic example:
trait Trait { type AssociatedType; } fn foo<T>(t: T) where T: Trait<AssociatedType=u32> { println!("in foo"); } impl Trait for i8 { type AssociatedType = &'static str; } foo(3_i8);Run
Here is that same example again, with some explanatory comments:
trait Trait { type AssociatedType; } fn foo<T>(t: T) where T: Trait<AssociatedType=u32> { // ~~~~~~~~ ~~~~~~~~~~~~~~~~~~ // | | // This says `foo` can | // only be used with | // some type that | // implements `Trait`. | // | // This says not only must // `T` be an impl of `Trait` // but also that the impl // must assign the type `u32` // to the associated type. println!("in foo"); } impl Trait for i8 { type AssociatedType = &'static str; } //~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // | | // `i8` does have | // implementation | // of `Trait`... | // ... but it is an implementation // that assigns `&'static str` to // the associated type. foo(3_i8); // Here, we invoke `foo` with an `i8`, which does not satisfy // the constraint `<i8 as Trait>::AssociatedType=u32`, and // therefore the type-checker complains with this error code.Run
Here is a more subtle instance of the same problem, that can arise with for-loops in Rust:
let vs: Vec<i32> = vec![1, 2, 3, 4]; for v in &vs { match v { 1 => {}, _ => {}, } }Run
The above fails because of an analogous type mismatch, though may be harder to see. Again, here are some explanatory comments for the same example:
{ let vs = vec![1, 2, 3, 4]; // `for`-loops use a protocol based on the `Iterator` // trait. Each item yielded in a `for` loop has the // type `Iterator::Item` -- that is, `Item` is the // associated type of the concrete iterator impl. for v in &vs { // ~ ~~~ // | | // | We borrow `vs`, iterating over a sequence of // | *references* of type `&Elem` (where `Elem` is // | vector's element type). Thus, the associated // | type `Item` must be a reference `&`-type ... // | // ... and `v` has the type `Iterator::Item`, as dictated by // the `for`-loop protocol ... match v { 1 => {} // ~ // | // ... but *here*, `v` is forced to have some integral type; // only types like `u8`,`i8`,`u16`,`i16`, et cetera can // match the pattern `1` ... _ => {} } // ... therefore, the compiler complains, because it sees // an attempt to solve the equations // `some integral-type` = type-of-`v` // = `Iterator::Item` // = `&Elem` (i.e. `some reference type`) // // which cannot possibly all be true. } }Run
To avoid those issues, you have to make the types match correctly. So we can fix the previous examples like this:
// Basic Example: trait Trait { type AssociatedType; } fn foo<T>(t: T) where T: Trait<AssociatedType = &'static str> { println!("in foo"); } impl Trait for i8 { type AssociatedType = &'static str; } foo(3_i8); // For-Loop Example: let vs = vec![1, 2, 3, 4]; for v in &vs { match v { &1 => {} _ => {} } }Run
This error occurs when there was a recursive trait requirement that overflowed before it could be evaluated. Often this means that there is unbounded recursion in resolving some type bounds.
For example, in the following code:
trait Foo {} struct Bar<T>(T); impl<T> Foo for T where Bar<T>: Foo {}Run
To determine if a T
is Foo
, we need to check if Bar<T>
is Foo
. However,
to do this check, we need to determine that Bar<Bar<T>>
is Foo
. To
determine this, we check if Bar<Bar<Bar<T>>>
is Foo
, and so on. This is
clearly a recursive requirement that can't be resolved directly.
Consider changing your trait bounds so that they're less self-referential.
This error occurs when a bound in an implementation of a trait does not match the bounds specified in the original trait. For example:
trait Foo { fn foo<T>(x: T); } impl Foo for bool { fn foo<T>(x: T) where T: Copy {} }Run
Here, all types implementing Foo
must have a method foo<T>(x: T)
which can
take any type T
. However, in the impl
for bool
, we have added an extra
bound that T
is Copy
, which isn't compatible with the original trait.
Consider removing the bound from the method or adding the bound to the original method definition in the trait.
You tried to use a type which doesn't implement some trait in a place which expected that trait. Erroneous code example:
// here we declare the Foo trait with a bar method trait Foo { fn bar(&self); } // we now declare a function which takes an object implementing the Foo trait fn some_func<T: Foo>(foo: T) { foo.bar(); } fn main() { // we now call the method with the i32 type, which doesn't implement // the Foo trait some_func(5i32); // error: the trait bound `i32 : Foo` is not satisfied }Run
In order to fix this error, verify that the type you're using does implement the trait. Example:
trait Foo { fn bar(&self); } fn some_func<T: Foo>(foo: T) { foo.bar(); // we can now use this method since i32 implements the // Foo trait } // we implement the trait on the i32 type impl Foo for i32 { fn bar(&self) {} } fn main() { some_func(5i32); // ok! }Run
Or in a generic context, an erroneous code example would look like:
fn some_func<T>(foo: T) { println!("{:?}", foo); // error: the trait `core::fmt::Debug` is not // implemented for the type `T` } fn main() { // We now call the method with the i32 type, // which *does* implement the Debug trait. some_func(5i32); }Run
Note that the error here is in the definition of the generic function: Although
we only call it with a parameter that does implement Debug
, the compiler
still rejects the function: It must work with all possible input types. In
order to make this example compile, we need to restrict the generic type we're
accepting:
use std::fmt; // Restrict the input type to types that implement Debug. fn some_func<T: fmt::Debug>(foo: T) { println!("{:?}", foo); } fn main() { // Calling the method is still fine, as i32 implements Debug. some_func(5i32); // This would fail to compile now: // struct WithoutDebug; // some_func(WithoutDebug); }Run
Rust only looks at the signature of the called function, as such it must already specify all requirements that will be used for every type parameter.
No description.
No description.
No description.
You tried to supply a type which doesn't implement some trait in a location
which expected that trait. This error typically occurs when working with
Fn
-based types. Erroneous code example:
fn foo<F: Fn(usize)>(x: F) { }
fn main() {
// type mismatch: ... implements the trait `core::ops::Fn<(String,)>`,
// but the trait `core::ops::Fn<(usize,)>` is required
// [E0281]
foo(|y: String| { });
}
The issue in this case is that foo
is defined as accepting a Fn
with one
argument of type String
, but the closure we attempted to pass to it requires
one arguments of type usize
.
This error indicates that type inference did not result in one unique possible type, and extra information is required. In most cases this can be provided by adding a type annotation. Sometimes you need to specify a generic type parameter manually.
A common example is the collect
method on Iterator
. It has a generic type
parameter with a FromIterator
bound, which for a char
iterator is
implemented by Vec
and String
among others. Consider the following snippet
that reverses the characters of a string:
let x = "hello".chars().rev().collect();Run
In this case, the compiler cannot infer what the type of x
should be:
Vec<char>
and String
are both suitable candidates. To specify which type to
use, you can use a type annotation on x
:
let x: Vec<char> = "hello".chars().rev().collect();Run
It is not necessary to annotate the full type. Once the ambiguity is resolved, the compiler can infer the rest:
let x: Vec<_> = "hello".chars().rev().collect();Run
Another way to provide the compiler with enough information, is to specify the generic type parameter:
let x = "hello".chars().rev().collect::<Vec<char>>();Run
Again, you need not specify the full type if the compiler can infer it:
let x = "hello".chars().rev().collect::<Vec<_>>();Run
Apart from a method or function with a generic type parameter, this error can occur when a type parameter of a struct or trait cannot be inferred. In that case it is not always possible to use a type annotation, because all candidates have the same return type. For instance:
struct Foo<T> { num: T, } impl<T> Foo<T> { fn bar() -> i32 { 0 } fn baz() { let number = Foo::bar(); } }Run
This will fail because the compiler does not know which instance of Foo
to
call bar
on. Change Foo::bar()
to Foo::<T>::bar()
to resolve the error.
This error occurs when the compiler doesn't have enough information to unambiguously choose an implementation.
For example:
trait Generator { fn create() -> u32; } struct Impl; impl Generator for Impl { fn create() -> u32 { 1 } } struct AnotherImpl; impl Generator for AnotherImpl { fn create() -> u32 { 2 } } fn main() { let cont: u32 = Generator::create(); // error, impossible to choose one of Generator trait implementation // Impl or AnotherImpl? Maybe anything else? }Run
To resolve this error use the concrete type:
trait Generator { fn create() -> u32; } struct AnotherImpl; impl Generator for AnotherImpl { fn create() -> u32 { 2 } } fn main() { let gen1 = AnotherImpl::create(); // if there are multiple methods with same name (different traits) let gen2 = <AnotherImpl as Generator>::create(); }Run
No description.
This error indicates that the given recursion limit could not be parsed. Ensure that the value provided is a positive integer between quotes.
Erroneous code example:
#![recursion_limit] fn main() {}Run
And a working example:
#![recursion_limit="1000"] fn main() {}Run
Patterns used to bind names must be irrefutable. That is, they must guarantee
that a name will be extracted in all cases. Instead of pattern matching the
loop variable, consider using a match
or if let
inside the loop body. For
instance:
let xs : Vec<Option<i32>> = vec![Some(1), None]; // This fails because `None` is not covered. for Some(x) in xs { // ... }Run
Match inside the loop instead:
let xs : Vec<Option<i32>> = vec![Some(1), None]; for item in xs { match item { Some(x) => {}, None => {}, } }Run
Or use if let
:
let xs : Vec<Option<i32>> = vec![Some(1), None]; for item in xs { if let Some(x) = item { // ... } }Run
Mutable borrows are not allowed in pattern guards, because matching cannot have side effects. Side effects could alter the matched object or the environment on which the match depends in such a way, that the match would not be exhaustive. For instance, the following would not match any arm if mutable borrows were allowed:
match Some(()) { None => { }, option if option.take().is_none() => { /* impossible, option is `Some` */ }, Some(_) => { } // When the previous match failed, the option became `None`. }Run
Assignments are not allowed in pattern guards, because matching cannot have side effects. Side effects could alter the matched object or the environment on which the match depends in such a way, that the match would not be exhaustive. For instance, the following would not match any arm if assignments were allowed:
match Some(()) { None => { }, option if { option = None; false } => { }, Some(_) => { } // When the previous match failed, the option became `None`. }Run
In certain cases it is possible for sub-bindings to violate memory safety. Updates to the borrow checker in a future version of Rust may remove this restriction, but for now patterns must be rewritten without sub-bindings.
Before:
match Some("hi".to_string()) { ref op_string_ref @ Some(s) => {}, None => {}, }Run
After:
match Some("hi".to_string()) { Some(ref s) => { let op_string_ref = &Some(s); // ... }, None => {}, }Run
The op_string_ref
binding has type &Option<&String>
in both cases.
No description.
This error occurs when the compiler was unable to infer the concrete type of a variable. It can occur for several cases, the most common of which is a mismatch in the expected type that the compiler inferred for a variable's initializing expression, and the actual type explicitly assigned to the variable.
For example:
let x: i32 = "I am not a number!"; // ~~~ ~~~~~~~~~~~~~~~~~~~~ // | | // | initializing expression; // | compiler infers type `&str` // | // type `i32` assigned to variable `x`Run
Types in type definitions have lifetimes associated with them that represent how long the data stored within them is guaranteed to be live. This lifetime must be as long as the data needs to be alive, and missing the constraint that denotes this will cause this error.
// This won't compile because T is not constrained, meaning the data // stored in it is not guaranteed to last as long as the reference struct Foo<'a, T> { foo: &'a T }Run
This will compile, because it has the constraint on the type parameter:
struct Foo<'a, T: 'a> { foo: &'a T }Run
To see why this is important, consider the case where T
is itself a reference
(e.g., T = &str
). If we don't include the restriction that T: 'a
, the
following code would be perfectly legal:
struct Foo<'a, T> { foo: &'a T } fn main() { let v = "42".to_string(); let f = Foo{foo: &v}; drop(v); println!("{}", f.foo); // but we've already dropped v! }Run
Types in type definitions have lifetimes associated with them that represent how long the data stored within them is guaranteed to be live. This lifetime must be as long as the data needs to be alive, and missing the constraint that denotes this will cause this error.
// This won't compile because T is not constrained to the static lifetime // the reference needs struct Foo<T> { foo: &'static T }Run
This will compile, because it has the constraint on the type parameter:
struct Foo<T: 'static> { foo: &'static T }Run
No description.
No description.
No description.
No description.
No description.
No description.
This error occurs when an if
expression without an else
block is used in a
context where a type other than ()
is expected, for example a let
expression:
fn main() { let x = 5; let a = if x == 5 { 1 }; }Run
An if
expression without an else
block has the type ()
, so this is a type
error. To resolve it, add an else
block having the same type as the if
block.
No description.
A cross-crate opt-out trait was implemented on something which wasn't a struct or enum type. Erroneous code example:
#![feature(optin_builtin_traits)] struct Foo; impl !Sync for Foo {} unsafe impl Send for &'static Foo {} // error: cross-crate traits with a default impl, like `core::marker::Send`, // can only be implemented for a struct/enum type, not // `&'static Foo`Run
Only structs and enums are permitted to impl Send, Sync, and other opt-out
trait, and the struct or enum must be local to the current crate. So, for
example, unsafe impl Send for Rc<Foo>
is not allowed.
The Sized
trait is a special trait built-in to the compiler for types with a
constant size known at compile-time. This trait is automatically implemented
for types as needed by the compiler, and it is currently disallowed to
explicitly implement it for a type.
An associated const was implemented when another trait item was expected. Erroneous code example:
trait Foo { type N; } struct Bar; impl Foo for Bar { const N : u32 = 0; // error: item `N` is an associated const, which doesn't match its // trait `<Bar as Foo>` }Run
Please verify that the associated const wasn't misspelled and the correct trait was implemented. Example:
struct Bar; trait Foo { type N; } impl Foo for Bar { type N = u32; // ok! }Run
Or:
struct Bar; trait Foo { const N : u32; } impl Foo for Bar { const N : u32 = 0; // ok! }Run
A method was implemented when another trait item was expected. Erroneous code example:
struct Bar; trait Foo { const N : u32; fn M(); } impl Foo for Bar { fn N() {} // error: item `N` is an associated method, which doesn't match its // trait `<Bar as Foo>` }Run
To fix this error, please verify that the method name wasn't misspelled and verify that you are indeed implementing the correct trait items. Example:
struct Bar; trait Foo { const N : u32; fn M(); } impl Foo for Bar { const N : u32 = 0; fn M() {} // ok! }Run
An associated type was implemented when another trait item was expected. Erroneous code example:
struct Bar; trait Foo { const N : u32; } impl Foo for Bar { type N = u32; // error: item `N` is an associated type, which doesn't match its // trait `<Bar as Foo>` }Run
Please verify that the associated type name wasn't misspelled and your implementation corresponds to the trait definition. Example:
struct Bar; trait Foo { type N; } impl Foo for Bar { type N = u32; // ok! }Run
Or:
struct Bar; trait Foo { const N : u32; } impl Foo for Bar { const N : u32 = 0; // ok! }Run
The types of any associated constants in a trait implementation must match the types in the trait definition. This error indicates that there was a mismatch.
Here's an example of this error:
trait Foo { const BAR: bool; } struct Bar; impl Foo for Bar { const BAR: u32 = 5; // error, expected bool, found u32 }Run
The Unsize trait should not be implemented directly. All implementations of Unsize are provided automatically by the compiler.
Erroneous code example:
#![feature(unsize)] use std::marker::Unsize; pub struct MyType; impl<T> Unsize<T> for MyType {}Run
If you are defining your own smart pointer type and would like to enable
conversion from a sized to an unsized type with the
DST coercion system, use CoerceUnsized
instead.
#![feature(coerce_unsized)] use std::ops::CoerceUnsized; pub struct MyType<T: ?Sized> { field_with_unsized_type: T, } impl<T, U> CoerceUnsized<MyType<U>> for MyType<T> where T: CoerceUnsized<U> {}Run
Private items cannot be publicly re-exported. This error indicates that you
attempted to pub use
a type or value that was not itself public.
Erroneous code example:
mod foo { const X: u32 = 1; } pub use foo::X; fn main() {}Run
The solution to this problem is to ensure that the items that you are
re-exporting are themselves marked with pub
:
mod foo { pub const X: u32 = 1; } pub use foo::X; fn main() {}Run
See the 'Use Declarations' section of the reference for more information on this topic:
Private modules cannot be publicly re-exported. This error indicates that you
attempted to pub use
a module that was not itself public.
Erroneous code example:
mod foo { pub const X: u32 = 1; } pub use foo as foo2; fn main() {}Run
The solution to this problem is to ensure that the module that you are
re-exporting is itself marked with pub
:
pub mod foo { pub const X: u32 = 1; } pub use foo as foo2; fn main() {}Run
See the 'Use Declarations' section of the reference for more information on this topic:
An attempt was made to implement Drop
on a concrete specialization of a
generic type. An example is shown below:
struct Foo<T> { t: T } impl Drop for Foo<u32> { fn drop(&mut self) {} }Run
This code is not legal: it is not possible to specialize Drop
to a subset of
implementations of a generic type. One workaround for this is to wrap the
generic type, as shown below:
struct Foo<T> { t: T } struct Bar { t: Foo<u32> } impl Drop for Bar { fn drop(&mut self) {} }Run
An attempt was made to implement Drop
on a specialization of a generic type.
An example is shown below:
trait Foo{} struct MyStruct<T> { t: T } impl<T: Foo> Drop for MyStruct<T> { fn drop(&mut self) {} }Run
This code is not legal: it is not possible to specialize Drop
to a subset of
implementations of a generic type. In order for this code to work, MyStruct
must also require that T
implements Foo
. Alternatively, another option is
to wrap the generic type in another that specializes appropriately:
trait Foo{} struct MyStruct<T> { t: T } struct MyStructWrapper<T: Foo> { t: MyStruct<T> } impl <T: Foo> Drop for MyStructWrapper<T> { fn drop(&mut self) {} }Run
This error indicates that a binary assignment operator like +=
or ^=
was
applied to a type that doesn't support it. For example:
let mut x = 12f32; // error: binary operation `<<` cannot be applied to // type `f32` x <<= 2;Run
To fix this error, please check that this type implements this binary operation. Example:
let mut x = 12u32; // the `u32` type does implement the `ShlAssign` trait x <<= 2; // ok!Run
It is also possible to overload most operators for your own type by
implementing the [OP]Assign
traits from std::ops
.
Another problem you might be facing is this: suppose you've overloaded the +
operator for some type Foo
by implementing the std::ops::Add
trait for
Foo
, but you find that using +=
does not work, as in this example:
use std::ops::Add; struct Foo(u32); impl Add for Foo { type Output = Foo; fn add(self, rhs: Foo) -> Foo { Foo(self.0 + rhs.0) } } fn main() { let mut x: Foo = Foo(5); x += Foo(7); // error, `+= cannot be applied to the type `Foo` }Run
This is because AddAssign
is not automatically implemented, so you need to
manually implement it for your type.
A binary operation was attempted on a type which doesn't support it. Erroneous code example:
let x = 12f32; // error: binary operation `<<` cannot be applied to // type `f32` x << 2;Run
To fix this error, please check that this type implements this binary operation. Example:
let x = 12u32; // the `u32` type does implement it: // https://doc.rust-lang.org/stable/std/ops/trait.Shl.html x << 2; // ok!Run
It is also possible to overload most operators for your own type by
implementing traits from std::ops
.
String concatenation appends the string on the right to the string on the
left and may require reallocation. This requires ownership of the string
on the left. If something should be added to a string literal, move the
literal to the heap by allocating it with to_owned()
like in
"Your text".to_owned()
.
The maximum value of an enum was reached, so it cannot be automatically set in the next enum value. Erroneous code example:
#[deny(overflowing_literals)] enum Foo { X = 0x7fffffffffffffff, Y, // error: enum discriminant overflowed on value after // 9223372036854775807: i64; set explicitly via // Y = -9223372036854775808 if that is desired outcome }Run
To fix this, please set manually the next enum value or put the enum variant with the maximum value at the end of the enum. Examples:
enum Foo { X = 0x7fffffffffffffff, Y = 0, // ok! }Run
Or:
enum Foo { Y = 0, // ok! X = 0x7fffffffffffffff, }Run
When Trait2
is a subtrait of Trait1
(for example, when Trait2
has a
definition like trait Trait2: Trait1 { ... }
), it is not allowed to implement
Trait1
for Trait2
. This is because Trait2
already implements Trait1
by
definition, so it is not useful to do this.
Example:
trait Foo { fn foo(&self) { } } trait Bar: Foo { } trait Baz: Bar { } impl Bar for Baz { } // error, `Baz` implements `Bar` by definition impl Foo for Baz { } // error, `Baz` implements `Bar` which implements `Foo` impl Baz for Baz { } // error, `Baz` (trivially) implements `Baz` impl Baz for Bar { } // Note: This is OKRun
This error occurs when an attempt is made to use data captured by a closure, when that data may no longer exist. It's most commonly seen when attempting to return a closure:
fn foo() -> Box<Fn(u32) -> u32> { let x = 0u32; Box::new(|y| x + y) }Run
Notice that x
is stack-allocated by foo()
. By default, Rust captures
closed-over data by reference. This means that once foo()
returns, x
no
longer exists. An attempt to access x
within the closure would thus be
unsafe.
Another situation where this might be encountered is when spawning threads:
fn foo() { let x = 0u32; let y = 1u32; let thr = std::thread::spawn(|| { x + y }); }Run
Since our new thread runs in parallel, the stack frame containing x
and y
may well have disappeared by the time we try to use them. Even if we call
thr.join()
within foo (which blocks until thr
has completed, ensuring the
stack frame won't disappear), we will not succeed: the compiler cannot prove
that this behaviour is safe, and so won't let us do it.
The solution to this problem is usually to switch to using a move
closure.
This approach moves (or copies, where possible) data into the closure, rather
than taking references to it. For example:
fn foo() -> Box<Fn(u32) -> u32> { let x = 0u32; Box::new(move |y| x + y) }Run
Now that the closure has its own copy of the data, there's no need to worry about safety.
A struct without a field containing an unsized type cannot implement
CoerceUnsized
. An
unsized type
is any type that the compiler doesn't know the length or alignment of at
compile time. Any struct containing an unsized type is also unsized.
Example of erroneous code:
#![feature(coerce_unsized)] use std::ops::CoerceUnsized; struct Foo<T: ?Sized> { a: i32, } // error: Struct `Foo` has no unsized fields that need `CoerceUnsized`. impl<T, U> CoerceUnsized<Foo<U>> for Foo<T> where T: CoerceUnsized<U> {}Run
CoerceUnsized
is used to coerce one struct containing an unsized type
into another struct containing a different unsized type. If the struct
doesn't have any fields of unsized types then you don't need explicit
coercion to get the types you want. To fix this you can either
not try to implement CoerceUnsized
or you can add a field that is
unsized to the struct.
Example:
#![feature(coerce_unsized)] use std::ops::CoerceUnsized; // We don't need to impl `CoerceUnsized` here. struct Foo { a: i32, } // We add the unsized type field to the struct. struct Bar<T: ?Sized> { a: i32, b: T, } // The struct has an unsized field so we can implement // `CoerceUnsized` for it. impl<T, U> CoerceUnsized<Bar<U>> for Bar<T> where T: CoerceUnsized<U> {}Run
Note that CoerceUnsized
is mainly used by smart pointers like Box
, Rc
and Arc
to be able to mark that they can coerce unsized types that they
are pointing at.
A struct with more than one field containing an unsized type cannot implement
CoerceUnsized
. This only occurs when you are trying to coerce one of the
types in your struct to another type in the struct. In this case we try to
impl CoerceUnsized
from T
to U
which are both types that the struct
takes. An unsized type is any type that the compiler doesn't know the length
or alignment of at compile time. Any struct containing an unsized type is also
unsized.
Example of erroneous code:
#![feature(coerce_unsized)] use std::ops::CoerceUnsized; struct Foo<T: ?Sized, U: ?Sized> { a: i32, b: T, c: U, } // error: Struct `Foo` has more than one unsized field. impl<T, U> CoerceUnsized<Foo<U, T>> for Foo<T, U> {}Run
CoerceUnsized
only allows for coercion from a structure with a single
unsized type field to another struct with a single unsized type field.
In fact Rust only allows for a struct to have one unsized type in a struct
and that unsized type must be the last field in the struct. So having two
unsized types in a single struct is not allowed by the compiler. To fix this
use only one field containing an unsized type in the struct and then use
multiple structs to manage each unsized type field you need.
Example:
#![feature(coerce_unsized)] use std::ops::CoerceUnsized; struct Foo<T: ?Sized> { a: i32, b: T, } impl <T, U> CoerceUnsized<Foo<U>> for Foo<T> where T: CoerceUnsized<U> {} fn coerce_foo<T: CoerceUnsized<U>, U>(t: T) -> Foo<U> { Foo { a: 12i32, b: t } // we use coercion to get the `Foo<U>` type we need }Run
The type you are trying to impl CoerceUnsized
for is not a struct.
CoerceUnsized
can only be implemented for a struct. Unsized types are
already able to be coerced without an implementation of CoerceUnsized
whereas a struct containing an unsized type needs to know the unsized type
field it's containing is able to be coerced. An
unsized type
is any type that the compiler doesn't know the length or alignment of at
compile time. Any struct containing an unsized type is also unsized.
Example of erroneous code:
#![feature(coerce_unsized)] use std::ops::CoerceUnsized; struct Foo<T: ?Sized> { a: T, } // error: The type `U` is not a struct impl<T, U> CoerceUnsized<U> for Foo<T> {}Run
The CoerceUnsized
trait takes a struct type. Make sure the type you are
providing to CoerceUnsized
is a struct with only the last field containing an
unsized type.
Example:
#![feature(coerce_unsized)] use std::ops::CoerceUnsized; struct Foo<T> { a: T, } // The `Foo<U>` is a struct so `CoerceUnsized` can be implemented impl<T, U> CoerceUnsized<Foo<U>> for Foo<T> where T: CoerceUnsized<U> {}Run
Note that in Rust, structs can only contain an unsized type if the field containing the unsized type is the last and only unsized type field in the struct.
No description.
Auto traits cannot have methods or associated items. For more information see the opt-in builtin traits RFC.
It is not allowed to use or capture an uninitialized variable. For example:
fn main() { let x: i32; let y = x; // error, use of possibly uninitialized variable }Run
To fix this, ensure that any declared variables are initialized before being used. Example:
fn main() { let x: i32 = 0; let y = x; // ok! }Run
This error occurs when an attempt is made to use a variable after its contents have been moved elsewhere. For example:
struct MyStruct { s: u32 } fn main() { let mut x = MyStruct{ s: 5u32 }; let y = x; x.s = 6; println!("{}", x.s); }Run
Since MyStruct
is a type that is not marked Copy
, the data gets moved out
of x
when we set y
. This is fundamental to Rust's ownership system: outside
of workarounds like Rc
, a value cannot be owned by more than one variable.
Sometimes we don't need to move the value. Using a reference, we can let another
function borrow the value without changing its ownership. In the example below,
we don't actually have to move our string to calculate_length
, we can give it
a reference to it with &
instead.
fn main() { let s1 = String::from("hello"); let len = calculate_length(&s1); println!("The length of '{}' is {}.", s1, len); } fn calculate_length(s: &String) -> usize { s.len() }Run
A mutable reference can be created with &mut
.
Sometimes we don't want a reference, but a duplicate. All types marked Clone
can be duplicated by calling .clone()
. Subsequent changes to a clone do not
affect the original variable.
Most types in the standard library are marked Clone
. The example below
demonstrates using clone()
on a string. s1
is first set to "many", and then
copied to s2
. Then the first character of s1
is removed, without affecting
s2
. "any many" is printed to the console.
fn main() { let mut s1 = String::from("many"); let s2 = s1.clone(); s1.remove(0); println!("{} {}", s1, s2); }Run
If we control the definition of a type, we can implement Clone
on it ourselves
with #[derive(Clone)]
.
Some types have no ownership semantics at all and are trivial to duplicate. An
example is i32
and the other number types. We don't have to call .clone()
to
clone them, because they are marked Copy
in addition to Clone
. Implicit
cloning is more convienient in this case. We can mark our own types Copy
if
all their members also are marked Copy
.
In the example below, we implement a Point
type. Because it only stores two
integers, we opt-out of ownership semantics with Copy
. Then we can
let p2 = p1
without p1
being moved.
#[derive(Copy, Clone)] struct Point { x: i32, y: i32 } fn main() { let mut p1 = Point{ x: -1, y: 2 }; let p2 = p1; p1.x = 1; println!("p1: {}, {}", p1.x, p1.y); println!("p2: {}, {}", p2.x, p2.y); }Run
Alternatively, if we don't control the struct's definition, or mutable shared
ownership is truly required, we can use Rc
and RefCell
:
use std::cell::RefCell; use std::rc::Rc; struct MyStruct { s: u32 } fn main() { let mut x = Rc::new(RefCell::new(MyStruct{ s: 5u32 })); let y = x.clone(); x.borrow_mut().s = 6; println!("{}", x.borrow().s); }Run
With this approach, x and y share ownership of the data via the Rc
(reference
count type). RefCell
essentially performs runtime borrow checking: ensuring
that at most one writer or multiple readers can access the data at any one time.
If you wish to learn more about ownership in Rust, start with the chapter in the Book:
This error occurs when an attempt is made to partially reinitialize a structure that is currently uninitialized.
For example, this can happen when a drop has taken place:
struct Foo { a: u32, } impl Drop for Foo { fn drop(&mut self) { /* ... */ } } let mut x = Foo { a: 1 }; drop(x); // `x` is now uninitialized x.a = 2; // error, partial reinitialization of uninitialized structure `t`Run
This error can be fixed by fully reinitializing the structure in question:
struct Foo { a: u32, } impl Drop for Foo { fn drop(&mut self) { /* ... */ } } let mut x = Foo { a: 1 }; drop(x); x = Foo { a: 2 };Run
This error occurs when an attempt is made to reassign an immutable variable. For example:
fn main() { let x = 3; x = 5; // error, reassignment of immutable variable }Run
By default, variables in Rust are immutable. To fix this error, add the keyword
mut
after the keyword let
when declaring the variable. For example:
fn main() { let mut x = 3; x = 5; }Run
This error occurs when an attempt is made to mutate or mutably reference data that a closure has captured immutably. Examples of this error are shown below:
// Accepts a function or a closure that captures its environment immutably. // Closures passed to foo will not be able to mutate their closed-over state. fn foo<F: Fn()>(f: F) { } // Attempts to mutate closed-over data. Error message reads: // `cannot assign to data in a captured outer variable...` fn mutable() { let mut x = 0u32; foo(|| x = 2); } // Attempts to take a mutable reference to closed-over data. Error message // reads: `cannot borrow data mutably in a captured outer variable...` fn mut_addr() { let mut x = 0u32; foo(|| { let y = &mut x; }); }Run
The problem here is that foo is defined as accepting a parameter of type Fn
.
Closures passed into foo will thus be inferred to be of type Fn
, meaning that
they capture their context immutably.
If the definition of foo
is under your control, the simplest solution is to
capture the data mutably. This can be done by defining foo
to take FnMut
rather than Fn:
fn foo<F: FnMut()>(f: F) { }Run
Alternatively, we can consider using the Cell
and RefCell
types to achieve
interior mutability through a shared reference. Our example's mutable
function could be redefined as below:
use std::cell::Cell; fn foo<F: Fn()>(f: F) { } fn mutable() { let x = Cell::new(0u32); foo(|| x.set(2)); }Run
You can read more about cell types in the API documentation:
E0388 was removed and is no longer issued.
An attempt was made to mutate data using a non-mutable reference. This
commonly occurs when attempting to assign to a non-mutable reference of a
mutable reference (&(&mut T)
).
Example of erroneous code:
struct FancyNum { num: u8, } fn main() { let mut fancy = FancyNum{ num: 5 }; let fancy_ref = &(&mut fancy); fancy_ref.num = 6; // error: cannot assign to data in a `&` reference println!("{}", fancy_ref.num); }Run
Here, &mut fancy
is mutable, but &(&mut fancy)
is not. Creating an
immutable reference to a value borrows it immutably. There can be multiple
references of type &(&mut T)
that point to the same value, so they must be
immutable to prevent multiple mutable references to the same value.
To fix this, either remove the outer reference:
struct FancyNum { num: u8, } fn main() { let mut fancy = FancyNum{ num: 5 }; let fancy_ref = &mut fancy; // `fancy_ref` is now &mut FancyNum, rather than &(&mut FancyNum) fancy_ref.num = 6; // No error! println!("{}", fancy_ref.num); }Run
Or make the outer reference mutable:
struct FancyNum { num: u8 } fn main() { let mut fancy = FancyNum{ num: 5 }; let fancy_ref = &mut (&mut fancy); // `fancy_ref` is now &mut(&mut FancyNum), rather than &(&mut FancyNum) fancy_ref.num = 6; // No error! println!("{}", fancy_ref.num); }Run
You tried to implement methods for a primitive type. Erroneous code example:
struct Foo { x: i32 } impl *mut Foo {} // error: only a single inherent implementation marked with // `#[lang = "mut_ptr"]` is allowed for the `*mut T` primitiveRun
This isn't allowed, but using a trait to implement a method is a good solution. Example:
struct Foo { x: i32 } trait Bar { fn bar(); } impl Bar for *mut Foo { fn bar() {} // ok! }Run
This error indicates that some types or traits depend on each other and therefore cannot be constructed.
The following example contains a circular dependency between two traits:
trait FirstTrait : SecondTrait { } trait SecondTrait : FirstTrait { }Run
This error indicates that a type or lifetime parameter has been declared but not actually used. Here is an example that demonstrates the error:
enum Foo<T> { Bar, }Run
If the type parameter was included by mistake, this error can be fixed by simply removing the type parameter, as shown below:
enum Foo { Bar, }Run
Alternatively, if the type parameter was intentionally inserted, it must be used. A simple fix is shown below:
enum Foo<T> { Bar(T), }Run
This error may also commonly be found when working with unsafe code. For example, when using raw pointers one may wish to specify the lifetime for which the pointed-at data is valid. An initial attempt (below) causes this error:
struct Foo<'a, T> { x: *const T, }Run
We want to express the constraint that Foo should not outlive 'a
, because
the data pointed to by T
is only valid for that lifetime. The problem is
that there are no actual uses of 'a
. It's possible to work around this
by adding a PhantomData type to the struct, using it to tell the compiler
to act as if the struct contained a borrowed reference &'a T
:
use std::marker::PhantomData; struct Foo<'a, T: 'a> { x: *const T, phantom: PhantomData<&'a T> }Run
PhantomData can also be used to express information about unused type parameters.
A type parameter which references Self
in its default value was not specified.
Example of erroneous code:
trait A<T=Self> {} fn together_we_will_rule_the_galaxy(son: &A) {} // error: the type parameter `T` must be explicitly specified in an // object type because its default value `Self` references the // type `Self`Run
A trait object is defined over a single, fully-defined trait. With a regular
default parameter, this parameter can just be substituted in. However, if the
default parameter is Self
, the trait changes for each concrete type; i.e.
i32
will be expected to implement A<i32>
, bool
will be expected to
implement A<bool>
, etc... These types will not share an implementation of a
fully-defined trait; instead they share implementations of a trait with
different parameters substituted in for each implementation. This is
irreconcilable with what we need to make a trait object work, and is thus
disallowed. Making the trait concrete by explicitly specifying the value of the
defaulted parameter will fix this issue. Fixed example:
trait A<T=Self> {} fn together_we_will_rule_the_galaxy(son: &A<i32>) {} // Ok!Run
A static was referred to by value by another static.
Erroneous code examples:
static A: u32 = 0; static B: u32 = A; // error: cannot refer to other statics by value, use the // address-of operator or a constant insteadRun
A static cannot be referred by value. To fix this issue, either use a constant:
const A: u32 = 0; // `A` is now a constant static B: u32 = A; // ok!Run
Or refer to A
by reference:
static A: u32 = 0; static B: &'static u32 = &A; // ok!Run
The value assigned to a constant scalar must be known at compile time, which is not the case when comparing raw pointers.
Erroneous code example:
static FOO: i32 = 42; static BAR: i32 = 42; static BAZ: bool = { (&FOO as *const i32) == (&BAR as *const i32) }; // error: raw pointers cannot be compared in statics!Run
The address assigned by the linker to FOO
and BAR
may or may not
be identical, so the value of BAZ
can't be determined.
If you want to do the comparison, please do it at run-time.
For example:
static FOO: i32 = 42; static BAR: i32 = 42; let baz: bool = { (&FOO as *const i32) == (&BAR as *const i32) }; // baz isn't a constant expression so it's okRun
The value behind a raw pointer can't be determined at compile-time (or even link-time), which means it can't be used in a constant expression. Erroneous code example:
const REG_ADDR: *const u8 = 0x5f3759df as *const u8; const VALUE: u8 = unsafe { *REG_ADDR }; // error: raw pointers cannot be dereferenced in constantsRun
A possible fix is to dereference your pointer at some point in run-time.
For example:
const REG_ADDR: *const u8 = 0x5f3759df as *const u8; let reg_value = unsafe { *REG_ADDR };Run
In Rust 1.3, the default object lifetime bounds are expected to change, as described in RFC 1156. You are getting a warning because the compiler thinks it is possible that this change will cause a compilation error in your code. It is possible, though unlikely, that this is a false alarm.
The heart of the change is that where &'a Box<SomeTrait>
used to default to
&'a Box<SomeTrait+'a>
, it now defaults to &'a Box<SomeTrait+'static>
(here,
SomeTrait
is the name of some trait type). Note that the only types which are
affected are references to boxes, like &Box<SomeTrait>
or
&[Box<SomeTrait>]
. More common types like &SomeTrait
or Box<SomeTrait>
are unaffected.
To silence this warning, edit your code to use an explicit bound. Most of the
time, this means that you will want to change the signature of a function that
you are calling. For example, if the error is reported on a call like foo(x)
,
and foo
is defined as follows:
fn foo(arg: &Box<SomeTrait>) { /* ... */ }Run
You might change it to:
fn foo<'a>(arg: &'a Box<SomeTrait+'a>) { /* ... */ }Run
This explicitly states that you expect the trait object SomeTrait
to contain
references (with a maximum lifetime of 'a
).
You implemented a trait, overriding one or more of its associated types but did not reimplement its default methods.
Example of erroneous code:
#![feature(associated_type_defaults)] pub trait Foo { type Assoc = u8; fn bar(&self) {} } impl Foo for i32 { // error - the following trait items need to be reimplemented as // `Assoc` was overridden: `bar` type Assoc = i32; }Run
To fix this, add an implementation for each default method from the trait:
#![feature(associated_type_defaults)] pub trait Foo { type Assoc = u8; fn bar(&self) {} } impl Foo for i32 { type Assoc = i32; fn bar(&self) {} // ok! }Run
Inner items do not inherit type parameters from the functions they are embedded in.
Erroneous code example:
fn foo<T>(x: T) { fn bar(y: T) { // T is defined in the "outer" function // .. } bar(x); }Run
Nor will this:
fn foo<T>(x: T) { type MaybeT = Option<T>; // ... }Run
Or this:
fn foo<T>(x: T) { struct Foo { x: T, } // ... }Run
Items inside functions are basically just like top-level items, except that they can only be used from the function they are in.
There are a couple of solutions for this.
If the item is a function, you may use a closure:
fn foo<T>(x: T) { let bar = |y: T| { // explicit type annotation may not be necessary // .. }; bar(x); }Run
For a generic item, you can copy over the parameters:
fn foo<T>(x: T) { fn bar<T>(y: T) { // .. } bar(x); }Run
fn foo<T>(x: T) { type MaybeT<T> = Option<T>; }Run
Be sure to copy over any bounds as well:
fn foo<T: Copy>(x: T) { fn bar<T: Copy>(y: T) { // .. } bar(x); }Run
fn foo<T: Copy>(x: T) { struct Foo<T: Copy> { x: T, } }Run
This may require additional type hints in the function body.
In case the item is a function inside an impl
, defining a private helper
function might be easier:
impl<T> Foo<T> { pub fn foo(&self, x: T) { self.bar(x); } fn bar(&self, y: T) { // .. } }Run
For default impls in traits, the private helper solution won't work, however closures or copying the parameters should still work.
Some type parameters have the same name.
Erroneous code example:
fn foo<T, T>(s: T, u: T) {} // error: the name `T` is already used for a type // parameter in this type parameter listRun
Please verify that none of the type parameterss are misspelled, and rename any clashing parameters. Example:
fn foo<T, Y>(s: T, u: Y) {} // ok!Run
You tried to implement something which was not a trait on an object.
Erroneous code example:
struct Foo; struct Bar; impl Foo for Bar {} // error: `Foo` is not a traitRun
Please verify that you didn't misspell the trait's name or otherwise use the wrong identifier. Example:
trait Foo { // some functions } struct Bar; impl Foo for Bar { // ok! // functions implementation }Run
The code refers to a trait that is not in scope.
Erroneous code example:
struct Foo; impl SomeTrait for Foo {} // error: trait `SomeTrait` is not in scopeRun
Please verify that the name of the trait wasn't misspelled and ensure that it was imported. Example:
// solution 1: use some_file::SomeTrait; // solution 2: trait SomeTrait { // some functions } struct Foo; impl SomeTrait for Foo { // ok! // implements functions }Run
A definition of a method not in the implemented trait was given in a trait implementation.
Erroneous code example:
trait Foo { fn a(); } struct Bar; impl Foo for Bar { fn a() {} fn b() {} // error: method `b` is not a member of trait `Foo` }Run
Please verify you didn't misspell the method name and you used the correct trait. First example:
trait Foo { fn a(); fn b(); } struct Bar; impl Foo for Bar { fn a() {} fn b() {} // ok! }Run
Second example:
trait Foo { fn a(); } struct Bar; impl Foo for Bar { fn a() {} } impl Bar { fn b() {} }Run
An "or" pattern was used where the variable bindings are not consistently bound across patterns.
Erroneous code example:
match x { Some(y) | None => { /* use y */ } // error: variable `y` from pattern #1 is // not bound in pattern #2 _ => () }Run
Here, y
is bound to the contents of the Some
and can be used within the
block corresponding to the match arm. However, in case x
is None
, we have
not specified what y
is, and the block will use a nonexistent variable.
To fix this error, either split into multiple match arms:
let x = Some(1); match x { Some(y) => { /* use y */ } None => { /* ... */ } }Run
or, bind the variable to a field of the same type in all sub-patterns of the or pattern:
let x = (0, 2); match x { (0, y) | (y, 0) => { /* use y */} _ => {} }Run
In this example, if x
matches the pattern (0, _)
, the second field is set
to y
. If it matches (_, 0)
, the first field is set to y
; so in all
cases y
is set to some value.
An "or" pattern was used where the variable bindings are not consistently bound across patterns.
Erroneous code example:
let x = (0, 2); match x { (0, ref y) | (y, 0) => { /* use y */} // error: variable `y` is bound with // different mode in pattern #2 // than in pattern #1 _ => () }Run
Here, y
is bound by-value in one case and by-reference in the other.
To fix this error, just use the same mode in both cases.
Generally using ref
or ref mut
where not already used will fix this:
let x = (0, 2); match x { (0, ref y) | (ref y, 0) => { /* use y */} _ => () }Run
Alternatively, split the pattern:
let x = (0, 2); match x { (y, 0) => { /* use y */ } (0, ref y) => { /* use y */} _ => () }Run
The Self
keyword was used outside an impl or a trait.
Erroneous code example:
<Self>::foo; // error: use of `Self` outside of an impl or traitRun
The Self
keyword represents the current type, which explains why it can only
be used inside an impl or a trait. It gives access to the associated items of a
type:
trait Foo { type Bar; } trait Baz : Foo { fn bar() -> Self::Bar; // like this }Run
However, be careful when two types have a common associated type:
trait Foo { type Bar; } trait Foo2 { type Bar; } trait Baz : Foo + Foo2 { fn bar() -> Self::Bar; // error: ambiguous associated type `Bar` in bounds of `Self` }Run
This problem can be solved by specifying from which trait we want to use the
Bar
type:
trait Foo { type Bar; } trait Foo2 { type Bar; } trait Baz : Foo + Foo2 { fn bar() -> <Self as Foo>::Bar; // ok! }Run
The type name used is not in scope.
Erroneous code examples:
impl Something {} // error: type name `Something` is not in scope // or: trait Foo { fn bar(N); // error: type name `N` is not in scope } // or: fn foo(x: T) {} // type name `T` is not in scopeRun
To fix this error, please verify you didn't misspell the type name, you did declare it or imported it into the scope. Examples:
struct Something; impl Something {} // ok! // or: trait Foo { type N; fn bar(_: Self::N); // ok! } // or: fn foo<T>(x: T) {} // ok!Run
Another case that causes this error is when a type is imported into a parent
module. To fix this, you can follow the suggestion and use File directly or
use super::File;
which will import the types from the parent namespace. An
example that causes this error is below:
use std::fs::File; mod foo { fn some_function(f: File) {} }Run
use std::fs::File; mod foo { // either use super::File; // or // use std::fs::File; fn foo(f: File) {} }Run
More than one function parameter have the same name.
Erroneous code example:
fn foo(f: i32, f: i32) {} // error: identifier `f` is bound more than // once in this parameter listRun
Please verify you didn't misspell parameters' name. Example:
fn foo(f: i32, g: i32) {} // ok!Run
An identifier is bound more than once in a pattern.
Erroneous code example:
match (1, 2) { (x, x) => {} // error: identifier `x` is bound more than once in the // same pattern }Run
Please verify you didn't misspell identifiers' name. Example:
match (1, 2) { (x, y) => {} // ok! }Run
Or maybe did you mean to unify? Consider using a guard:
match (A, B, C) { (x, x2, see) if x == x2 => { /* A and B are equal, do one thing */ } (y, z, see) => { /* A and B unequal; do another thing */ } }Run
You are trying to use an identifier that is either undefined or not a struct. Erroneous code example:
fn main () { let x = Foo { x: 1, y: 2 }; }Run
In this case, Foo
is undefined, so it inherently isn't anything, and
definitely not a struct.
fn main () { let foo = 1; let x = foo { x: 1, y: 2 }; }Run
In this case, foo
is defined, but is not a struct, so Rust can't use it as
one.
A struct
variant name was used like a function name.
Erroneous code example:
struct Foo { a: bool }; let f = Foo(); // error: `Foo` is a struct variant name, but this expression uses // it like a function nameRun
Please verify you didn't misspell the name of what you actually wanted to use here. Example:
fn Foo() -> u32 { 0 } let f = Foo(); // ok!Run
The self
keyword was used in a static method.
Erroneous code example:
struct Foo; impl Foo { fn bar(self) {} fn foo() { self.bar(); // error: `self` is not available in a static method. } }Run
Please check if the method's argument list should have contained self
,
&self
, or &mut self
(in case you didn't want to create a static
method), and add it if so. Example:
struct Foo; impl Foo { fn bar(self) {} fn foo(self) { self.bar(); // ok! } }Run
An unresolved name was used.
Erroneous code examples:
something_that_doesnt_exist::foo; // error: unresolved name `something_that_doesnt_exist::foo` // or: trait Foo { fn bar() { Self; // error: unresolved name `Self` } } // or: let x = unknown_variable; // error: unresolved name `unknown_variable`Run
Please verify that the name wasn't misspelled and ensure that the identifier being referred to is valid for the given situation. Example:
enum something_that_does_exist { Foo, }Run
Or:
mod something_that_does_exist { pub static foo : i32 = 0i32; } something_that_does_exist::foo; // ok!Run
Or:
let unknown_variable = 12u32; let x = unknown_variable; // ok!Run
If the item is not defined in the current module, it must be imported using a
use
statement, like so:
use foo::bar; bar();Run
If the item you are importing is not defined in some super-module of the
current module, then it must also be declared as public (e.g., pub fn
).
An undeclared label was used.
Erroneous code example:
loop { break 'a; // error: use of undeclared label `'a` }Run
Please verify you spelt or declare the label correctly. Example:
'a: loop { break 'a; // ok! }Run
A type or module has been defined more than once.
Erroneous code example:
struct Bar; struct Bar; // error: duplicate definition of value `Bar`Run
Please verify you didn't misspell the type/module's name or remove/rename the duplicated one. Example:
struct Bar; struct Bar2; // ok!Run
The self
keyword cannot appear alone as the last segment in a use
declaration.
Erroneous code example:
use std::fmt::self; // error: `self` imports are only allowed within a { } listRun
To use a namespace itself in addition to some of its members, self
may appear
as part of a brace-enclosed list of imports:
use std::fmt::{self, Debug};Run
If you only want to import the namespace, do so directly:
use std::fmt;Run
The self
import appears more than once in the list.
Erroneous code example:
use something::{self, self}; // error: `self` import can only appear once in // the listRun
Please verify you didn't misspell the import name or remove the duplicated
self
import. Example:
use something::{self}; // ok!Run
An invalid self
import was made.
Erroneous code example:
use {self}; // error: `self` import can only appear in an import list with a // non-empty prefixRun
You cannot import the current module into itself, please remove this import or verify you didn't misspell it.
An import was unresolved.
Erroneous code example:
use something::Foo; // error: unresolved import `something::Foo`.Run
Paths in use
statements are relative to the crate root. To import items
relative to the current and parent modules, use the self::
and super::
prefixes, respectively. Also verify that you didn't misspell the import
name and that the import exists in the module from where you tried to
import it. Example:
use self::something::Foo; // ok! mod something { pub struct Foo; }Run
Or, if you tried to use a module from an external crate, you may have missed
the extern crate
declaration (which is usually placed in the crate root):
extern crate core; // Required to use the `core` crate use core::any;Run
An undeclared type or module was used.
Erroneous code example:
let map = HashMap::new(); // error: failed to resolve. Use of undeclared type or module `HashMap`Run
Please verify you didn't misspell the type/module's name or that you didn't forgot to import it:
use std::collections::HashMap; // HashMap has been imported. let map: HashMap<u32, u32> = HashMap::new(); // So it can be used!Run
This error indicates that a variable usage inside an inner function is invalid because the variable comes from a dynamic environment. Inner functions do not have access to their containing environment.
Erroneous code example:
fn foo() { let y = 5; fn bar() -> u32 { y // error: can't capture dynamic environment in a fn item; use the // || { ... } closure form instead. } }Run
Functions do not capture local variables. To fix this error, you can replace the function with a closure:
fn foo() { let y = 5; let bar = || { y }; }Run
or replace the captured variable with a constant or a static item:
fn foo() { static mut X: u32 = 4; const Y: u32 = 5; fn bar() -> u32 { unsafe { X = 3; } Y } }Run
A non-constant value was used in a constant expression.
Erroneous code example:
let foo = 42; let a: [u8; foo]; // error: attempt to use a non-constant value in a constantRun
To fix this error, please replace the value with a constant. Example:
let a: [u8; 42]; // ok!Run
Or:
const FOO: usize = 42; let a: [u8; FOO]; // ok!Run
The functional record update syntax is only allowed for structs. (Struct-like enum variants don't qualify, for example.)
Erroneous code example:
enum PublicationFrequency { Weekly, SemiMonthly { days: (u8, u8), annual_special: bool }, } fn one_up_competitor(competitor_frequency: PublicationFrequency) -> PublicationFrequency { match competitor_frequency { PublicationFrequency::Weekly => PublicationFrequency::SemiMonthly { days: (1, 15), annual_special: false }, c @ PublicationFrequency::SemiMonthly{ .. } => PublicationFrequency::SemiMonthly { annual_special: true, ..c // error: functional record update // syntax requires a struct } } }Run
Rewrite the expression without functional record update syntax:
enum PublicationFrequency { Weekly, SemiMonthly { days: (u8, u8), annual_special: bool }, } fn one_up_competitor(competitor_frequency: PublicationFrequency) -> PublicationFrequency { match competitor_frequency { PublicationFrequency::Weekly => PublicationFrequency::SemiMonthly { days: (1, 15), annual_special: false }, PublicationFrequency::SemiMonthly{ days, .. } => PublicationFrequency::SemiMonthly { days, annual_special: true // ok! } } }Run
Trait implementations can only implement associated types that are members of the trait in question. This error indicates that you attempted to implement an associated type whose name does not match the name of any associated type in the trait.
Erroneous code example:
trait Foo {} impl Foo for i32 { type Bar = bool; }Run
The solution to this problem is to remove the extraneous associated type:
trait Foo {} impl Foo for i32 {}Run
Trait implementations can only implement associated constants that are members of the trait in question. This error indicates that you attempted to implement an associated constant whose name does not match the name of any associated constant in the trait.
Erroneous code example:
trait Foo {} impl Foo for i32 { const BAR: bool = true; }Run
The solution to this problem is to remove the extraneous associated constant:
trait Foo {} impl Foo for i32 {}Run
The length of the platform-intrinsic function simd_shuffle
wasn't specified. Erroneous code example:
#![feature(platform_intrinsics)] extern "platform-intrinsic" { fn simd_shuffle<A,B>(a: A, b: A, c: [u32; 8]) -> B; // error: invalid `simd_shuffle`, needs length: `simd_shuffle` }Run
The simd_shuffle
function needs the length of the array passed as
last parameter in its name. Example:
#![feature(platform_intrinsics)] extern "platform-intrinsic" { fn simd_shuffle8<A,B>(a: A, b: A, c: [u32; 8]) -> B; }Run
A platform-specific intrinsic function has the wrong number of type parameters. Erroneous code example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct f64x2(f64, f64); extern "platform-intrinsic" { fn x86_mm_movemask_pd<T>(x: f64x2) -> i32; // error: platform-specific intrinsic has wrong number of type // parameters }Run
Please refer to the function declaration to see if it corresponds with yours. Example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct f64x2(f64, f64); extern "platform-intrinsic" { fn x86_mm_movemask_pd(x: f64x2) -> i32; }Run
An unknown platform-specific intrinsic function was used. Erroneous code example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16); extern "platform-intrinsic" { fn x86_mm_adds_ep16(x: i16x8, y: i16x8) -> i16x8; // error: unrecognized platform-specific intrinsic function }Run
Please verify that the function name wasn't misspelled, and ensure that it is declared in the rust source code (in the file src/librustc_platform_intrinsics/x86.rs). Example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16); extern "platform-intrinsic" { fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i16x8; // ok! }Run
Intrinsic argument(s) and/or return value have the wrong type. Erroneous code example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct i8x16(i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8, i8); #[repr(simd)] struct i32x4(i32, i32, i32, i32); #[repr(simd)] struct i64x2(i64, i64); extern "platform-intrinsic" { fn x86_mm_adds_epi16(x: i8x16, y: i32x4) -> i64x2; // error: intrinsic arguments/return value have wrong type }Run
To fix this error, please refer to the function declaration to give it the awaited types. Example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16); extern "platform-intrinsic" { fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i16x8; // ok! }Run
Intrinsic argument(s) and/or return value have the wrong type. Erroneous code example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16); #[repr(simd)] struct i64x8(i64, i64, i64, i64, i64, i64, i64, i64); extern "platform-intrinsic" { fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i64x8; // error: intrinsic argument/return value has wrong type }Run
To fix this error, please refer to the function declaration to give it the awaited types. Example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16); extern "platform-intrinsic" { fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i16x8; // ok! }Run
A platform-specific intrinsic function has wrong number of arguments. Erroneous code example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct f64x2(f64, f64); extern "platform-intrinsic" { fn x86_mm_movemask_pd(x: f64x2, y: f64x2, z: f64x2) -> i32; // error: platform-specific intrinsic has invalid number of arguments }Run
Please refer to the function declaration to see if it corresponds with yours. Example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] struct f64x2(f64, f64); extern "platform-intrinsic" { fn x86_mm_movemask_pd(x: f64x2) -> i32; // ok! }Run
A private trait was used on a public type parameter bound. Erroneous code examples:
#![deny(private_in_public)] trait Foo { fn dummy(&self) { } } pub trait Bar : Foo {} // error: private trait in public interface pub struct Bar2<T: Foo>(pub T); // same error pub fn foo<T: Foo> (t: T) {} // same errorRun
To solve this error, please ensure that the trait is also public. The trait
can be made inaccessible if necessary by placing it into a private inner
module, but it still has to be marked with pub
. Example:
pub trait Foo { // we set the Foo trait public fn dummy(&self) { } } pub trait Bar : Foo {} // ok! pub struct Bar2<T: Foo>(pub T); // ok! pub fn foo<T: Foo> (t: T) {} // ok!Run
A private type was used in a public type signature. Erroneous code example:
#![deny(private_in_public)] mod Foo { struct Bar(u32); pub fn bar() -> Bar { // error: private type in public interface Bar(0) } }Run
To solve this error, please ensure that the type is also public. The type
can be made inaccessible if necessary by placing it into a private inner
module, but it still has to be marked with pub
.
Example:
mod Foo { pub struct Bar(u32); // we set the Bar type public pub fn bar() -> Bar { // ok! Bar(0) } }Run
The pub
keyword was used inside a function. Erroneous code example:
fn foo() { pub struct Bar; // error: visibility has no effect inside functions }Run
Since we cannot access items defined inside a function, the visibility of its
items does not impact outer code. So using the pub
keyword in this context
is invalid.
The pub
keyword was used inside a public enum. Erroneous code example:
pub enum Foo { pub Bar, // error: unnecessary `pub` visibility }Run
Since the enum is already public, adding pub
on one its elements is
unnecessary. Example:
enum Foo { pub Bar, // not ok! }Run
This is the correct syntax:
pub enum Foo { Bar, // ok! }Run
A visibility qualifier was used when it was unnecessary. Erroneous code examples:
struct Bar; trait Foo { fn foo(); } pub impl Bar {} // error: unnecessary visibility qualifier pub impl Foo for Bar { // error: unnecessary visibility qualifier pub fn foo() {} // error: unnecessary visibility qualifier }Run
To fix this error, please remove the visibility qualifier when it is not required. Example:
struct Bar; trait Foo { fn foo(); } // Directly implemented methods share the visibility of the type itself, // so `pub` is unnecessary here impl Bar {} // Trait methods share the visibility of the trait, so `pub` is // unnecessary in either case impl Foo for Bar { fn foo() {} }Run
A struct constructor with private fields was invoked. Erroneous code example:
mod Bar { pub struct Foo { pub a: isize, b: isize, } } let f = Bar::Foo{ a: 0, b: 0 }; // error: field `b` of struct `Bar::Foo` // is privateRun
To fix this error, please ensure that all the fields of the struct are public, or implement a function for easy instantiation. Examples:
mod Bar { pub struct Foo { pub a: isize, pub b: isize, // we set `b` field public } } let f = Bar::Foo{ a: 0, b: 0 }; // ok!Run
Or:
mod Bar { pub struct Foo { pub a: isize, b: isize, // still private } impl Foo { pub fn new() -> Foo { // we create a method to instantiate `Foo` Foo { a: 0, b: 0 } } } } let f = Bar::Foo::new(); // ok!Run
An invalid lint attribute has been given. Erroneous code example:
#![allow(foo = "")] // error: malformed lint attributeRun
Lint attributes only accept a list of identifiers (where each identifier is a lint name). Ensure the attribute is of this form:
#![allow(foo)] // ok! // or: #![allow(foo, foo2)] // ok!Run
A lint check attribute was overruled by a forbid
directive set as an
attribute on an enclosing scope, or on the command line with the -F
option.
Example of erroneous code:
#![forbid(non_snake_case)] #[allow(non_snake_case)] fn main() { let MyNumber = 2; // error: allow(non_snake_case) overruled by outer // forbid(non_snake_case) }Run
The forbid
lint setting, like deny
, turns the corresponding compiler
warning into a hard error. Unlike deny
, forbid
prevents itself from being
overridden by inner attributes.
If you're sure you want to override the lint check, you can change forbid
to
deny
(or use -D
instead of -F
if the forbid
setting was given as a
command-line option) to allow the inner lint check attribute:
#![deny(non_snake_case)] #[allow(non_snake_case)] fn main() { let MyNumber = 2; // ok! }Run
Otherwise, edit the code to pass the lint check, and remove the overruled attribute:
#![forbid(non_snake_case)] fn main() { let my_number = 2; }Run
A link name was given with an empty name. Erroneous code example:
#[link(name = "")] extern {} // error: #[link(name = "")] given with empty nameRun
The rust compiler cannot link to an external library if you don't give it its name. Example:
#[link(name = "some_lib")] extern {} // ok!Run
Linking with kind=framework
is only supported when targeting macOS,
as frameworks are specific to that operating system.
Erroneous code example:
#[link(name = "FooCoreServices", kind = "framework")] extern {} // OS used to compile is Linux for exampleRun
To solve this error you can use conditional compilation:
#[cfg_attr(target="macos", link(name = "FooCoreServices", kind = "framework"))] extern {}Run
See more: https://doc.rust-lang.org/book/first-edition/conditional-compilation.html
No description.
No description.
An unknown "kind" was specified for a link attribute. Erroneous code example:
#[link(kind = "wonderful_unicorn")] extern {} // error: unknown kind: `wonderful_unicorn`Run
Please specify a valid "kind" value, from one of the following:
A link was used without a name parameter. Erroneous code example:
#[link(kind = "dylib")] extern {} // error: #[link(...)] specified without `name = "foo"`Run
Please add the name parameter to allow the rust compiler to find the library you want. Example:
#[link(kind = "dylib", name = "some_lib")] extern {} // ok!Run
No description.
No description.
No description.
A plugin/crate was declared but cannot be found. Erroneous code example:
#![feature(plugin)] #![plugin(cookie_monster)] // error: can't find crate for `cookie_monster` extern crate cake_is_a_lie; // error: can't find crate for `cake_is_a_lie`Run
You need to link your code to the relevant crate in order to be able to use it
(through Cargo or the -L
option of rustc example). Plugins are crates as
well, and you link to them the same way.
No description.
No description.
Macro import declarations were malformed.
Erroneous code examples:
#[macro_use(a_macro(another_macro))] // error: invalid import declaration extern crate core as some_crate; #[macro_use(i_want = "some_macros")] // error: invalid import declaration extern crate core as another_crate;Run
This is a syntax error at the level of attribute declarations. The proper syntax for macro imports is the following:
// In some_crate: #[macro_export] macro_rules! get_tacos { ... } #[macro_export] macro_rules! get_pimientos { ... } // In your crate: #[macro_use(get_tacos, get_pimientos)] // It imports `get_tacos` and extern crate some_crate; // `get_pimientos` macros from some_crateRun
If you would like to import all exported macros, write macro_use
with no
arguments.
Macro re-export declarations were empty or malformed.
Erroneous code examples:
#[macro_reexport] // error: no macros listed for export extern crate core as macros_for_good; #[macro_reexport(fun_macro = "foo")] // error: not a macro identifier extern crate core as other_macros_for_good;Run
This is a syntax error at the level of attribute declarations.
Currently, macro_reexport
requires at least one macro name to be listed.
Unlike macro_use
, listing no names does not re-export all macros from the
given crate.
Decide which macros you would like to export and list them properly.
These are proper re-export declarations:
#[macro_reexport(some_macro, another_macro)] extern crate macros_for_good;Run
A non-root module attempts to import macros from another crate.
Example of erroneous code:
mod foo { #[macro_use(debug_assert)] // error: must be at crate root to import extern crate core; // macros from another crate fn run_macro() { debug_assert!(true); } }Run
Only extern crate
imports at the crate root level are allowed to import
macros.
Either move the macro import to crate root or do without the foreign macros. This will work:
#[macro_use(debug_assert)] extern crate core; mod foo { fn run_macro() { debug_assert!(true); } }Run
A macro listed for import was not found.
Erroneous code example:
#[macro_use(drink, be_merry)] // error: imported macro not found extern crate alloc; fn main() { // ... }Run
Either the listed macro is not contained in the imported crate, or it is not exported from the given crate.
This could be caused by a typo. Did you misspell the macro's name?
Double-check the names of the macros listed for import, and that the crate in question exports them.
A working version would be:
// In some_crate crate: #[macro_export] macro_rules! eat { ... } #[macro_export] macro_rules! drink { ... } // In your crate: #[macro_use(eat, drink)] extern crate some_crate; //ok!Run
A macro listed for re-export was not found.
Erroneous code example:
#[macro_reexport(drink, be_merry)] extern crate alloc; fn main() { // ... }Run
Either the listed macro is not contained in the imported crate, or it is not exported from the given crate.
This could be caused by a typo. Did you misspell the macro's name?
Double-check the names of the macros listed for re-export, and that the crate in question exports them.
A working version:
// In some_crate crate: #[macro_export] macro_rules! eat { ... } #[macro_export] macro_rules! drink { ... } // In your_crate: #[macro_reexport(eat, drink)] extern crate some_crate;Run
No description.
No description.
No description.
No description.
No description.
No description.
A lifetime bound was not satisfied.
Erroneous code example:
// Check that the explicit lifetime bound (`'SnowWhite`, in this example) must // outlive all the superbounds from the trait (`'kiss`, in this example). trait Wedding<'t>: 't { } struct Prince<'kiss, 'SnowWhite> { child: Box<Wedding<'kiss> + 'SnowWhite>, // error: lifetime bound not satisfied }Run
In this example, the 'SnowWhite
lifetime is supposed to outlive the 'kiss
lifetime but the declaration of the Prince
struct doesn't enforce it. To fix
this issue, you need to specify it:
trait Wedding<'t>: 't { } struct Prince<'kiss, 'SnowWhite: 'kiss> { // You say here that 'kiss must live // longer than 'SnowWhite. child: Box<Wedding<'kiss> + 'SnowWhite>, // And now it's all good! }Run
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
A reference has a longer lifetime than the data it references.
Erroneous code example:
// struct containing a reference requires a lifetime parameter, // because the data the reference points to must outlive the struct (see E0106) struct Struct<'a> { ref_i32: &'a i32, } // However, a nested struct like this, the signature itself does not tell // whether 'a outlives 'b or the other way around. // So it could be possible that 'b of reference outlives 'a of the data. struct Nested<'a, 'b> { ref_struct: &'b Struct<'a>, // compile error E0491 }Run
To fix this issue, you can specify a bound to the lifetime like below:
struct Struct<'a> { ref_i32: &'a i32, } // 'a: 'b means 'a outlives 'b struct Nested<'a: 'b, 'b> { ref_struct: &'b Struct<'a>, }Run
A borrow of a constant containing interior mutability was attempted. Erroneous code example:
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT}; const A: AtomicUsize = ATOMIC_USIZE_INIT; static B: &'static AtomicUsize = &A; // error: cannot borrow a constant which may contain interior mutability, // create a static insteadRun
A const
represents a constant value that should never change. If one takes
a &
reference to the constant, then one is taking a pointer to some memory
location containing the value. Normally this is perfectly fine: most values
can't be changed via a shared &
pointer, but interior mutability would allow
it. That is, a constant value could be mutated. On the other hand, a static
is
explicitly a single memory location, which can be mutated at will.
So, in order to solve this error, either use statics which are Sync
:
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT}; static A: AtomicUsize = ATOMIC_USIZE_INIT; static B: &'static AtomicUsize = &A; // ok!Run
You can also have this error while using a cell type:
use std::cell::Cell; const A: Cell<usize> = Cell::new(1); const B: &'static Cell<usize> = &A; // error: cannot borrow a constant which may contain interior mutability, // create a static instead // or: struct C { a: Cell<usize> } const D: C = C { a: Cell::new(1) }; const E: &'static Cell<usize> = &D.a; // error // or: const F: &'static C = &D; // errorRun
This is because cell types do operations that are not thread-safe. Due to this,
they don't implement Sync and thus can't be placed in statics. In this
case, StaticMutex
would work just fine, but it isn't stable yet:
https://doc.rust-lang.org/nightly/std/sync/struct.StaticMutex.html
However, if you still wish to use these types, you can achieve this by an unsafe wrapper:
use std::cell::Cell; use std::marker::Sync; struct NotThreadSafe<T> { value: Cell<T>, } unsafe impl<T> Sync for NotThreadSafe<T> {} static A: NotThreadSafe<usize> = NotThreadSafe { value : Cell::new(1) }; static B: &'static NotThreadSafe<usize> = &A; // ok!Run
Remember this solution is unsafe! You will have to ensure that accesses to the cell are synchronized.
No description.
A reference of an interior static was assigned to another const/static. Erroneous code example:
struct Foo { a: u32 } static S : Foo = Foo { a : 0 }; static A : &'static u32 = &S.a; // error: cannot refer to the interior of another static, use a // constant insteadRun
The "base" variable has to be a const if you want another static/const variable to refer to one of its fields. Example:
struct Foo { a: u32 } const S : Foo = Foo { a : 0 }; static A : &'static u32 = &S.a; // ok!Run
No description.
A lifetime name is shadowing another lifetime name. Erroneous code example:
struct Foo<'a> { a: &'a i32, } impl<'a> Foo<'a> { fn f<'a>(x: &'a i32) { // error: lifetime name `'a` shadows a lifetime // name that is already in scope } }Run
Please change the name of one of the lifetimes to remove this error. Example:
struct Foo<'a> { a: &'a i32, } impl<'a> Foo<'a> { fn f<'b>(x: &'b i32) { // ok! } } fn main() { }Run
A stability attribute was used outside of the standard library. Erroneous code example:
#[stable] // error: stability attributes may not be used outside of the // standard library fn foo() {}Run
It is not possible to use stability attributes outside of the standard library. Also, for now, it is not possible to write deprecation messages either.
No description.
A variable was borrowed as mutable more than once. Erroneous code example:
let mut i = 0; let mut x = &mut i; let mut a = &mut i; // error: cannot borrow `i` as mutable more than once at a timeRun
Please note that in rust, you can either have many immutable references, or one mutable reference. Take a look at https://doc.rust-lang.org/stable/book/references-and-borrowing.html for more information. Example:
let mut i = 0; let mut x = &mut i; // ok! // or: let mut i = 0; let a = &i; // ok! let b = &i; // still ok! let c = &i; // still ok!Run
A borrowed variable was used in another closure. Example of erroneous code:
fn you_know_nothing(jon_snow: &mut i32) { let nights_watch = || { *jon_snow = 2; }; let starks = || { *jon_snow = 3; // error: closure requires unique access to `jon_snow` // but it is already borrowed }; }Run
In here, jon_snow
is already borrowed by the nights_watch
closure, so it
cannot be borrowed by the starks
closure at the same time. To fix this issue,
you can put the closure in its own scope:
fn you_know_nothing(jon_snow: &mut i32) { { let nights_watch = || { *jon_snow = 2; }; } // At this point, `jon_snow` is free. let starks = || { *jon_snow = 3; }; }Run
Or, if the type implements the Clone
trait, you can clone it between
closures:
fn you_know_nothing(jon_snow: &mut i32) { let mut jon_copy = jon_snow.clone(); let nights_watch = || { jon_copy = 2; }; let starks = || { *jon_snow = 3; }; }Run
This error indicates that a mutable variable is being used while it is still captured by a closure. Because the closure has borrowed the variable, it is not available for use until the closure goes out of scope.
Note that a capture will either move or borrow a variable, but in this situation, the closure is borrowing the variable. Take a look at http://rustbyexample.com/fn/closures/capture.html for more information about capturing.
Example of erroneous code:
fn inside_closure(x: &mut i32) { // Actions which require unique access } fn outside_closure(x: &mut i32) { // Actions which require unique access } fn foo(a: &mut i32) { let bar = || { inside_closure(a) }; outside_closure(a); // error: cannot borrow `*a` as mutable because previous // closure requires unique access. }Run
To fix this error, you can place the closure in its own scope:
fn inside_closure(x: &mut i32) {} fn outside_closure(x: &mut i32) {} fn foo(a: &mut i32) { { let bar = || { inside_closure(a) }; } // borrow on `a` ends. outside_closure(a); // ok! }Run
Or you can pass the variable as a parameter to the closure:
fn inside_closure(x: &mut i32) {} fn outside_closure(x: &mut i32) {} fn foo(a: &mut i32) { let bar = |s: &mut i32| { inside_closure(s) }; outside_closure(a); bar(a); }Run
It may be possible to define the closure later:
fn inside_closure(x: &mut i32) {} fn outside_closure(x: &mut i32) {} fn foo(a: &mut i32) { outside_closure(a); let bar = || { inside_closure(a) }; }Run
This error indicates that you are trying to borrow a variable as mutable when it has already been borrowed as immutable.
Example of erroneous code:
fn bar(x: &mut i32) {} fn foo(a: &mut i32) { let ref y = a; // a is borrowed as immutable. bar(a); // error: cannot borrow `*a` as mutable because `a` is also borrowed // as immutable }Run
To fix this error, ensure that you don't have any other references to the variable before trying to access it mutably:
fn bar(x: &mut i32) {} fn foo(a: &mut i32) { bar(a); let ref y = a; // ok! }Run
For more information on the rust ownership system, take a look at https://doc.rust-lang.org/stable/book/references-and-borrowing.html.
A value was used after it was mutably borrowed.
Example of erroneous code:
fn main() { let mut value = 3; // Create a mutable borrow of `value`. This borrow // lives until the end of this function. let _borrow = &mut value; let _sum = value + 1; // error: cannot use `value` because // it was mutably borrowed }Run
In this example, value
is mutably borrowed by borrow
and cannot be
used to calculate sum
. This is not possible because this would violate
Rust's mutability rules.
You can fix this error by limiting the scope of the borrow:
fn main() { let mut value = 3; // By creating a new block, you can limit the scope // of the reference. { let _borrow = &mut value; // Use `_borrow` inside this block. } // The block has ended and with it the borrow. // You can now use `value` again. let _sum = value + 1; }Run
Or by cloning value
before borrowing it:
fn main() { let mut value = 3; // We clone `value`, creating a copy. let value_cloned = value.clone(); // The mutable borrow is a reference to `value` and // not to `value_cloned`... let _borrow = &mut value; // ... which means we can still use `value_cloned`, let _sum = value_cloned + 1; // even though the borrow only ends here. }Run
You can find more information about borrowing in the rust-book: http://doc.rust-lang.org/stable/book/references-and-borrowing.html
This error occurs when an attempt is made to move a borrowed variable into a closure.
Example of erroneous code:
struct FancyNum { num: u8, } fn main() { let fancy_num = FancyNum { num: 5 }; let fancy_ref = &fancy_num; let x = move || { println!("child function: {}", fancy_num.num); // error: cannot move `fancy_num` into closure because it is borrowed }; x(); println!("main function: {}", fancy_ref.num); }Run
Here, fancy_num
is borrowed by fancy_ref
and so cannot be moved into
the closure x
. There is no way to move a value into a closure while it is
borrowed, as that would invalidate the borrow.
If the closure can't outlive the value being moved, try using a reference rather than moving:
struct FancyNum { num: u8, } fn main() { let fancy_num = FancyNum { num: 5 }; let fancy_ref = &fancy_num; let x = move || { // fancy_ref is usable here because it doesn't move `fancy_num` println!("child function: {}", fancy_ref.num); }; x(); println!("main function: {}", fancy_num.num); }Run
If the value has to be borrowed and then moved, try limiting the lifetime of the borrow using a scoped block:
struct FancyNum { num: u8, } fn main() { let fancy_num = FancyNum { num: 5 }; { let fancy_ref = &fancy_num; println!("main function: {}", fancy_ref.num); // `fancy_ref` goes out of scope here } let x = move || { // `fancy_num` can be moved now (no more references exist) println!("child function: {}", fancy_num.num); }; x(); }Run
If the lifetime of a reference isn't enough, such as in the case of threading,
consider using an Arc
to create a reference-counted value:
use std::sync::Arc; use std::thread; struct FancyNum { num: u8, } fn main() { let fancy_ref1 = Arc::new(FancyNum { num: 5 }); let fancy_ref2 = fancy_ref1.clone(); let x = thread::spawn(move || { // `fancy_ref1` can be moved and has a `'static` lifetime println!("child thread: {}", fancy_ref1.num); }); x.join().expect("child thread should finish"); println!("main thread: {}", fancy_ref2.num); }Run
A value was moved out while it was still borrowed.
Erroneous code example:
struct Value {} fn eat(val: Value) {} fn main() { let x = Value{}; { let _ref_to_val: &Value = &x; eat(x); } }Run
Here, the function eat
takes the ownership of x
. However,
x
cannot be moved because it was borrowed to _ref_to_val
.
To fix that you can do few different things:
Copy
trait on the type.Examples:
struct Value {} fn eat(val: &Value) {} fn main() { let x = Value{}; { let _ref_to_val: &Value = &x; eat(&x); // pass by reference, if it's possible } }Run
Or:
struct Value {} fn eat(val: Value) {} fn main() { let x = Value{}; { let _ref_to_val: &Value = &x; } eat(x); // release borrow and then move it. }Run
Or:
#[derive(Clone, Copy)] // implement Copy trait struct Value {} fn eat(val: Value) {} fn main() { let x = Value{}; { let _ref_to_val: &Value = &x; eat(x); // it will be copied here. } }Run
You can find more information about borrowing in the rust-book: http://doc.rust-lang.org/stable/book/references-and-borrowing.html
This error occurs when an attempt is made to assign to a borrowed value.
Example of erroneous code:
struct FancyNum { num: u8, } fn main() { let mut fancy_num = FancyNum { num: 5 }; let fancy_ref = &fancy_num; fancy_num = FancyNum { num: 6 }; // error: cannot assign to `fancy_num` because it is borrowed println!("Num: {}, Ref: {}", fancy_num.num, fancy_ref.num); }Run
Because fancy_ref
still holds a reference to fancy_num
, fancy_num
can't
be assigned to a new value as it would invalidate the reference.
Alternatively, we can move out of fancy_num
into a second fancy_num
:
struct FancyNum { num: u8, } fn main() { let mut fancy_num = FancyNum { num: 5 }; let moved_num = fancy_num; fancy_num = FancyNum { num: 6 }; println!("Num: {}, Moved num: {}", fancy_num.num, moved_num.num); }Run
If the value has to be borrowed, try limiting the lifetime of the borrow using a scoped block:
struct FancyNum { num: u8, } fn main() { let mut fancy_num = FancyNum { num: 5 }; { let fancy_ref = &fancy_num; println!("Ref: {}", fancy_ref.num); } // Works because `fancy_ref` is no longer in scope fancy_num = FancyNum { num: 6 }; println!("Num: {}", fancy_num.num); }Run
Or by moving the reference into a function:
struct FancyNum { num: u8, } fn main() { let mut fancy_num = FancyNum { num: 5 }; print_fancy_ref(&fancy_num); // Works because function borrow has ended fancy_num = FancyNum { num: 6 }; println!("Num: {}", fancy_num.num); } fn print_fancy_ref(fancy_ref: &FancyNum){ println!("Ref: {}", fancy_ref.num); }Run
You tried to move out of a value which was borrowed. Erroneous code example:
use std::cell::RefCell; struct TheDarkKnight; impl TheDarkKnight { fn nothing_is_true(self) {} } fn main() { let x = RefCell::new(TheDarkKnight); x.borrow().nothing_is_true(); // error: cannot move out of borrowed content }Run
Here, the nothing_is_true
method takes the ownership of self
. However,
self
cannot be moved because .borrow()
only provides an &TheDarkKnight
,
which is a borrow of the content owned by the RefCell
. To fix this error,
you have three choices:
Copy
trait on the type.Examples:
use std::cell::RefCell; struct TheDarkKnight; impl TheDarkKnight { fn nothing_is_true(&self) {} // First case, we don't take ownership } fn main() { let x = RefCell::new(TheDarkKnight); x.borrow().nothing_is_true(); // ok! }Run
Or:
use std::cell::RefCell; struct TheDarkKnight; impl TheDarkKnight { fn nothing_is_true(self) {} } fn main() { let x = RefCell::new(TheDarkKnight); let x = x.into_inner(); // we get back ownership x.nothing_is_true(); // ok! }Run
Or:
use std::cell::RefCell; #[derive(Clone, Copy)] // we implement the Copy trait struct TheDarkKnight; impl TheDarkKnight { fn nothing_is_true(self) {} } fn main() { let x = RefCell::new(TheDarkKnight); x.borrow().nothing_is_true(); // ok! }Run
Moving a member out of a mutably borrowed struct will also cause E0507 error:
struct TheDarkKnight; impl TheDarkKnight { fn nothing_is_true(self) {} } struct Batcave { knight: TheDarkKnight } fn main() { let mut cave = Batcave { knight: TheDarkKnight }; let borrowed = &mut cave; borrowed.knight.nothing_is_true(); // E0507 }Run
It is fine only if you put something back. mem::replace
can be used for that:
use std::mem; let mut cave = Batcave { knight: TheDarkKnight }; let borrowed = &mut cave; mem::replace(&mut borrowed.knight, TheDarkKnight).nothing_is_true(); // ok!Run
You can find more information about borrowing in the rust-book: http://doc.rust-lang.org/book/first-edition/references-and-borrowing.html
A value was moved out of a non-copy fixed-size array.
Example of erroneous code:
struct NonCopy; fn main() { let array = [NonCopy; 1]; let _value = array[0]; // error: cannot move out of type `[NonCopy; 1]`, // a non-copy fixed-size array }Run
The first element was moved out of the array, but this is not
possible because NonCopy
does not implement the Copy
trait.
Consider borrowing the element instead of moving it:
struct NonCopy; fn main() { let array = [NonCopy; 1]; let _value = &array[0]; // Borrowing is allowed, unlike moving. }Run
Alternatively, if your type implements Clone
and you need to own the value,
consider borrowing and then cloning:
#[derive(Clone)] struct NonCopy; fn main() { let array = [NonCopy; 1]; // Now you can clone the array element. let _value = array[0].clone(); }Run
This error occurs when an attempt is made to move out of a value whose type
implements the Drop
trait.
Example of erroneous code:
struct FancyNum { num: usize } struct DropStruct { fancy: FancyNum } impl Drop for DropStruct { fn drop(&mut self) { // Destruct DropStruct, possibly using FancyNum } } fn main() { let drop_struct = DropStruct{fancy: FancyNum{num: 5}}; let fancy_field = drop_struct.fancy; // Error E0509 println!("Fancy: {}", fancy_field.num); // implicit call to `drop_struct.drop()` as drop_struct goes out of scope }Run
Here, we tried to move a field out of a struct of type DropStruct
which
implements the Drop
trait. However, a struct cannot be dropped if one or
more of its fields have been moved.
Structs implementing the Drop
trait have an implicit destructor that gets
called when they go out of scope. This destructor may use the fields of the
struct, so moving out of the struct could make it impossible to run the
destructor. Therefore, we must think of all values whose type implements the
Drop
trait as single units whose fields cannot be moved.
This error can be fixed by creating a reference to the fields of a struct,
enum, or tuple using the ref
keyword:
struct FancyNum { num: usize } struct DropStruct { fancy: FancyNum } impl Drop for DropStruct { fn drop(&mut self) { // Destruct DropStruct, possibly using FancyNum } } fn main() { let drop_struct = DropStruct{fancy: FancyNum{num: 5}}; let ref fancy_field = drop_struct.fancy; // No more errors! println!("Fancy: {}", fancy_field.num); // implicit call to `drop_struct.drop()` as drop_struct goes out of scope }Run
Note that this technique can also be used in the arms of a match expression:
struct FancyNum { num: usize } enum DropEnum { Fancy(FancyNum) } impl Drop for DropEnum { fn drop(&mut self) { // Destruct DropEnum, possibly using FancyNum } } fn main() { // Creates and enum of type `DropEnum`, which implements `Drop` let drop_enum = DropEnum::Fancy(FancyNum{num: 10}); match drop_enum { // Creates a reference to the inside of `DropEnum::Fancy` DropEnum::Fancy(ref fancy_field) => // No error! println!("It was fancy-- {}!", fancy_field.num), } // implicit call to `drop_enum.drop()` as drop_enum goes out of scope }Run
Invalid monomorphization of an intrinsic function was used. Erroneous code example:
#![feature(platform_intrinsics)] extern "platform-intrinsic" { fn simd_add<T>(a: T, b: T) -> T; } fn main() { unsafe { simd_add(0, 1); } // error: invalid monomorphization of `simd_add` intrinsic }Run
The generic type has to be a SIMD type. Example:
#![feature(repr_simd)] #![feature(platform_intrinsics)] #[repr(simd)] #[derive(Copy, Clone)] struct i32x2(i32, i32); extern "platform-intrinsic" { fn simd_add<T>(a: T, b: T) -> T; } unsafe { simd_add(i32x2(0, 0), i32x2(1, 2)); } // ok!Run
Transmute with two differently sized types was attempted. Erroneous code example:
fn takes_u8(_: u8) {} fn main() { unsafe { takes_u8(::std::mem::transmute(0u16)); } // error: transmute called with types of different sizes }Run
Please use types with same size or use the expected type directly. Example:
fn takes_u8(_: u8) {} fn main() { unsafe { takes_u8(::std::mem::transmute(0i8)); } // ok! // or: unsafe { takes_u8(0u8); } // ok! }Run
No description.
The typeof
keyword is currently reserved but unimplemented.
Erroneous code example:
fn main() { let x: typeof(92) = 92; }Run
Try using type inference instead. Example:
fn main() { let x = 92; }Run
This error indicates that a #[repr(..)]
attribute was placed on an
unsupported item.
Examples of erroneous code:
#[repr(C)] type Foo = u8; #[repr(packed)] enum Foo {Bar, Baz} #[repr(u8)] struct Foo {bar: bool, baz: bool} #[repr(C)] impl Foo { // ... }Run
#[repr(C)]
attribute can only be placed on structs and enums.#[repr(packed)]
and #[repr(simd)]
attributes only work on structs.#[repr(u8)]
, #[repr(i16)]
, etc attributes only work on enums.These attributes do not work on typedefs, since typedefs are just aliases.
Representations like #[repr(u8)]
, #[repr(i64)]
are for selecting the
discriminant size for enums with no data fields on any of the variants, e.g.
enum Color {Red, Blue, Green}
, effectively setting the size of the enum to
the size of the provided type. Such an enum can be cast to a value of the same
type as well. In short, #[repr(u8)]
makes the enum behave like an integer
with a constrained set of allowed values.
Only field-less enums can be cast to numerical primitives, so this attribute will not apply to structs.
#[repr(packed)]
reduces padding to make the struct size smaller. The
representation of enums isn't strictly defined in Rust, and this attribute
won't work on enums.
#[repr(simd)]
will give a struct consisting of a homogeneous series of machine
types (i.e. u8
, i32
, etc) a representation that permits vectorization via
SIMD. This doesn't make much sense for enums since they don't consist of a
single list of data.
This error indicates that an #[inline(..)]
attribute was incorrectly placed
on something other than a function or method.
Examples of erroneous code:
#[inline(always)] struct Foo; #[inline(never)] impl Foo { // ... }Run
#[inline]
hints the compiler whether or not to attempt to inline a method or
function. By default, the compiler does a pretty good job of figuring this out
itself, but if you feel the need for annotations, #[inline(always)]
and
#[inline(never)]
can override or force the compiler's decision.
If you wish to apply this attribute to all methods in an impl, manually annotate
each method; it is not possible to annotate the entire impl with an #[inline]
attribute.
No description.
A non-default implementation was already made on this type so it cannot be specialized further. Erroneous code example:
#![feature(specialization)] trait SpaceLlama { fn fly(&self); } // applies to all T impl<T> SpaceLlama for T { default fn fly(&self) {} } // non-default impl // applies to all `Clone` T and overrides the previous impl impl<T: Clone> SpaceLlama for T { fn fly(&self) {} } // since `i32` is clone, this conflicts with the previous implementation impl SpaceLlama for i32 { default fn fly(&self) {} // error: item `fly` is provided by an `impl` that specializes // another, but the item in the parent `impl` is not marked // `default` and so it cannot be specialized. }Run
Specialization only allows you to override default
functions in
implementations.
To fix this error, you need to mark all the parent implementations as default. Example:
#![feature(specialization)] trait SpaceLlama { fn fly(&self); } // applies to all T impl<T> SpaceLlama for T { default fn fly(&self) {} // This is a parent implementation. } // applies to all `Clone` T; overrides the previous impl impl<T: Clone> SpaceLlama for T { default fn fly(&self) {} // This is a parent implementation but was // previously not a default one, causing the error } // applies to i32, overrides the previous two impls impl SpaceLlama for i32 { fn fly(&self) {} // And now that's ok! }Run
The lang attribute is intended for marking special items that are built-in to
Rust itself. This includes special traits (like Copy
and Sized
) that affect
how the compiler behaves, as well as special functions that may be automatically
invoked (such as the handler for out-of-bounds accesses when indexing a slice).
Erroneous code example:
#![feature(lang_items)] #[lang = "cookie"] fn cookie() -> ! { // error: definition of an unknown language item: `cookie` loop {} }Run
No description.
No description.
A closure was used but didn't implement the expected trait.
Erroneous code example:
struct X; fn foo<T>(_: T) {} fn bar<T: Fn(u32)>(_: T) {} fn main() { let x = X; let closure = |_| foo(x); // error: expected a closure that implements // the `Fn` trait, but this closure only // implements `FnOnce` bar(closure); }Run
In the example above, closure
is an FnOnce
closure whereas the bar
function expected an Fn
closure. In this case, it's simple to fix the issue,
you just have to implement Copy
and Clone
traits on struct X
and it'll
be ok:
#[derive(Clone, Copy)] // We implement `Clone` and `Copy` traits. struct X; fn foo<T>(_: T) {} fn bar<T: Fn(u32)>(_: T) {} fn main() { let x = X; let closure = |_| foo(x); bar(closure); // ok! }Run
To understand better how closures work in Rust, read: https://doc.rust-lang.org/book/first-edition/closures.html
No description.
The number of elements in an array or slice pattern differed from the number of elements in the array being matched.
Example of erroneous code:
#![feature(slice_patterns)] let r = &[1, 2, 3, 4]; match r { &[a, b] => { // error: pattern requires 2 elements but array // has 4 println!("a={}, b={}", a, b); } }Run
Ensure that the pattern is consistent with the size of the matched
array. Additional elements can be matched with ..
:
#![feature(slice_patterns)] let r = &[1, 2, 3, 4]; match r { &[a, b, ..] => { // ok! println!("a={}, b={}", a, b); } }Run
An array or slice pattern required more elements than were present in the matched array.
Example of erroneous code:
#![feature(slice_patterns)] let r = &[1, 2]; match r { &[a, b, c, rest..] => { // error: pattern requires at least 3 // elements but array has 2 println!("a={}, b={}, c={} rest={:?}", a, b, c, rest); } }Run
Ensure that the matched array has at least as many elements as the pattern
requires. You can match an arbitrary number of remaining elements with ..
:
#![feature(slice_patterns)] let r = &[1, 2, 3, 4, 5]; match r { &[a, b, c, rest..] => { // ok! // prints `a=1, b=2, c=3 rest=[4, 5]` println!("a={}, b={}, c={} rest={:?}", a, b, c, rest); } }Run
An array or slice pattern was matched against some other type.
Example of erroneous code:
#![feature(slice_patterns)] let r: f32 = 1.0; match r { [a, b] => { // error: expected an array or slice, found `f32` println!("a={}, b={}", a, b); } }Run
Ensure that the pattern and the expression being matched on are of consistent types:
#![feature(slice_patterns)] let r = [1.0, 2.0]; match r { [a, b] => { // ok! println!("a={}, b={}", a, b); } }Run
A binding shadowed something it shouldn't.
Erroneous code example:
static TEST: i32 = 0; let r: (i32, i32) = (0, 0); match r { TEST => {} // error: match bindings cannot shadow statics }Run
To fix this error, just change the binding's name in order to avoid shadowing one of the following:
Fixed example:
static TEST: i32 = 0; let r: (i32, i32) = (0, 0); match r { something => {} // ok! }Run
No description.
Pattern arm did not match expected kind.
Erroneous code example:
enum State { Succeeded, Failed(String), } fn print_on_failure(state: &State) { match *state { // error: expected unit struct/variant or constant, found tuple // variant `State::Failed` State::Failed => println!("Failed"), _ => () } }Run
To fix this error, ensure the match arm kind is the same as the expression matched.
Fixed example:
enum State { Succeeded, Failed(String), } fn print_on_failure(state: &State) { match *state { State::Failed(ref msg) => println!("Failed with {}", msg), _ => () } }Run
No description.
The inline
attribute was malformed.
Erroneous code example:
#[inline()] // error: expected one argument pub fn something() {} fn main() {}Run
The parenthesized inline
attribute requires the parameter to be specified:
#[inline(always)] fn something() {}Run
or:
#[inline(never)] fn something() {}Run
Alternatively, a paren-less version of the attribute may be used to hint the compiler about inlining opportunity:
#[inline] fn something() {}Run
For more information about the inline attribute, read: https://doc.rust-lang.org/reference.html#inline-attributes
An unknown argument was given to the inline
attribute.
Erroneous code example:
#[inline(unknown)] // error: invalid argument pub fn something() {} fn main() {}Run
The inline
attribute only supports two arguments:
All other arguments given to the inline
attribute will return this error.
Example:
#[inline(never)] // ok! pub fn something() {} fn main() {}Run
For more information about the inline attribute, https: read://doc.rust-lang.org/reference.html#inline-attributes
The not
cfg-predicate was malformed.
Erroneous code example:
#[cfg(not())] // error: expected 1 cfg-pattern pub fn something() {} pub fn main() {}Run
The not
predicate expects one cfg-pattern. Example:
#[cfg(not(target_os = "linux"))] // ok! pub fn something() {} pub fn main() {}Run
For more information about the cfg attribute, read: https://doc.rust-lang.org/reference.html#conditional-compilation
An unknown predicate was used inside the cfg
attribute.
Erroneous code example:
#[cfg(unknown())] // error: invalid predicate `unknown` pub fn something() {} pub fn main() {}Run
The cfg
attribute supports only three kinds of predicates:
Example:
#[cfg(not(target_os = "linux"))] // ok! pub fn something() {} pub fn main() {}Run
For more information about the cfg attribute, read: https://doc.rust-lang.org/reference.html#conditional-compilation
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
No description.
A unrecognized representation attribute was used.
Erroneous code example:
#[repr(D)] // error: unrecognized representation hint struct MyStruct { my_field: usize }Run
You can use a repr
attribute to tell the compiler how you want a struct or
enum to be laid out in memory.
Make sure you're using one of the supported options:
#[repr(C)] // ok! struct MyStruct { my_field: usize }Run
For more information about specifying representations, see the "Alternative Representations" section of the Rustonomicon.
No description.
Feature attributes are only allowed on the nightly release channel. Stable or beta compilers will not comply.
Example of erroneous code (on a stable compiler):
#![feature(non_ascii_idents)] // error: #![feature] may not be used on the // stable release channelRun
If you need the feature, make sure to use a nightly release of the compiler (but be warned that the feature may be removed or altered in the future).
No description.
No description.
A feature attribute named a feature that has been removed.
Erroneous code example:
#![feature(managed_boxes)] // error: feature has been removedRun
Delete the offending feature attribute.
No description.
An unknown field was specified into an enum's structure variant.
Erroneous code example:
enum Field { Fool { x: u32 }, } let s = Field::Fool { joke: 0 }; // error: struct variant `Field::Fool` has no field named `joke`Run
Verify you didn't misspell the field's name or that the field exists. Example:
enum Field { Fool { joke: u32 }, } let s = Field::Fool { joke: 0 }; // ok!Run
An unknown field was specified into a structure.
Erroneous code example:
struct Simba { mother: u32, } let s = Simba { mother: 1, father: 0 }; // error: structure `Simba` has no field named `father`Run
Verify you didn't misspell the field's name or that the field exists. Example:
struct Simba { mother: u32, father: u32, } let s = Simba { mother: 1, father: 0 }; // ok!Run
No description.
Abstract return types (written impl Trait
for some trait Trait
) are only
allowed as function return types.
Erroneous code example:
#![feature(conservative_impl_trait)] fn main() { let count_to_ten: impl Iterator<Item=usize> = 0..10; // error: `impl Trait` not allowed outside of function and inherent method // return types for i in count_to_ten { println!("{}", i); } }Run
Make sure impl Trait
only appears in return-type position.
#![feature(conservative_impl_trait)] fn count_to_n(n: usize) -> impl Iterator<Item=usize> { 0..n } fn main() { for i in count_to_n(10) { // ok! println!("{}", i); } }Run
See RFC 1522 for more details.
No description.
A literal was used in an attribute that doesn't support literals.
Erroneous code example:
#![feature(attr_literals)] #[inline("always")] // error: unsupported literal pub fn something() {}Run
Literals in attributes are new and largely unsupported. Work to support literals where appropriate is ongoing. Try using an unquoted name instead:
#[inline(always)] pub fn something() {}Run
No description.
No description.
No description.
If an impl has a generic parameter with the #[may_dangle]
attribute, then
that impl must be declared as an `unsafe impl.
Erroneous code example:
#![feature(generic_param_attrs)] #![feature(dropck_eyepatch)] struct Foo<X>(X); impl<#[may_dangle] X> Drop for Foo<X> { fn drop(&mut self) { } }Run
In this example, we are asserting that the destructor for Foo
will not
access any data of type X
, and require this assertion to be true for
overall safety in our program. The compiler does not currently attempt to
verify this assertion; therefore we must tag this impl
as unsafe.
The requested ABI is unsupported by the current target.
The rust compiler maintains for each target a blacklist of ABIs unsupported on that target. If an ABI is present in such a list this usually means that the target / ABI combination is currently unsupported by llvm.
If necessary, you can circumvent this check using custom target specifications.
A break
statement with an argument appeared in a non-loop
loop.
Example of erroneous code:
let result = while true { if satisfied(i) { break 2*i; // error: `break` with value from a `while` loop } i += 1; };Run
The break
statement can take an argument (which will be the value of the loop
expression if the break
statement is executed) in loop
loops, but not
for
, while
, or while let
loops.
Make sure break value;
statements only occur in loop
loops:
let result = loop { // ok! if satisfied(i) { break 2*i; } i += 1; };Run
A return statement was found outside of a function body.
Erroneous code example:
const FOO: u32 = return 0; // error: return statement outside of function body fn main() {}Run
To fix this issue, just remove the return keyword or move the expression into a function. Example:
const FOO: u32 = 0; fn some_fn() -> u32 { return FOO; } fn main() { some_fn(); }Run
No description.
No description.
No description.
No description.
No description.
No description.
When matching against an exclusive range, the compiler verifies that the range is non-empty. Exclusive range patterns include the start point but not the end point, so this is equivalent to requiring the start of the range to be less than the end of the range.
For example:
match 5u32 { // This range is ok, albeit pointless. 1 .. 2 => {} // This range is empty, and the compiler can tell. 5 .. 5 => {} }Run
The main
function was incorrectly declared.
Erroneous code example:
fn main() -> i32 { // error: main function has wrong type 0 }Run
The main
function prototype should never take arguments or return type.
Example:
fn main() { // your code }Run
If you want to get command-line arguments, use std::env::args
. To exit with a
specified exit code, use std::process::exit
.
In a fn
type, a lifetime appears only in the return type,
and not in the arguments types.
Erroneous code example:
fn main() { // Here, `'a` appears only in the return type: let x: for<'a> fn() -> &'a i32; }Run
To fix this issue, either use the lifetime in the arguments, or use
'static
. Example:
fn main() { // Here, `'a` appears only in the return type: let x: for<'a> fn(&'a i32) -> &'a i32; let y: fn() -> &'static i32; }Run
Note: The examples above used to be (erroneously) accepted by the compiler, but this was since corrected. See issue #33685 for more details.
A lifetime appears only in an associated-type binding, and not in the input types to the trait.
Erroneous code example:
fn bar<F>(t: F) // No type can satisfy this requirement, since `'a` does not // appear in any of the input types (here, `i32`): where F: for<'a> Fn(i32) -> Option<&'a i32> { } fn main() { }Run
To fix this issue, either use the lifetime in the inputs, or use
'static
. Example:
fn bar<F, G>(t: F, u: G) where F: for<'a> Fn(&'a i32) -> Option<&'a i32>, G: Fn(i32) -> Option<&'static i32>, { } fn main() { }Run
Note: The examples above used to be (erroneously) accepted by the compiler, but this was since corrected. See issue #33685 for more details.
A file wasn't found for an out-of-line module.
Erroneous code example:
mod file_that_doesnt_exist; // error: file not found for module fn main() {}Run
Please be sure that a file corresponding to the module exists. If you
want to use a module named file_that_doesnt_exist
, you need to have a file
named file_that_doesnt_exist.rs
or file_that_doesnt_exist/mod.rs
in the
same directory.
No description.
A documentation comment that doesn't document anything was found.
Erroneous code example:
fn main() { // The following doc comment will fail: /// This is a useless doc comment! }Run
Documentation comments need to be followed by items, including functions, types, modules, etc. Examples:
/// I'm documenting the following struct: struct Foo; /// I'm documenting the following function: fn foo() {}Run
An inclusive range was used with no end.
Erroneous code example:
#![feature(inclusive_range_syntax)] fn main() { let tmp = vec![0, 1, 2, 3, 4, 4, 3, 3, 2, 1]; let x = &tmp[1..=]; // error: inclusive range was used with no end }Run
An inclusive range needs an end in order to include it. If you just need a
start and no end, use a non-inclusive range (with ..
):
fn main() { let tmp = vec![0, 1, 2, 3, 4, 4, 3, 3, 2, 1]; let x = &tmp[1..]; // ok! }Run
Or put an end to your inclusive range:
#![feature(inclusive_range_syntax)] fn main() { let tmp = vec![0, 1, 2, 3, 4, 4, 3, 3, 2, 1]; let x = &tmp[1..=3]; // ok! }Run
No description.
No description.
No description.
break
or continue
must include a label when used in the condition of a
while
loop.
Example of erroneous code:
while break {}Run
To fix this, add a label specifying which loop is being broken out of:
'foo: while break 'foo {}
Per RFC 401, if you have a function declaration foo
:
// For the purposes of this explanation, all of these // different kinds of `fn` declarations are equivalent: struct S; fn foo(x: S) { /* ... */ } extern "C" { fn foo(x: S); } impl S { fn foo(self) { /* ... */ } }Run
the type of foo
is not fn(S)
, as one might expect.
Rather, it is a unique, zero-sized marker type written here as typeof(foo)
.
However, typeof(foo)
can be coerced to a function pointer fn(S)
,
so you rarely notice this:
let x: fn(S) = foo; // OK, coercesRun
The reason that this matter is that the type fn(S)
is not specific to
any particular function: it's a function pointer. So calling x()
results
in a virtual call, whereas foo()
is statically dispatched, because the type
of foo
tells us precisely what function is being called.
As noted above, coercions mean that most code doesn't have to be concerned with this distinction. However, you can tell the difference when using transmute to convert a fn item into a fn pointer.
This is sometimes done as part of an FFI:
extern "C" fn foo(userdata: Box<i32>) { /* ... */ } let f: extern "C" fn(*mut i32) = transmute(foo); callback(f);Run
Here, transmute is being used to convert the types of the fn arguments.
This pattern is incorrect because, because the type of foo
is a function
item (typeof(foo)
), which is zero-sized, and the target type (fn()
)
is a function pointer, which is not zero-sized.
This pattern should be rewritten. There are a few possible ways to do this:
cast the fn item fo a fn pointer before calling transmute, as shown here:
let f: extern "C" fn(*mut i32) = transmute(foo as extern "C" fn(_)); let f: extern "C" fn(*mut i32) = transmute(foo as usize); // works tooRun
The same applies to transmutes to *mut fn()
, which were observedin practice.
Note though that use of this type is generally incorrect.
The intention is typically to describe a function pointer, but just fn()
alone suffices for that. *mut fn()
is a pointer to a fn pointer.
(Since these values are typically just passed to C code, however, this rarely
makes a difference in practice.)
No description.
You tried to supply an Fn
-based type with an incorrect number of arguments
than what was expected.
Erroneous code example:
fn foo<F: Fn()>(x: F) { } fn main() { // [E0593] closure takes 1 argument but 0 arguments are required foo(|y| { }); }Run
No description.
Closures cannot mutate immutable captured variables.
Erroneous code example:
let x = 3; // error: closure cannot assign to immutable local variable `x` let mut c = || { x += 1 };Run
Make the variable binding mutable:
let mut x = 3; // ok! let mut c = || { x += 1 };Run
This error occurs because you tried to mutably borrow a non-mutable variable.
Example of erroneous code:
let x = 1; let y = &mut x; // error: cannot borrow mutablyRun
In here, x
isn't mutable, so when we try to mutably borrow it in y
, it
fails. To fix this error, you need to make x
mutable:
let mut x = 1; let y = &mut x; // ok!Run
This error occurs because a borrow was made inside a variable which has a greater lifetime than the borrowed one.
Example of erroneous code:
struct Foo<'a> { x: Option<&'a u32>, } let mut x = Foo { x: None }; let y = 0; x.x = Some(&y); // error: `y` does not live long enoughRun
In here, x
is created before y
and therefore has a greater lifetime. Always
keep in mind that values in a scope are dropped in the opposite order they are
created. So to fix the previous example, just make the y
lifetime greater than
the x
's one:
struct Foo<'a> { x: Option<&'a u32>, } let y = 0; let mut x = Foo { x: None }; x.x = Some(&y);Run
No description.
This error occurs when a method is used on a type which doesn't implement it:
Erroneous code example:
struct Mouth; let x = Mouth; x.chocolate(); // error: no method named `chocolate` found for type `Mouth` // in the current scopeRun
An unary operator was used on a type which doesn't implement it.
Example of erroneous code:
enum Question { Yes, No, } !Question::Yes; // error: cannot apply unary operator `!` to type `Question`Run
In this case, Question
would need to implement the std::ops::Not
trait in
order to be able to use !
on it. Let's implement it:
use std::ops::Not; enum Question { Yes, No, } // We implement the `Not` trait on the enum. impl Not for Question { type Output = bool; fn not(self) -> bool { match self { Question::Yes => false, // If the `Answer` is `Yes`, then it // returns false. Question::No => true, // And here we do the opposite. } } } assert_eq!(!Question::Yes, false); assert_eq!(!Question::No, true);Run
No main
function was found in a binary crate. To fix this error, add a
main
function. For example:
fn main() { // Your program will start here. println!("Hello world!"); }Run
If you don't know the basics of Rust, you can go look to the Rust Book to get started: https://doc.rust-lang.org/book/
An unknown lint was used on the command line.
Erroneous example:
rustc -D bogus omse_file.rs
Maybe you just misspelled the lint name or the lint doesn't exist anymore. Either way, try to update/remove it in order to fix the error.
A private item was used outside its scope.
Erroneous code example:
mod SomeModule { const PRIVATE: u32 = 0x_a_bad_1dea_u32; // This const is private, so we // can't use it outside of the // `SomeModule` module. } println!("const value: {}", SomeModule::PRIVATE); // error: constant `CONSTANT` // is privateRun
In order to fix this error, you need to make the item public by using the pub
keyword. Example:
mod SomeModule { pub const PRIVATE: u32 = 0x_a_bad_1dea_u32; // We set it public by using the // `pub` keyword. } println!("const value: {}", SomeModule::PRIVATE); // ok!Run
A cast to char
was attempted on a type other than u8
.
Erroneous code example:
0u32 as char; // error: only `u8` can be cast as `char`, not `u32`Run
As the error message indicates, only u8
can be cast into char
. Example:
let c = 86u8 as char; // ok! assert_eq!(c, 'V');Run
For more information about casts, take a look at The Book: https://doc.rust-lang.org/book/first-edition/casting-between-types.html
An invalid cast was attempted.
Erroneous code examples:
let x = 0u8; x as Vec<u8>; // error: non-primitive cast: `u8` as `std::vec::Vec<u8>` // Another example let v = 0 as *const u8; // So here, `v` is a `*const u8`. v as &u8; // error: non-primitive cast: `*const u8` as `&u8`Run
Only primitive types can be cast into each other. Examples:
let x = 0u8; x as u32; // ok! let v = 0 as *const u8; v as *const i8; // ok!Run
For more information about casts, take a look at The Book: https://doc.rust-lang.org/book/first-edition/casting-between-types.html
An incompatible cast was attempted.
Erroneous code example:
let x = &0u8; // Here, `x` is a `&u8`. let y: u32 = x as u32; // error: casting `&u8` as `u32` is invalidRun
When casting, keep in mind that only primitive types can be cast into each other. Example:
let x = &0u8; let y: u32 = *x as u32; // We dereference it first and then cast it.Run
For more information about casts, take a look at The Book: https://doc.rust-lang.org/book/first-edition/casting-between-types.html
A cast between a thin and a fat pointer was attempted.
Erroneous code example:
let v = 0 as *const u8; v as *const [u8];Run
First: what are thin and fat pointers?
Thin pointers are "simple" pointers: they are purely a reference to a memory address.
Fat pointers are pointers referencing Dynamically Sized Types (also called DST). DST don't have a statically known size, therefore they can only exist behind some kind of pointers that contain additional information. Slices and trait objects are DSTs. In the case of slices, the additional information the fat pointer holds is their size.
To fix this error, don't try to cast directly between thin and fat pointers.
For more information about casts, take a look at The Book: https://doc.rust-lang.org/book/first-edition/casting-between-types.html
An attempt to index into a type which doesn't implement the std::ops::Index
trait was performed.
Erroneous code example:
0u8[2]; // error: cannot index into a value of type `u8`Run
To be able to index into a type it needs to implement the std::ops::Index
trait. Example:
let v: Vec<u8> = vec![0, 1, 2, 3]; // The `Vec` type implements the `Index` trait so you can do: println!("{}", v[2]);Run
Attempted to access a non-existent field in a struct.
Erroneous code example:
struct StructWithFields { x: u32, } let s = StructWithFields { x: 0 }; println!("{}", s.foo); // error: no field `foo` on type `StructWithFields`Run
To fix this error, check that you didn't misspell the field's name or that the field actually exists. Example:
struct StructWithFields { x: u32, } let s = StructWithFields { x: 0 }; println!("{}", s.x); // ok!Run
Attempted to access a field on a primitive type.
Erroneous code example:
let x: u32 = 0; println!("{}", x.foo); // error: `{integer}` is a primitive type, therefore // doesn't have fieldsRun
Primitive types are the most basic types available in Rust and don't have fields. To access data via named fields, struct types are used. Example:
// We declare struct called `Foo` containing two fields: struct Foo { x: u32, y: i64, } // We create an instance of this struct: let variable = Foo { x: 0, y: -12 }; // And we can now access its fields: println!("x: {}, y: {}", variable.x, variable.y);Run
For more information about primitives and structs, take a look at The Book: https://doc.rust-lang.org/book/first-edition/primitive-types.html https://doc.rust-lang.org/book/first-edition/structs.html
Attempted to access a private field on a tuple-struct.
Erroneous code example:
mod some_module { pub struct Foo(u32); impl Foo { pub fn new() -> Foo { Foo(0) } } } let y = some_module::Foo::new(); println!("{}", y.0); // error: field `0` of tuple-struct `some_module::Foo` // is privateRun
Since the field is private, you have two solutions:
1) Make the field public:
mod some_module { pub struct Foo(pub u32); // The field is now public. impl Foo { pub fn new() -> Foo { Foo(0) } } } let y = some_module::Foo::new(); println!("{}", y.0); // So we can access it directly.Run
2) Add a getter function to keep the field private but allow for accessing its value:
mod some_module { pub struct Foo(u32); impl Foo { pub fn new() -> Foo { Foo(0) } // We add the getter function. pub fn get(&self) -> &u32 { &self.0 } } } let y = some_module::Foo::new(); println!("{}", y.get()); // So we can get the value through the function.Run
Attempted out-of-bounds tuple index.
Erroneous code example:
struct Foo(u32); let y = Foo(0); println!("{}", y.1); // error: attempted out-of-bounds tuple index `1` // on type `Foo`Run
If a tuple/tuple-struct type has n fields, you can only try to access these n
fields from 0 to (n - 1). So in this case, you can only index 0
. Example:
struct Foo(u32); let y = Foo(0); println!("{}", y.0); // ok!Run
Attempted to dereference a variable which cannot be dereferenced.
Erroneous code example:
let y = 0u32; *y; // error: type `u32` cannot be dereferencedRun
Only types implementing std::ops::Deref
can be dereferenced (such as &T
).
Example:
let y = 0u32; let x = &y; // So here, `x` is a `&u32`, so we can dereference it: *x; // ok!Run
Attempted to access a method like a field.
Erroneous code example:
struct Foo { x: u32, } impl Foo { fn method(&self) {} } let f = Foo { x: 0 }; f.method; // error: attempted to take value of method `method` on type `Foo`Run
If you want to use a method, add ()
after it:
f.method();Run
However, if you wanted to access a field of a struct check that the field name is spelled correctly. Example:
println!("{}", f.x);Run
Attempted to access a private field on a struct.
Erroneous code example:
mod some_module { pub struct Foo { x: u32, // So `x` is private in here. } impl Foo { pub fn new() -> Foo { Foo { x: 0 } } } } let f = some_module::Foo::new(); println!("{}", f.x); // error: field `x` of struct `some_module::Foo` is privateRun
If you want to access this field, you have two options:
1) Set the field public:
mod some_module { pub struct Foo { pub x: u32, // `x` is now public. } impl Foo { pub fn new() -> Foo { Foo { x: 0 } } } } let f = some_module::Foo::new(); println!("{}", f.x); // ok!Run
2) Add a getter function:
mod some_module { pub struct Foo { x: u32, // So `x` is still private in here. } impl Foo { pub fn new() -> Foo { Foo { x: 0 } } // We create the getter function here: pub fn get_x(&self) -> &u32 { &self.x } } } let f = some_module::Foo::new(); println!("{}", f.get_x()); // ok!Run
Attempted to pass an invalid type of variable into a variadic function.
Erroneous code example:
extern { fn printf(c: *const i8, ...); } unsafe { printf(::std::ptr::null(), 0f32); // error: can't pass an `f32` to variadic function, cast to `c_double` }Run
Certain Rust types must be cast before passing them to a variadic function,
because of arcane ABI rules dictated by the C standard. To fix the error,
cast the value to the type specified by the error message (which you may need
to import from std::os::raw
).
Attempted to call something which isn't a function nor a method.
Erroneous code examples:
enum X { Entry, } X::Entry(); // error: expected function, found `X::Entry` // Or even simpler: let x = 0i32; x(); // error: expected function, found `i32`Run
Only functions and methods can be called using ()
. Example:
// We declare a function: fn i_am_a_function() {} // And we call it: i_am_a_function();Run
The type-checker needed to know the type of an expression, but that type had not yet been inferred.
Erroneous code example:
let mut x = vec![]; match x.pop() { Some(v) => { // Here, the type of `v` is not (yet) known, so we // cannot resolve this method call: v.to_uppercase(); // error: the type of this value must be known in // this context } None => {} }Run
Type inference typically proceeds from the top of the function to the bottom,
figuring out types as it goes. In some cases -- notably method calls and
overloadable operators like *
-- the type checker may not have enough
information yet to make progress. This can be true even if the rest of the
function provides enough context (because the type-checker hasn't looked that
far ahead yet). In this case, type annotations can be used to help it along.
To fix this error, just specify the type of the variable. Example:
let mut x: Vec<String> = vec![]; // We precise the type of the vec elements. match x.pop() { Some(v) => { v.to_uppercase(); // Since rustc now knows the type of the vec elements, // we can use `v`'s methods. } None => {} }Run
A cast to an unsized type was attempted.
Erroneous code example:
let x = &[1_usize, 2] as [usize]; // error: cast to unsized type: `&[usize; 2]` // as `[usize]`Run
In Rust, some types don't have a known size at compile-time. For example, in a
slice type like [u32]
, the number of elements is not known at compile-time and
hence the overall size cannot be computed. As a result, such types can only be
manipulated through a reference (e.g., &T
or &mut T
) or other pointer-type
(e.g., Box
or Rc
). Try casting to a reference instead:
let x = &[1_usize, 2] as &[usize]; // ok!Run
This error code indicates a mismatch between the lifetimes appearing in the function signature (i.e., the parameter types and the return type) and the data-flow found in the function body.
Erroneous code example:
fn foo<'a>(x: &'a i32, y: &i32) -> &'a i32 { // error: explicit lifetime // required in the type of // `y` if x > y { x } else { y } }Run
In the code above, the function is returning data borrowed from either x
or
y
, but the 'a
annotation indicates that it is returning data only from x
.
To fix the error, the signature and the body must be made to match. Typically,
this is done by updating the function signature. So, in this case, we change
the type of y
to &'a i32
, like so:
fn foo<'a>(x: &'a i32, y: &'a i32) -> &'a i32 { if x > y { x } else { y } }Run
Now the signature indicates that the function data borrowed from either x
or
y
. Alternatively, you could change the body to not return data from y
:
fn foo<'a>(x: &'a i32, y: &i32) -> &'a i32 { x }Run
An intrinsic was declared without being a function.
Erroneous code example:
#![feature(intrinsics)] extern "rust-intrinsic" { pub static breakpoint : unsafe extern "rust-intrinsic" fn(); // error: intrinsic must be a function } fn main() { unsafe { breakpoint(); } }Run
An intrinsic is a function available for use in a given programming language whose implementation is handled specially by the compiler. In order to fix this error, just declare a function.
No description.
A private item was used outside of its scope.
Erroneous code example:
mod inner { pub struct Foo; impl Foo { fn method(&self) {} } } let foo = inner::Foo; foo.method(); // error: method `method` is privateRun
Two possibilities are available to solve this issue:
mod inner { pub struct Foo; impl Foo { fn method(&self) {} } pub fn call_method(foo: &Foo) { // We create a public function. foo.method(); // Which calls the item. } } let foo = inner::Foo; inner::call_method(&foo); // And since the function is public, we can call the // method through it.Run
mod inner { pub struct Foo; impl Foo { pub fn method(&self) {} // It's now public. } } let foo = inner::Foo; foo.method(); // Ok!Run
No description.
This error occurs because a borrow in a generator persists across a yield point.
let mut b = || { let a = &String::new(); // <-- This borrow... yield (); // ...is still in scope here, when the yield occurs. println!("{}", a); }; b.resume();Run
At present, it is not permitted to have a yield that occurs while a borrow is still in scope. To resolve this error, the borrow must either be "contained" to a smaller scope that does not overlap the yield or else eliminated in another way. So, for example, we might resolve the previous example by removing the borrow and just storing the integer by value:
let mut b = || { let a = 3; yield (); println!("{}", a); }; b.resume();Run
This is a very simple case, of course. In more complex cases, we may
wish to have more than one reference to the value that was borrowed --
in those cases, something like the Rc
or Arc
types may be useful.
This error also frequently arises with iteration:
let mut b = || { let v = vec![1,2,3]; for &x in &v { // <-- borrow of `v` is still in scope... yield x; // ...when this yield occurs. } }; b.resume();Run
Such cases can sometimes be resolved by iterating "by value" (or using
into_iter()
) to avoid borrowing:
let mut b = || { let v = vec![1,2,3]; for x in v { // <-- Take ownership of the values instead! yield x; // <-- Now yield is OK. } }; b.resume();Run
If taking ownership is not an option, using indices can work too:
let mut b = || { let v = vec![1,2,3]; let len = v.len(); // (*) for i in 0..len { let x = v[i]; // (*) yield x; // <-- Now yield is OK. } }; b.resume(); // (*) -- Unfortunately, these temporaries are currently required. // See <https://github.com/rust-lang/rust/issues/43122>.Run
No description.
No description.
No description.
No description.
No description.
No description.
No description.
This error indicates that the struct or enum must be matched non-exhaustively
as it has been marked as non_exhaustive
.
When applied within a crate, downstream users of the crate will need to use the
_
pattern when matching enums and use the ..
pattern when matching structs.
For example, in the below example, since the enum is marked as
non_exhaustive
, it is required that downstream crates match non-exhaustively
on it.
use std::error::Error as StdError; #[non_exhaustive] pub enum Error { Message(String), Other, } impl StdError for Error { fn description(&self) -> &str { // This will not error, despite being marked as non_exhaustive, as this // enum is defined within the current crate, it can be matched // exhaustively. match *self { Message(ref s) => s, Other => "other or unknown error", } } }Run
An example of matching non-exhaustively on the above enum is provided below:
use mycrate::Error; // This will not error as the non_exhaustive Error enum has been matched with a // wildcard. match error { Message(ref s) => ..., Other => ..., _ => ..., }Run
Similarly, for structs, match with ..
to avoid this error.
This error indicates that the struct or enum cannot be instantiated from
outside of the defining crate as it has been marked as non_exhaustive
and as
such more fields/variants may be added in future that could cause adverse side
effects for this code.
It is recommended that you look for a new
function or equivalent in the
crate's documentation.
No description.
No description.
No description.
This error indicates that there is a mismatch between generic parameters and impl Trait parameters in a trait declaration versus its impl.
#![feature(universal_impl_trait)] trait Foo { fn foo(&self, _: &impl Iterator); } impl Foo for () { fn foo<U: Iterator>(&self, _: &U) { } // error method `foo` has incompatible // signature for trait }Run
A closure or generator was constructed that references its own type.
Erroneous example:
fn fix<F>(f: &F)
where F: Fn(&F)
{
f(&f);
}
fn main() {
fix(&|y| {
// Here, when `x` is called, the parameter `y` is equal to `x`.
});
}
Rust does not permit a closure to directly reference its own type, either through an argument (as in the example above) or by capturing itself through its environment. This restriction helps keep closure inference tractable.
The easiest fix is to rewrite your closure into a top-level function,
or into a method. In some cases, you may also be able to have your
closure call itself by capturing a &Fn()
object or fn()
pointer
that refers to itself. That is permitting, since the closure would be
invoking itself via a virtual call, and hence does not directly
reference its own type.
No description.
No description.
An unstable feature was used.
Erroneous code example:
let x = ::std::u128::MAX; // error: use of unstable library feature 'i128'Run
If you're using a stable or a beta version of rustc, you won't be able to use any unstable features. In order to do so, please switch to a nightly version of rustc (by using rustup).
If you're using a nightly version of rustc, just add the corresponding feature to be able to use it:
#![feature(i128)] fn main() { let x = ::std::u128::MAX; // ok! }Run
An item usage is ambiguous.
Erroneous code example:
pub mod moon { pub fn foo() {} } pub mod earth { pub fn foo() {} } mod collider { pub use moon::*; pub use earth::*; } fn main() { collider::foo(); // ERROR: `foo` is ambiguous }Run
This error generally appears when two items with the same name are imported into
a module. Here, the foo
functions are imported and reexported from the
collider
module and therefore, when we're using collider::foo()
, both
functions collide.
To solve this error, the best solution is generally to keep the path before the item when using it. Example:
pub mod moon { pub fn foo() {} } pub mod earth { pub fn foo() {} } mod collider { pub use moon; pub use earth; } fn main() { collider::moon::foo(); // ok! collider::earth::foo(); // ok! }Run
No description.
No description.
This error indicates that the numeric value for the method being passed exists but the type of the numeric value or binding could not be identified.
The error happens on numeric literals:
2.0.powi(2);Run
and on numeric bindings without an identified concrete type:
let x = 2.0; x.powi(2); // same error as aboveRun
Because of this, you must give the numeric literal or binding a type:
let _ = 2.0_f32.powi(2); let x: f32 = 2.0; let _ = x.powi(2); let _ = (2.0 as f32).powi(2);Run
A struct with the representation hint repr(transparent)
had zero or more than
on fields that were not guaranteed to be zero-sized.
Erroneous code example:
#![feature(repr_transparent)] #[repr(transparent)] struct LengthWithUnit<U> { // error: transparent struct needs exactly one value: f32, // non-zero-sized field, but has 2 unit: U, }Run
Because transparent structs are represented exactly like one of their fields at
run time, said field must be uniquely determined. If there is no field, or if
there are multiple fields, it is not clear how the struct should be represented.
Note that fields of zero-typed types (e.g., PhantomData
) can also exist
alongside the field that contains the actual data, they do not count for this
error. When generic types are involved (as in the above example), an error is
reported because the type parameter could be non-zero-sized.
To combine repr(transparent)
with type parameters, PhantomData
may be
useful:
#![feature(repr_transparent)] use std::marker::PhantomData; #[repr(transparent)] struct LengthWithUnit<U> { value: f32, unit: PhantomData<U>, }Run
A struct with the repr(transparent)
representation hint contains a zero-sized
field that requires non-trivial alignment.
Erroneous code example:
#![feature(repr_transparent, repr_align, attr_literals)] #[repr(align(32))] struct ForceAlign32; #[repr(transparent)] struct Wrapper(f32, ForceAlign32); // error: zero-sized field in transparent // struct has alignment larger than 1Run
A transparent struct is supposed to be represented exactly like the piece of
data it contains. Zero-sized fields with different alignment requirements
potentially conflict with this property. In the example above, Wrapper
would
have to be aligned to 32 bytes even though f32
has a smaller alignment
requirement.
Consider removing the over-aligned zero-sized field:
#![feature(repr_transparent)] #[repr(transparent)] struct Wrapper(f32);Run
Alternatively, PhantomData<T>
has alignment 1 for all T
, so you can use it
if you need to keep the field for some reason:
#![feature(repr_transparent, repr_align, attr_literals)] use std::marker::PhantomData; #[repr(align(32))] struct ForceAlign32; #[repr(transparent)] struct Wrapper(f32, PhantomData<ForceAlign32>);Run
Note that empty arrays [T; 0]
have the same alignment requirement as the
element type T
. Also note that the error is conservatively reported even when
the alignment of the zero-sized type is less than or equal to the data field's
alignment.
A repr(transparent)
type was also annotated with other, incompatible
representation hints.
Erroneous code example:
#![feature(repr_transparent)] #[repr(transparent, C)] // error: incompatible representation hints struct Grams(f32);Run
A type annotated as repr(transparent)
delegates all representation concerns to
another type, so adding more representation hints is contradictory. Remove
either the transparent
hint or the other hints, like this:
#![feature(repr_transparent)] #[repr(transparent)] struct Grams(f32);Run
Alternatively, move the other attributes to the contained type:
#![feature(repr_transparent)] #[repr(C)] struct Foo { x: i32, // ... } #[repr(transparent)] struct FooWrapper(Foo);Run
Note that introducing another struct
just to have a place for the other
attributes may have unintended side effects on the representation:
#![feature(repr_transparent)] #[repr(transparent)] struct Grams(f32); #[repr(C)] struct Float(f32); #[repr(transparent)] struct Grams2(Float); // this is not equivalent to `Grams` aboveRun
Here, Grams2
is a not equivalent to Grams
-- the former transparently wraps
a (non-transparent) struct containing a single float, while Grams
is a
transparent wrapper around a float. This can make a difference for the ABI.
No description.
No description.
A method was called on a raw pointer whose inner type wasn't completely known.
For example, you may have done something like:
let foo = &1; let bar = foo as *const _; if bar.is_null() { // ... }Run
Here, the type of bar
isn't known; it could be a pointer to anything. Instead,
specify a type for the pointer (preferably something that makes sense for the
thing you're pointing to):
let foo = &1; let bar = foo as *const i32; if bar.is_null() { // ... }Run
Even though is_null()
exists as a method on any raw pointer, Rust shows this
error because Rust allows for self
to have arbitrary types (behind the
arbitrary_self_types feature flag).
This means that someone can specify such a function:
impl Foo { fn is_null(self: *const Self) -> bool { // do something else } }Run
and now when you call .is_null()
on a raw pointer to Foo
, there's ambiguity.
Given that we don't know what type the pointer is, and there's potential ambiguity for some types, we disallow calling methods on raw pointers when the type is unknown.